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Long noncoding RNA (lncRNA) genes outnumber protein coding genes in the
human genome and the majority remain uncharacterized. A major difficulty in
generalizing understanding of lncRNA function is the dearth of gross sequence
conservation, both for lncRNAs across species and for lncRNAs that perform
similar functions within a species. Machine learning based methods which
harness vast amounts of information on RNAs are increasingly used to impute
certain biological characteristics. This includes interactions with proteins that are
important mediators of RNA function, thus enabling the generation of knowledge
in contexts for which experimental data are lacking. Here, we applied a natural
language-based machine learning approach that enabled us to identify RNA
binding protein interactions in lncRNA transcripts, using only RNA sequence as an
input. We found that this predictive method is a powerful approach to infer
conserved binding across species as distant as human and opossum, even in the
absence of sequence conservation, thus informing on sequence-function
relationships for these poorly understood RNAs.
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Introduction

Long noncoding RNAs (lncRNAs) have been associated with a plethora of molecular
and cellular functions in both normal and disease processes (Delás and Hannon, 2017;
Andergassen and Rinn, 2022; Rinn and Chang, 2012; 2020; Mattick et al., 2023). While
many lncRNAs are conventionally transcribed by RNA Polymerase II and therefore bear
commonalities withmRNAs including 5′ capping, similar splicingmechanistics, and a poly-
A tail, they generally lack linear sequence conservation across species (Mattick et al., 2023;
Rinn and Chang, 2020; Quinn and Chang, 2016). Therefore, unlike mRNAs, sequence
contexts that have been used to impute conserved protein domains that inform on
functionality, are absent for lncRNAs (Mattick et al., 2023). Based on these limitations,
general lncRNA classification approaches are lacking, even for lncRNAs with striking
functional conservation and impact on organismal biology (Furlan and Rougeulle, 2016).
This has implications for classifying newly identified and/or under-characterized lncRNAs.

Given the difficulties in assigning lncRNA function from sequence information, there is
a need for methodology to characterize the plethora of uncharacterized lncRNAs in humans
and other species (Mattick et al., 2023). Emerging approaches are based on short sequence
motifs (Kirk et al., 2018; Ross et al., 2021), which suggest that lncRNAs may be functionally
classified based on related motifs/k-mers (Kirk et al., 2018; Ross et al., 2021). These motifs
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are often present in interaction sites for RNA-binding proteins
(RBPs) (Lambert et al., 2014; Kuret et al., 2022), which are
critical regulatory mediators and functional partners of lncRNAs
(Briata and Gherzi, 2020; Huang et al., 2021; Ferrè et al., 2016; Noh
et al., 2018). However, the simple presence or absence of a motif is
not sufficient to determine whether an RNA region is a binding site
for an RBP ((Van Nostrand et al., 2020b). Additional context
determines whether an RBP can bind, and thus predicting RNA-
RBP interactions requires methods that can accommodate more
contextual information than a motif search alone.

High-throughput approaches have been used to experimentally
map RBP-RNA interactions (Ule et al., 2018; Kuret et al., 2022; Van
Nostrand et al., 2016; 2020b). These results have been used to
provide input for machine learning to generate predictions in the
absence of direct experimental data (Pan et al., 2019; Moore and ’t
Hoen, 2019; Horlacher et al., 2023). Recently self-attention
dependent, deep learning methods have shown promise for
complex language tasks using massive sequence-based datasets,
including entire genomes (Iuchi et al., 2021; Ji et al., 2021).
Bidirectional encoder representations from transformer (BERT)
has been pretrained on massive corpora of DNA sequence to
create DNABERT (Zhou et al., 2023; Ji et al., 2021; Devlin et al.,
2018). While DNABERT predicts regulatory regions such as
promoters and transcription factor binding sites (Ji et al., 2021;
Iuchi et al., 2021), further fine-tuning on RBP-RNA binding data to
create BERT-RBP (Yamada and Hamada, 2022), enables prediction
of whether relatively short (approximately 100 nucleotide) RNA
sequences bind specific RBPs.

We designed an approach to use BERT-RBP (Yamada and
Hamada, 2022) to address the lncRNA-functional prediction
problem, applying sliding-window segmentation to facilitate RBP-
lncRNA interaction predictions in full transcripts. We found we
were able to predict conserved lncRNA interactions in multiple
species, thereby overcoming roadblocks in lncRNA characterization.
Importantly, since it uses only sequence as input, this is an accessible
approach that is applicable across a range of species.

Materials and methods

Training data preparation

The benchmark training dataset was downloaded from
RBPSuite (Pan et al., 2020) and consisted of sequences around
eCLIP peaks from K562 and HepG2 cell lines for 154 RBPs (Van
Nostrand et al., 2016; Kagda et al., 2023). The positive dataset
comprised of up to 60,000 sequences of 101 nucleotides (nt),
derived from eCLIP peaks for each RBP. The negative dataset
consisted of matched regions without any peaks from the same
gene. For fine-tuning, we randomly selected 15,000 positive and
negative sequences and split them into training, evaluation, and test
sets, using scripts from BERT-RBP (Yamada and Hamada, 2022).

Fine-tuning BERT-RBP models

BERT-RBP models were fine-tuned from the pretrained 3-mer
DNABERT model (Ji et al., 2021) following instructions from

Yamada and Hamada 2022 (https://github.com/kkyamada/bert-
rbp). We first used default hyperparameters of 4 GPUs with a
per-gpu-batch-size of 32 for a total batch size of 128. However,
this method gave unstable results as also found by Horlacher et al.,
2023 (with 16/154 models lacking any classification ability). We
therefore trained additional model sets with batch sizes of 192 and
256 (using 6 and 8 GPUs, respectively), which showed improved but
not perfect stability. Based on training differences, we selected
models trained with batch sizes of 192, except when their
AUROC negatively deviated from previously reported values by
more than 0.005, in which case we used the higher performing of the
128 or 256 batch size model (Supplementary Table S1).

Evaluating model performance

BERT-RBP model performance (Yamada and Hamada, 2022)
was evaluated using withheld test data, with outputs normalized to a
range of 0–1 using Min-Max normalization. Performance metrics
including accuracy, precision, recall, F1 score, Matthew’s correlation
coefficient, average precision (area under precision-recall curve) and
AUROC were calculated using the scikit-learn python package,
version 1.3.0 (Supplementary Table S2).

Using models to predict binding for RNA
transcripts

BERT-RBP models predict binding to RNA sequences of
101 nucleotides (Pan et al., 2020; Yamada and Hamada, 2022).
To predict binding to full-length RNA transcripts, we generated
segments of overlapping 101 nt sequences, used a 10 nt sliding
window for segments to overlap neighbors by 90 nt, and ran each
segment through the given BERT-RBP model to obtain a binding
prediction for that segment. We used Min-Max normalization for
model outputs, with minimum and maximum values from model
predictions on the test dataset. To facilitate comparisons, we used a
1-D gaussian filter (scipy.ndimage.gaussian_filter1d, scipy version
1.10.1) with a sigma of 20 nt and linearly interpolated results.
Regions of the resulting curve above a threshold of 0.9 are
classified as binding regions.

Sequence acquisition

All sequences were downloaded with exons and introns
demarcated (Kent et al., 2002) as detailed in Supplementary
Table S4 using UCSC’s Table Browser tool (Karolchik et al., 2004).

Motif analysis

Motif analysis from BERT-RBP models was done similar to
prior work (Ji et al., 2021; Yamada and Hamada, 2022), with
modifications to how motif candidates were merged. Briefly,
attention vectors from the CLS token to the last layer of the
model were extracted for each sequence in the test dataset and
summed across attention heads. For positive sequences, we selected
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contiguous 5–10 nt regions where attention was either greater than
the average attention for the sequence or greater than 10 times the
minimum attention for the sequence. For these putative motifs, we
performed a hypergeometric test to test if it occurs more often in
positive sequences than in negative ones, kept motifs where the
p-value from the hypergeometric test is <0.005 after correction for
multiple tests, and merged similar motifs together using an
Unweighted Pair Group Method with Arithmetic mean
(UPGMA) algorithm. Similarities between each motif were
measured using the alignment score from biopython’s Pairwise
Aligner. The similarity matrix was then inverted to create a
distance matrix, which was put into scipy’s UPGMA clustering
algorithm (scipy.cluster.hierarchy.average), with motifs grouped
until the distance between groups reached a threshold
corresponding to the inversion of a minimum alignment score of
5. For alignment scoring, matching nucleotides scored 2,
mismatches scored −1, open and extended gaps scored −0.75,
and internal gaps were not allowed. Alignment scores were
adjusted for length so that scores for longer motifs were similar
to scores for shorter motifs. For each motif group, component
sequences were collected and extended to 12 nt. Depictions of
motifs were generated from these sequences using WebLogo
version 3.7.12.

Results

Evaluation of model performance and
practical application for full-length
transcripts

We fine-tuned DNABERT-derived (Ji et al., 2021), BERT-RBP
models following procedures from Yamada and Hamada (2022), with
customized hyperparameters (see Methods). Training data originated
from ENCODE eCLIP data for 154 RBPs (Pan et al., 2020; Yamada and
Hamada, 2022; VanNostrand et al., 2016), for sequences around eCLIP
peak sites in K562 and HepG2 cells as the positive class, and matched
genic regions without peaks as the negative class.

We utilized Area Under the Receiver Operating Characteristic
(AUROC) scores to evaluate model performance, and scores were
comparable to original reports (Yamada and Hamada, 2022)
(Yamada and Hamada: 0.786 ± 0.041; In-house: 0.791 ± 0.037,
two-sided t-test p-value: 0.250) (Figure 1A).

BERT-RBP prediction output for a 101 nt RNA sequence is a
binding probability ranging from 0 to 1. We selected thresholds to
generate binary binding/not-binding decisions from binding
probabilities and used precision-recall curves to guide threshold
selection decisions (Figure 1B). Lower threshold values prioritize
recall while higher threshold values prioritize precision (Figures 1B,
C). We used a high threshold of 0.9 to prioritize identification of
most-likely binding sites and to minimize false positive predictions.

Given that RNA transcript lengths vary significantly (Quinn and
Chang, 2016; Ransohoff et al., 2018; St Laurent et al., 2015; Mattick
et al., 2023), we developed a segmentation approach to run
predictions on longer sequences using overlapping 101 nt
sequence segments and a 10 nt sliding window, based on a
balance between output and computational efficiency (Figures
1C, D). Our primary goal was to develop a methodology to guide

FIGURE 1
(A) Violin plots showing distribution of AUROC scores of BERT-
RBPmodels reported by Yamada and Hamada, 2022 (gray), and BERT-
RBP models fine-tuned in-house (blue). Black dots indicate scores of
individual RBP models. (B) Plots showing precision and recall
across thresholds for in-house BERT-RBP models. Shaded area is
mean ± standard deviation across RBPs. Yellow, orange, and red lines
indicate thresholds of 0.5, 0.7, and 0.9, respectively. (C) Schematic
illustrating analysis approach for running predictions on full-length
RNA transcripts. Yellow, orange, and red lines are as in (B). Thicker
yellow, orange, and red bars denote predicted binding regions using
the corresponding threshold. (D) Example plot showing the effect of
varying the sub-segment spacing. Points are model outputs of
individual segments; lines are smoothed with a gaussian filter
(sigma = 20 nt).
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FIGURE 2
(A) Genome browser shots of TARDBP showing eCLIP wiggle tracks and called peaks (top, black) relative to model predictions displayed as a BED
track and plot of model output (plot, blue). Points represent the model output for the 101 nt sequence centered on the point. Lines are the result of
passing model output through a 1-d gaussian filter with sigma of 20 nt. The lower plot shows predictions zoomed in on the region from Chr1:
11,082,300–11,083,952 (region indicated by the gray bar). (B)Motifs identified by attention analysis of BERT-RBP model for TARDBP. (C) Sequence
of zoomed-in region of TARDBP mRNA shown in (A). Predicted TARDBP binding sites are highlighted in blue. Red boxes indicate previously identified
binding sites. Motifs identified in B are shown in bold. (D)Genome browser shots of VIM RNA and the RBPMETAP2 showing eCLIPwiggle tracks and called
peaks (top, black) relative tomodel predictions displayed as BED track andmodel output plot (blue). (E)Genome browser shots ofNDEL1RNA and the RBP
RBFOX2 showing eCLIP wiggle tracks and called peaks (top, black) relative to model predictions displayed as BED track and model output plot (blue). For
A, D and E, colors indicate, black: K562 eCLIP, grey: HepG2 eCLIP, blue: BERT-RBP model predictions.
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FIGURE 3
(A) Table showing RBPs with most predicted interactions with the human lncRNA XIST as measured by Aggregated Binding, a count of the total
number of nucleotides in predicted binding regions. Previously identified XIST-interacting proteins are marked with asterisks. (B)Genome browser shots
of the XIST RNA showing eCLIP wiggle tracks and called peaks (top, black) relative to model predictions displayed as BED tracks for RBPs (blue, HNRNPC,
HNRNPK, PTBP1, MATR3), established as binding to defined XIST repeat sequences. (C) Table showing RBPs with most predicted interactions with
the human lncRNAMALAT1, as in (A). (D)Genome browser shots of theMALAT1 RNA showing eCLIP wiggle tracks and called peaks (top) relative tomodel
predictions displayed as BED tracks for top RBPs in (C) and RBPs (TARDBP, TRA2A) shown to bind previously in eCLIP studies. (E) Table showing top
predictions for the human lncRNAH19, as in (A). (F)Genome browser shots of theH19 RNA showing eCLIP wiggle tracks and called peaks (top) relative to
model predictions displayed as BED tracks for the top four RBPs. For (B, D, F), colors indicate, black: K562 eCLIP, grey: HepG2 eCLIP, light blue: BERT-RBP
model predictions.
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assessment of lncRNA function. To call predicted binding sites, we
passed the model output through a gaussian filter (sigma: 20 nt)
(Figures 1C, D), and defined regions above the 0.9 threshold as
probable binding sites.

Models predict known RBP interactions
with mRNAs

RBPs interact with RNAs to regulate cellular processes such as
splicing and translation (Gerstberger et al., 2014; Hentze et al.,
2018). We tested predictive ability using the established model of
autoregulation of TARDBP via its 3′UTR (Ayala et al., 2011; Sun
et al., 2014; Bhardwaj et al., 2013) and successfully predicted
interactions over a region of approximately 500 nt in the 3′UTR
of TARDBP, similar to a region of enrichment identified in prior
work (Wolin et al., 2023; Van Nostrand et al., 2016) (Figure 2A). We
found that model-derived TARDBP binding motifs were similar to
those previously identified experimentally (Figure 2B). We queried
motif locations within predicted interacting sites and found
interactions within a 600 nt region enriched with GAAUG and
(UG)n repeat motifs (Bhardwaj et al., 2013). Motif sites were within
or proximal to predicted binding regions (Figure 2C) and included
well-known TARDBP interaction elements including U rich
sequences, GU repeats, and the GAAUG motif (Figure 2C),
relative to a neighboring region with low probability of predicted
interactions (Figure 2C).

We also examined RBPs with different binding characteristics
and functional properties (Van Nostrand et al., 2020b; Briata and
Gherzi, 2020) to test the capacity to predict interactions among
different RBP/RNAs (Figures 2D, E). Relative to ENCODE eCLIP
peaks, we successfully predicted interactions in similar patterns as
ENCODE e-CLIP data for METAP2 and VIM (Figure 2D), and
RBFOX2 and NDEL1 (Figure 2E) (Van Nostrand et al., 2016; Kagda
et al., 2023).

Models predict biologically meaningful
interactions in lncRNAs

A primary goal of our study was to determine if this predictive
approach could inform on functional and/or regulatory aspects of
lncRNA biology. To test this, we used highly studied candidate
RNAs, beginning with the lncRNA XIST, which has well-defined
roles in X-chromosome inactivation (Loda and Heard, 2019;
Sahakyan et al., 2018; Furlan and Rougeulle, 2016). Examination
of the top 20 predicted interactions revealed RBPs including
MATR3, KHSRP, PTBP1, and HNRNPC (Figure 3A) that were
previously shown to interact with XIST in various contexts (Minajigi
et al., 2015; Chu et al., 2015; Teng et al., 2019; Li et al., 2014).
Moreover, model predictions recapitulated enrichment patterns for
XIST’s modular repeat domains (Brockdorff, 2002; Brockdorff et al.,
2020), with HNRNPC binding within Repeat A, HNRNPK within
mid-regions containing Repeats B, C, and D, and PTBP1 within
Repeat E (Figure 3B). Interaction sites for another top interactor,
MATR3, overlapped with PTBP1’s predicted interaction in Repeat
E, similar to prior findings (Pandya-Jones et al., 2020; Jacobson
et al., 2022).

MALAT1 differs from XIST in its sequence and structural
characteristics, and has roles in splicing, transcription, and as a
competing endogenous RNA, with numerous disease implications
(Arun et al., 2020; Zhang et al., 2017; Wu et al., 2015). We predicted
differentially localized interactions, consistent with different RBP
functions (Figures 3C, D), as seen with WDR3 and HLTF and
previously described interactors, TARDBP and TRA2A (Van
Nostrand et al., 2016; Kagda et al., 2023). This included relatively
more 5′-localized predictions for WDR3, with similar predictions
for HLTF (Figure 3D). Predictions for HLTF were intriguing since
they were similar to CLIP-seq peaks in K562 cells but different from
more widespread binding in HepG2 cells. We predicted more
discrete 3′ binding for TARDBP, relative to broader binding to
the 5′ of the transcript for TRA2A (Figure 3D), similar to
experimentally mapped interactions (Van Nostrand et al., 2016;
Kagda et al., 2023).

We examined interactions for H19 (Figure 3E), which differs
from XIST and MALAT1 based on its shorter length, cytoplasmic
subcellular location, and associated roles including functioning as a
miRNA precursor (Jonas et al., 2020; Noh et al., 2018; Liang et al.,
2015). Among top predicted interactors, GRSF1 is known to bind to
lncRNAs as it has been shown to interact with the lncRNA RMRP
for its mitochondrial localization, while EWSR1 has been implicated
in cancer biology likeH19 (Liang et al., 2015; Matouk et al., 2015; Lee
et al., 2019). GRSF1 and EWSR1 were predicted to interact at the 5′
end of the transcript, while LARP7 and EIF4G2 were predicted to
show more dispersed binding (Figure 3F), similar to that observed
for ENCODE e-CLIP.

Altogether, these data suggest that our approach is able to
predict RBP interactions with lncRNAs of varying lengths, and
different cellular and/or molecular regulatory and
functional aspects.

Models predict RBP-lncRNA interactions
across species

A major gap for the lncRNA field is the ability to predict
functional properties for lncRNAs a priori, particularly across
species as can be done for mRNAs (Necsulea et al., 2014;
Johnsson et al., 2014). One approach to deduce functional
conservation could be through identifying conserved interactions
with proteins. Since many RNA binding proteins bind through short
motifs (Lambert et al., 2014; Kuret et al., 2022), we undertook k-mer
content comparisons of human and mouse XIST, MALAT1, and
H19 RNAs and found similar sequence composition, particularly for
MALAT1 and XIST (Figure 4A), suggesting functional
commonalities similar to prior observations (Kirk et al., 2018).
However, the sequence content alone did not easily inform on
possible functional and/or regulatory interactions, particularly
between the species. We postulated that RBP interaction
predictions could fill this gap (Huang et al., 2021; Briata and
Gherzi, 2020), given that RBPs are functionally conserved across
vertebrates (Gerstberger et al., 2014).

Even though our approach is based on human RBP CLIP-Seq-
derived training data (Pan et al., 2020; Ji et al., 2021; Yamada and
Hamada, 2022), we sought to determine whether sequence-based
machine learning could be used beyond human sequence. We began
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FIGURE 4
(A) K-mer analysis using the SEEKR algorithm on human and mouse XIST, Malat1, and H19 lncRNAs. SEEKR correlation of all human and mouse
lncRNAs shown in black/gray (mean ± stdev). Correlation analysis between RBPs predicted to interact with human andmouse Xist (B),Malat1 (C) andH19
(D) lncRNAs. Predicted binding of HNRNPC with human Xist (E), mouse Xist (F), and opossum Rsx (G). Predicted binding of MATR3 with human Xist (H),
mouse Xist (I), and opossum Rsx (J). Cartoon illustration of repeats (Xist) or repeat-like areas (Rsx) in yellow (Rep A), orange (Reps B/C/D), and red
(Rep E). (K) Table showing the RBPs predicted to have the most binding with Opossum Rsx, as measured by Aggregated Binding, a count of the total
number of nucleotides in predicted binding regions. Human Xist andmouse Xist columns indicate whether the RBPwas predicted to bindwith human and
mouse Xist, respectively. Predicted binding of SFPQ (L) and SRSF9 (M) with opossum Rsx. For (E–J, L, M), plots include the predicted binding probability
after being passed through a 1D Gaussian filter, and bars (top) indicate called regions where the filtered line passed a threshold of 0.9.
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by examining whether we could predict interactions with mouse
sequence and found congruence in predictions of top RBP
interactors between mouse and human Xist and Malat1, and less
so forH19 (Figures 4B–D). This suggests models’ capacity to predict
protein-lncRNA interactions for species beyond human, and to
glean potential cross-species differences.

We next examined well-characterized binding characteristics
using Xist. Despite profound roles in dosage compensation, there is
sequence divergence across human and mouse Xist (see PhyloP
conservation, Supplementary Figure S1A). Despite this, for mouse
Xist, we found overlap with 15 of the top 20 interacting RBPs
identified for human (Figure 4B). The exceptions for mouse were at
positions 32 (HNRNPC), 82 (DDX59), 22 (HNRNPK), 72 (CPEB4),
and 37 (NSUN2) (Supplementary Figure S2). Differences could be
due to model limitations or could point to species-specific
interactions and functional differences. Indeed, further
examination revealed general similarities in binding as well as
species-specific intricacies, including differential binding
propensity (Supplementary Figure S2).

We also examined interactions for Malat1 and found common
predictions between human and mouse for 17 of the top RBPs
including for HLTF and WDR3 (Figure 4C). Interestingly,
prediction patterns showed similarity between human and mouse
even in 5′ regions of the RNA that lack sequence conservation
between human and mouse (Supplementary Figure S1B, see PhyloP
track). Binding predictions forWDR3 were enriched in the 5′ region
of the transcript, which was also where most HLTF predicted
binding was observed, similar to what was seen for
K562 enrichment in human MALAT1, and suggesting that this
region is a highly regulated MALAT1 segment (Supplementary
Figure S1B). Predicted binding patterns for previously shown
interactors, TARDBP and TRA2A (Van Nostrand et al., 2016),
were also similar to human binding patterns. This confirms the
ability of models to identify possible RBP-mediated functional
conservation without linear sequence conservation.

Of the top 20 predicted interactions, we found 10 common
between human and mouse H19 (Figure 4C). H19’s expression
pattern and functions are conserved, with roles in early
embryonic development and cancers (Matouk et al., 2015; Jonas
et al., 2020; Noh et al., 2018). Even though there were fewer common
predictions for H19, we found similar binding patterns between
human and mouse for some RBPs, e.g., EWSR1 (Supplementary
Figure S1C), suggesting this approach can be used to query cross-
species similarities and differences in function.

Using this foundation of human training data facilitating
predictions for mouse sequence, we further probed applicability
across evolutionary distance. We compared model predictions for
human and mouse Xist, particularly repeat region predictions, to
Rsx, a lncRNA that mediates X chromosome inactivation in
marsupials. Rsx uses mechanisms similar to Xist, including
recruitment of silencing factors through repeat domains, despite
having no overt linear sequence conservation with Xist (Sahakyan
et al., 2018; Loda and Heard, 2019; Furlan and Rougeulle, 2016).

First, as seen with human (Figures 3B, 4E), we found that models
successfully predicted commonalities for repeat regions in mouse
Xist (Figure 4F), including HNRNPC being predicted to interact
with Repeat A, albeit less so in mouse (Figure 4F; Supplementary
Figure S2), and MATR3 predicted interactions with Repeat E

(Figures 4H, I). Relative to the 5′ Repeat A enrichment of
binding to Xist in human and mouse (Figures 4E, F), we also
predicted interactions with HNRNPC for opossum Rsx in the 3′
end of the transcript (Figure 4G). Previous work has shown that the
repeat domains in the 3′ half of Rsx have similar k-mer content to
Repeats A and E of Xist (Grant et al., 2012; Sprague et al., 2019),
aligning with our interaction predictions (Figure 4G). Similarly,
predictions for interactions with MATR3 were also enriched in the
3′ repeat region of Rsx (Figure 4J), supporting previous findings of
similarities between this region and Repeats A and E of Xist.

We found common predicted interactions with Rsx and human
and mouse Xist, with prominent RBPs including TRA2A, FUBP3,
SFPQ, and HNRNPK (Figure 4K; Supplementary Table S3), which
were also recently identified in Rsx interactome mapping (McIntyre
et al., 2024). Intriguingly, model predictions also indicated striking
differences based on interaction potential between 5′ and 3′ halves
(approximately) of Rsx as indicated by SFPQ and SRSF9 interactions
(Figures 4L, M), which suggests the ability to predict functional and/
or regulatory differences across the transcript.

Altogether, these results between human and mouse Xist, and
extending further to marsupial Rsx, suggests our approach could be
useful in determining functional conservation or divergence across
species, including for syntenic or non-syntenic lncRNAs.

Discussion

Deep learning-based approaches are increasingly used to
characterize biological molecules, including for the prediction of
intermolecular interactions (Horlacher et al., 2023; Moore and ’t
Hoen, 2019; Pan et al., 2019; Yamada and Hamada, 2022). Using
BERT-RBP, we leveraged natural language processing principles
applicable to genome-wide nucleic acid sequence contexts (Ji et al.,
2021; Zhou et al., 2023; Yamada and Hamada, 2022), to design a
practical and applicable machine learning-based approach to study
lncRNAs, since they remain poorly understood.

Foundationally, we tested the predictive utility using well-
established RBP-mRNA interactions. We then found that
predictions for lncRNAs aligned with prior interactions observed
in experimentation, including CLIP-Seq and mass spectrometry-
based analyses (Pandya-Jones et al., 2020; Yi et al., 2020; Chu et al.,
2015; McHugh et al., 2015; Minajigi et al., 2015; Van Nostrand et al.,
2016). Altogether therefore, we successfully predicted both coding-
and noncoding RNA-RBP interactions, capturing differing
functions, gene lengths, and regulatory qualities. Since lncRNA
genes outnumber mRNA genes in the human genome (Quinn
and Chang, 2016), this approach can provide a foundation for de
novo predictions for uncharacterized lncRNAs to generate candidate
interactions to guide experimentation such as in vivo perturbation
analysis via CRISPR. We anticipate that additional training data
including from complementary approaches (Wolin et al., 2023) or
cell- and/or context-specific binding data would support broader
prediction of interactions.

Our predictive approach can fill experimental gaps by imputing
protein binding sites for transcripts showing little to no expression,
as has been observed for many lncRNAs (Rinn and Chang, 2020; St
Laurent et al., 2015; Mattick et al., 2023). To capture such variation,
models may require additional training data, with a major limitation
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of these approaches being differences in training data sets used by
different research groups (Horlacher et al., 2023). Inherent data
quality and predictive issues are limited by experimentally queried
RBPs, experimental CLIP protocols and associated limitations
including resolution, and computational analysis design including
training and evaluation parameters. Deviation between CLIP-Seq
and our model predictions may be due to our decision to prioritize
precision vs. recall, or other elements influencing model
optimization including RNA structure or combinations of RBP
interactions (Sun et al., 2021).

Importantly, as shown for Rsx, our approach can be used for
lncRNAs that may have convergently evolved similar function, or to
inform on the function of syntenic lncRNAs, both cases in which
sequence conservation across species is lacking (Ulitsky, 2016;
Necsulea et al., 2014; Johnsson et al., 2014). While an abundance
of experimental data such as CLIP-seq for numerous proteins exists
for human samples (Van Nostrand et al., 2020a; Gerstberger et al.,
2014), such data are often limiting for other species, even for
conventional animal models such as mouse, and more so for
more divergent or non-model species. Our approach therefore
provides a foundation for further study across many organisms
since RBP properties are generally evolutionarily conserved.

Interestingly, we found that some predictions aligned
preferentially with CLIP-Seq data from a specific cell line (e.g., in
HepG2 but not K562). Such contextual specificity is anticipated
given that CLIP-Seq output is dependent on protein target
abundance in a given cell type (Van Nostrand et al., 2020a; Van
Nostrand et al., 2016; Van Nostrand et al., 2020b). Our results
therefore suggest that models can detect contextual elements for
specific RBP-RNA interactions, with only sequence data as an input.
These intricacies are important considerations for positive and
negative labels in classification methods, as a negative sequence
in a specific cell type may not be negative in another. Future work
may determine whether models effectively learn cell-specific
interactions to identify a spectrum of interactions that may be
missed in a single study, e.g., due to cell type, experimental
timing, or experimental technique limitations.

Since model fine-tuning produces a set of weights that provide
sufficient solutions for the given task, different sets of weights can
create models with similar overall performance, but which vary in
their response to a particular input. Therefore, one way to improve
our approach would be to create an ensemble of models, either with
additional instances of BERT-RBP models that have been trained
with a different subset of training data or have been initialized with
different random seeds, or with additional types of models.
Additional improvements might be obtained by converting these
models from binary classifiers to multi-class models.

Analysis parameters can be adjusted to favor increased precision
to capture high-confidence interactions vs. recall to identify all
potential binding sites within a specific transcript more
comprehensively. Future work to experimentally validate
predictions will aid in setting thresholds and analysis parameters,
and studies characterizing validated interactions will enhance our
understanding of how RBP-lncRNA interactions direct lncRNA
function. Predictions that consider combinatorial RBP
interactions would also increase the capacity to predict RBP
impact on associated RNAs, to influence the capacity to predict
more granular facets of lncRNA biology.

A major advantage of our approach is that predictions are based
solely on sequence, lowering the barrier for lncRNA
characterization, which is of particular importance since most
lncRNAs are uncharacterized with limited/no experimental data.
Moreover, our easy-to-use method bridges the gap between
computational fields focused on developing machine learning
algorithms, and wet lab work, by providing experimental targets
for biochemistry and molecular biology studies.
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