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Ribosomes are amongst the most ancient molecular machines in cells, showing
conservation from the simplest prokaryotes to humans. Ribosomes are an
assembly of ribosomal (r)RNA and ribosomal proteins, but the rRNA comprises
most of the mass of the ribosome and performs key enzymatic tasks. In humans,
rRNA undergoes a laborious maturation that involves multiple processing steps
and the deposition of chemical modifications. The correct processing and
modification of rRNA ensures the proper function of the mature ribosome.
Disturbance of these processes may lead to human disease. Understanding the
role of rRNA in protein synthesis and the consequences of its dysregulation is key
to deciphering and mitigating the emergence of pathological states in
human biology.
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Introduction

De novo protein synthesis is a requirement of all forms of life. Cellular proliferation
increases the demand for new proteins. Ribosomes are the macromolecular machines
tasked with synthesizing new proteins; ironically, their synthesis represents a major
source of new protein production. Ribosome biogenesis accounts for more than 60% of
energy consumption in a growing cell (Warner et al., 2001) due to both their
complexity and size.

The human 80S ribosome is 4.3 megadaltons and is composed of 80 ribosomal proteins
and 4 non-coding RNAs. Owing to the centrality of protein synthesis in life, both ribosomes
and tRNAs are conserved throughout evolution, despite the stark differences in translation
regulation—particularly at the initiation stage. Some 33 of the 80 human ribosomal proteins
are conserved in Escherichia coli, which diverged from humans 3–4 billion years ago. Bacteria
have 55, rather than 80, ribosomal proteins, meaning that 60% of their ribosomal proteins
are conserved in humans (Table 1).

From prokaryotes to eukaryotes, rRNA plays a disproportionate role in the activity of
ribosomes. rRNA coordinates accessory factor binding, plays a key role in discriminating
amongst incoming charged tRNAs to ensure proper mRNA decoding, and, perhaps most
importantly, rRNA plays a critical role in catalyzing peptide bond synthesis. This role
increases the rate of peptide bond formation by a factor of 2 × 107 (Sievers et al., 2004).
Emerging evidence also suggests that rRNA is a source of heterogeneity amongst ribosomes
and hints at specialized ribosomes.

In this review, we will discuss the maturation of rRNA and its role in protein synthesis.
We will also highlight disorders that arise from defects in these processes, with an emphasis
on human disease.
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Functions of rRNA in canonical
translation

To better understand how ribosome malfunctions related to rRNA
contribute to disease, it is first necessary to understand the canonical
roles that rRNA plays in protein synthesis. Following translation
initiation, the joined 80S ribosome translocates along an mRNA,
catalyzing new polypeptides as it goes. The large 60S subunit
contains three sites through which tRNAs and mRNAs traverse to
facilitate this activity: the aminoacyl (A), peptidyl (P), and exit (E) sites.
During translocation, an individual tRNAwill move from the A to the P
site, from the P to the E site, or from the E site out of the ribosome. The
A site contains aminoacylated tRNAs still conjugated to their cognate
amino acid, the P site contains a peptidyl tRNA conjugated to the
growing polypeptide chain, and the E site contains a deacylated tRNA
ready for expulsion from the ribosome. As they enter, the tRNA and
mRNA complex first encounters the decoding center (DC) before being
transferred to the catalytic site, known as the peptidyl transferase center
(PTC). The solution of the crystal structures of the large subunits,
initially from prokaryotes and later in eukaryotes, reveals that the
functional core of the PTC is rRNA and that rRNA plays a critical
role in interrogating and proofreading tRNAs in the DC.

Many of the mechanistic studies regarding the molecular
interactions of mRNA, tRNA, and the ribosome were initially
conducted in prokaryotic systems. Subsequent data have revealed
key similarities and distinctions between prokaryotic and eukaryotic
ribosomes. An aminoacyl (aa)-tRNA is transported to the ribosome
by EF-Tu, the bacterial homolog of mammalian eEF1a, where it is
sampled at the DC. The ribosome must function as a “gatekeeper” in
which non-cognate tRNAs are distinguished from cognate tRNAs.
This is initially monitored by base-pairing between the mRNA
codon and the anti-codon of the tRNA, although this is not
sufficient for codon recognition.

Pioneering work by the Noller Lab showed that chemical
modification of the 16S rRNA—the bacterial homolog of

mammalian 18S—by kethoxal abolished tRNA binding to the A
site of the ribosome (Noller and Chaires, 1972). Further chemical
probing used bound tRNAs to protect against chemical modification
and identified specific nucleotides of the 16S rRNA that mediated
tRNA binding: G530, A1492, and A1493 (Moazed and Noller, 1990).
Homologous nucleotides in the 18S rRNA of humans—G626, A1824,
and A1825—serve similar roles (Table 2). When a cognate tRNA
binds to a codon through its anticodon, this interaction is validated
by flipping of A1492/1824 and A1493/1825, and conversion of G530/626

from a syn- to an anti-conformation. This facilitates an “A-minor
interaction” with the first two base pairs in the codon–anticodon
helix (Ogle et al., 2001). The mutational analysis further
demonstrates the essential nature of these universally conserved
bases (Cochella et al., 2007). This triggers large-scale movements of
the small ribosome subunit (Ogle et al., 2002). In this conformation,
there is evidence in prokaryotes that the 23S rRNA plays some role

TABLE 1 Evolutionary conservation of ribosomal components. Ribosomal proteins and rRNAs found inHomo sapiens, S. cerevisiae, and E. coli.Note that the lengths
of each mature rRNA are an approximation as there is heterogeneity in rRNA length amongst individuals or between strains. Numbers included here are derived
from indicated GenBank or RefSeq submissions.

Ribosomal Proteins Ribosomal RNA Species

Large Small Total Precursor Name Length (nt)

H. Sapiens 47 33 80 Pre-5S 5S 119 (XR_007071486.1)

Tricistronic 47S pre-rRNA 18S 1869 (XR_007090847.1)

5.8S 151 (XR_007090886.1)

28S 5071 (XR_007090869.1)

S. cerevisiae 46 33 79 Pre-5S 5S 121 (NC_001144.5)

Tricistronic 35S pre-rRNA 18S 1730 (NG_063315.1)

5.8S 158 (NR_132220.1)

25S 3396 (NR_132218.1)

E. coli 33 22 55 16S 1450 (NR_024570.1)

23S 2905 (NR_076322.1)

5S 120 (NR_075284.1)

TABLE 2 Universally conserved residues in rRNA. Positions of residues within
the decoding center and peptidyl transferase domains in H. sapiens, S.
cerevisiae, and E. coli. As with the lengths, note that the exact location of these
sites may be different in an individual molecule due to sequence
heterogeneity. However, the identity of these residues does not vary.

Decoding center (DC) key conserved residues

18S/16S H. sapiens S. cerevisiae E. coli

G626 G567 G530

A1824 A1781 A1492

A1825 A1782 A1493

Peptidyl transferase center (PTC) key conserved residues

18S/16S H. sapiens S. cerevisiae E. coli

G1693 G1575 G1338

A1640 A1576 A1339
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in stabilizing cognate tRNAs within the A site. A1913 of the 23S
rRNA interacts with the A site tRNA within the DC directly and via
Mg2+-mediated contacts (Selmer et al., 2006). Mammalian
ribosomes similarly interact with tRNAs (Lomakin and Steitz,
2013). These movements prime EF-Tu/eEF1a for GTP hydrolysis
to complete the first step of tRNA selection. In both prokaryotes and
eukaryotes, EF-Tu/eEF1a bind the sarcin–ricin loop (SRL) of the
23S/28S rRNA, indicating the role of rRNA in the recruitment of
elongation factors during translation (Correll et al., 1998; Lancaster
et al., 2008; Budkevich et al., 2014). In prokaryotes, A2662 of the 23S
rRNA interacts with His-84 of EF-Tu to stimulate GTP hydrolysis
and, ultimately, EF-Tu dissociation. In eukaryotes, this mechanism
is coordinated by the interaction of A4607 of the 28S rRNA and
catalytic His-95 of eEF1a (Shao et al., 2016). At this point,
interactions within the DC between rRNA and tRNA are a major
driving force in cognate tRNA stability within the ribosome.
Thermodynamic properties make non-cognate tRNAs more likely
to disassociate at this point. The conformational changes made by
cognate tRNA recognition instead drive the tRNA toward the P site
and the PTC. Recent data demonstrate that the decoding
mechanism in humans is ten times slower than in prokaryotes
and may be functionally distinct (Holm et al., 2023). Despite the
great strides gained from the study of the prokaryotic system, these
results highlight the need for additional analysis of themechanism of
human ribosomal function.

The role of rRNA within the PTC and its role in catalyzing
peptide bond synthesis cannot be overstated (Steitz and Moore,
2003). Ultimately, the mechanism of peptide bond formation was
validated by crystallographic analysis of ribosomes; the first evidence
that rRNA, rather than proteins, was responsible for catalysis was
gained through biochemical analysis.

In hindsight, in vitro reconstitution experiments using E. coli
components initially provided the first evidence that rRNA played a
key role in peptidyl transferase activity. The 23S rRNAwas identified
as one of the essential factors required for reconstituting peptidyl
transferase activity in vitro (Hampl et al., 1981; Schulze and
Nierhaus, 1982). However, these studies also identified six
ribosomal proteins that were essential, so activity could not be
attributed to the rRNA.

The prokaryotic 23S rRNA has six major domains (Noller et al.,
1981). Due to its increased photoreactivity when irradiated with
320 nm light and crosslinking to both RNA and protein, 3-(4′-
benzoylphenyl)propionyl (BP)-[3H]-tRNAPhe was used as a
chemical probe. The tRNAs crosslinked directly to the central
single-stranded loop of domain V of the 23S rRNA in the PTC
(Barta et al., 1984; Steiner et al., 1988). Primer extension determined
that the tRNA crosslinked to U2584 and U2525 in the A site and to
A2451 and C2452 in the P site—early evidence that RNA, not protein,
was at the catalytic heart of the ribosome.

Chemical probing of tRNA-bound 70S ribosomes also showed
that tRNAs bound in the P site would protect the PTC from
chemical modification (Moazed and Noller, 1986). The protective
effect was contingent upon the tRNA’s “CCA end”. This is critical
because the CCA end is the site of amino acid conjugation,
suggesting the 23S rRNA is near the site of catalysis. Antibiotic
studies also provided key insights into the role of rRNA in peptide
bond formation, as chemical probing showed that several antibiotics
which were known to inhibit peptidyl transferase activity would

protect nucleotides near A2451 (Moazed and Noller, 1987). These
studies suggested that the antibiotics target the same region of 23S
rRNA, in domain V, to block protein synthesis. Strong biochemical
evidence was also presented by demonstrating that purified
ribosomes treated with proteinase K, or partially extracting
proteins, did not abolish peptidyl transferase activity. However,
treatment with RNase T1 was sufficient to inhibit this activity
(Noller et al., 1992).

While these experiments provided evidence that peptide bond
formation was an rRNA-catalyzed event, the solution of the crystal
structure of the 50S ribosome gave the clearest evidence that this was
so (Ban et al., 2000; Nissen et al., 2000). This structure from the
archaeonHaloarcula marismortui showed that A2451 was positioned
precisely to mediate peptide bond synthesis. This suggested a model
through which the N3 of A2451 could act to catalyze the reaction
through general acid-base catalysis (Nissen et al., 2000). Later work
refined this model to show that the 2′-OH of this nucleotide was the
critical functional group (Erlacher et al., 2005). If A2451 were
replaced with deoxyA2541, catalysis was severely compromised.
Follow-up work demonstrated that the 2′-OH group of A2541

could act as a hydrogen donor during catalysis (Lang et al.,
2008). This model was further refined using a higher resolution
structure of the ribosome that revealed an additional water molecule
present in the PTC (Polikanov et al., 2014). It has been proposed that
this water molecule acts as a proton wire between the 2′-OH group
of A2451 and A76 of the tRNA.

Finally, regions of rRNA beyond the core catalytic domains have
been implicated in ribosome function. As the rRNA lengths have
increased throughout evolution, much of the added length can be
found in the aptly named “expansion segments (ES).” Analysis of
some of the first structures of eukaryotic ribosomes revealed that
they play many important roles. Most notably, these extensions form
many eukaryotic-specific inter-subunit bridges between the 60S and
40S ribosomes (Ben-Shem et al., 2011). Expansion segments have
also been shown to be directly involved in protein synthesis. In yeast,
ES27Lb coordinates an interaction with NatA—a complex of
proteins that acetylates the N-terminus of nascent peptides
(Knorr et al., 2019). Binding at this ES positions NatA at the
peptide exit tunnel so that it is in the opportune position to
acetylate newly synthesized proteins. Deletion of ES27Lb
sensitizes cells to reductive stresses by causing an increase in
protein aggregates (Shankar et al., 2020). While ΔES27Lb cells
show no difference in global translation levels, there are
transcript-specific defects. This highlights what may be a theme
for eukaryotic expansion segments in which they function as
binding sites for accessory proteins. ES7L of the 28S rRNA
interacts with SBP2, a protein involved in selenoprotein synthesis
(Kossinova et al., 2014) and with aminoacyl-tRNA synthetases
(Krauer et al., 2021), although the consequence of these
interactions is unclear. ES7 has also been shown to contain
sequences that assemble into G-quadruplexes (G4s) (Mestre-Fos
et al., 2019). G4s are non-canonical nucleic acid structures that form
following Hoogsteen base-pairing of four guanosines into a
G-quartet (Fay et al., 2017). If the sequence of a nucleic acid
permits, several G-quartets may stack to form a G4. This analysis
shows that the ES7 G4s can mediate interaction with several
proteins; however, the function of these interactions also remains
elusive. Another striking example of transcript-specific translation
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regulation by expansion segments was proposed during
development (Leppek et al., 2020). In this model, ES9S was
proposed to have a role in directing the translation of Hox gene
mRNAs. However, these data have recently been called into question
based on misannotation of 5′-UTR start sequences (Akirtava
et al., 2022).

Decades of work have revealed the roles of rRNA in protein
synthesis; however, our knowledge regarding the functions of
ribosomes still largely relies on work conducted in prokaryotic
systems. In recent years, there have been giant leaps in the ability
to resolve ribosome structures in different states (Ben-Shem et al.,
2010; Ben-Shem et al., 2011; Anger et al., 2013; Khatter et al.,
2015). The coming years can be expected to reveal important
distinctions and similarities between prokaryotic and
human ribosomes.

Genomic organization and synthesis of
ribosomal RNA under non-pathogenic
conditions

Despite similarities in ribosome function, the assembly of
ribosomes is dramatically distinct between humans and
prokaryotes. Prokaryotic ribosomes can be assembled in vitro
using purified components (Traub and Nomura, 1968; Nierhaus
and Dohme, 1974) and contain three rRNAs: the 23S and 5S in the
large subunit and the 16S in the small subunit. Mammalian
ribosomes contain four rRNAs: the 28S, 5.8S, and 5S in the large
60S subunit and the 18S rRNA in the small 40S subunit.

Additionally, in vitro reconstitution from purified components is
not possible for any eukaryotic ribosome. It is also worth noting that
while the yeast ribosome also contains four rRNAs, the largest rRNA
is referred to as the 25S, not the 28S, rRNA.

Mammalian ribosome biogenesis predominantly unfolds within
the nucleolus, a specialized compartment within the nucleus
(Lafontaine et al., 2021). Constituting approximately 80–90% of
the total cellular RNA mass, rRNA synthesis primarily relies on
RNA polymerase I (Pol I), which synthesizes the tricistronic 47S
rRNA precursor, encoding 18S, 5.8S, and 28S rRNAs (Figure 1A).
This precursor’s processing is essential for releasing mature rRNAs.
The 5S rRNA, produced from monocistronic genes by RNA
polymerase III, requires only 5′-end modifications to attain
maturity, in stark contrast to the intricate processing of
the 47S rRNA.

The synthesis of rRNA emerges as a pivotal bottleneck in the
intricate process of ribosome biogenesis (Maden et al., 1969;
Emerson, 1971; Liebhaber et al., 1978). Each cell may contain 107

ribosomes that necessitate duplication during cell division to ensure
an ample supply for the daughter cells. Failing to achieve this
duplication would compromise the cell’s ability to engage in
robust protein synthesis. Moreover, this challenge extends
beyond duplication as it does not account for the replacement of
ribosomes lost due to their natural half-life. Cells adopt a dual-
pronged strategy to address the demand for new rRNA synthesis.
Actively growing cells exhibit heightened rates of rRNA gene
synthesis—a straightforward and effective response. Additionally,
cells throughout evolution have expanded their repertoire of rRNA
genes. In the case of humans, more than 300 individual copies of the
47S rDNA gene are distributed on the short arms of five acrocentric
chromosomes at 13p12, 14p12, 15p12, 21p12, and 22p12
(Henderson et al., 1972; Gaubatz et al., 1976). Traditionally
organized in a “head-to-tail” orientation within 43 kb repeated
elements, each repeat encompasses a 13 kb rDNA gene and an
intergenic spacer (IGS) of approximately 30 kb in length (Figure 1A)
(Wellauer and Dawid, 1979). Newer imaging and sequencing
approaches have revealed significant variations in rDNA
structure and rDNA gene sequences in humans (Caburet et al.,
2005; Kim et al., 2018; Nurk et al., 2022). The functional
consequences of rRNA variation are still being analyzed.

In humans, the primary cluster for 5S rRNA is located at a
specific genomic locus on chromosome 1 at 1q42 (Steffensen et al.,
1974; Sorensen et al., 1991). While this cluster boasts over
2000 individual genes, stringent dot-blotting using placenta DNA
has indicated that the majority of these may be pseudogenes
(Sorensen and Frederiksen, 1991). A more refined assessment
revealed that only approximately 400 genes are potentially active.
This results in the number of 5S genes roughly aligning with the
count of 47S genes. Given that 5S rRNA is equimolarly abundant in
ribosomes, this unique genomic organization may serve as a
strategic mechanism to balance 5S production with the synthesis
of other rRNAs. However, this genomic arrangement is distinctive to
higher eukaryotes. In organisms like Saccharomyces cerevisiae and
Dictyostelium discoideum, the 5S rRNA genes are intricately
integrated within clusters responsible for transcribing the 18S,
5.8S, and 28S rRNAs (Maizels, 1976; Petes et al., 1978),
positioned on the opposite strand of the tricistronic rRNA genes.
In contrast, Schizosaccharomyces pombe and Neurospora crassa

FIGURE 1
Schema of the rDNA locus and promoter. (A) rDNA genes are
organized in a head-to-tail configuration. Each gene contains the
mature 18S, 5.8S, and 28S rRNA flanked by 5′-and 3′-external
transcribed spacers (ETS) and separated by internal transcribed
spacers 1 and 2 (ITS1/2). (B) Two important sequence elements, the
upstream control element (UCE) and the core promoter, drive
efficient transcription of rRNA. UBF binds the UCE, while SL1, a multi-
subunit complex of TATA-binding protein (TBP) and TAFs, assembles
on the core promoter. These proteins work to recruit RNA polymerase
I bound by RRN3 for active transcription.
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exhibit a dispersion of 5S genes throughout their genomes (Selker
et al., 1981; Mao et al., 1982).

Despite this expansion, only approximately half of the rDNA
repeats appear to be active as the remaining are epigenetically
silenced (reviewed in Srivastava et al. (2016)). However, a
percentage of active and inactive genes can change in response to
stimuli, such as metabolic and environmental signals or stages of the
cell cycle. There are three distinct rDNA silencing complexes in
humans: the nucleolar remodeling complex (NoRC), the
nucleosome remodeling and deacetylation (NuRD) complex, and
the energy-dependent nucleolar silencing complex (eNoSC). The
NoRC establishes a constitutively silenced rDNA (Strohner et al.,
2001). The NuRD complex leaves rDNA promoters in an inactive
state but remains accessible for transcription factors, allowing genes
to stay “poised” for transcription (Xie et al., 2012). As its name
suggests, eNoSC regulates rDNA silencing in response to energy
deprivation (Murayama et al., 2008). Inmammals, effective silencing
is facilitated by the concerted effort of the methylation of histone
tails (e.g., H3K4 and H3K79) and by DNA methylation. The
repetitive nature of rDNA repeats has historically posed
challenges for analyzing the transcriptional status of individual
genes, causing a lag in understanding which rDNA genes are
selected for silencing and why. However, innovative data analysis
approaches and longer read lengths may help bridge these
knowledge gaps. Active and silenced genes are interspersed,
rather than entire loci being uniformly silenced (Sharp et al.,
1984; Dammann et al., 1995; Zillner et al., 2015).

RNA Pol I is specialized for transcribing only the 47S rDNA
genes. It is recruited to rDNA promoters which contain two critical
regulatory elements: the upstream control element (UCE) and the
core promoter (Figure 1B). Initial cell-free transcription
experiments from mouse Ehrlich ascites tumor-cell extracts and
cloned mouse DNA templates demonstrated that base pairs
immediately upstream of the transcription start site, which
defined the core promoter, were sufficient to drive transcription
(Grummt, 1982). However, these same experiments showed that
nucleotides further upstream were important in stimulating the
transcription of rRNA when competing with templates containing
only core promoters; this upstream region came to be known as the
UCE. Later experiments using HeLa extract and human DNA
templates validated that human Pol I transcription was also
governed by a core promoter and UCE (Learned et al., 1983).
Despite the conserved promoter structure across species, there is
little promoter sequence homology—a contrast with mature rRNA
sequences. In fact, mouse extract is incapable of driving
transcription from the human rDNA promoter and vice versa
(Grummt et al., 1982).

Identification of these elements initiated the search for the
protein factors that acted as trans factors. The first of these
factors to be identified was termed selectivity factor 1 (SL1)
(Learned et al., 1985). SL1 is a multi-subunit complex containing
TATA-binding protein (TBP) and multiple transcription activating
factors (TAFs) (Comai et al., 1992; Comai et al., 1994; Zomerdijk
et al., 1994; Heix et al., 1997; Gorski et al., 2007). However, SL1 has
no specificity for the rDNA promoters and no DNA binding activity
within the promoter (Bell et al., 1988). DNase I foot-printing
experiments showed that SL1 alone would not bind to the rDNA
promoters, but partially purified RNA Pol I would associate with the

UCE (Learned et al., 1986). The DNA binding activity was further
purified from crude RNA Pol I preparations and was termed
upstream binding factor 1 (UBF) (Bell et al., 1988). Importantly,
UBF and SL1 cooperate to mediate rDNA transcription. The
TAFI48 subunit of SL1 interacts with UBF (Beckmann et al.,
1995), at which point the UBF1 DNA binding targets the
complex at rDNA promoters (Bell et al., 1988). Conversely,
binding to SL1 stabilizes UBF on DNA (Friedrich et al., 2005).

Another key factor for efficient rRNA transcription initiation is
RRN3/TIF-IA. Biochemical fractionation partially purified this
protein from mouse cells, based on its ability to stimulate rRNA
transcription in growing cells, and it was named TIF-IA (Buttgereit
et al., 1985). Later work demonstrated that TIF-IA is regulated by
mTOR activity, which is consistent with its loss of activity during
reduced growth phases (Mayer et al., 2004). Other work identified
the same protein as being able to stimulate rRNA synthesis in
response to hormonal stimulation but termed the protein the name
TFIC (Mahajan and Thompson, 1990). Yet another group identified
the same activity and gave this protein a different name: Factor C*
(Brun et al., 1994). It was not until the homologous protein was
identified in yeast that this gene was cloned (Milkereit and
Tschochner, 1998), and shortly thereafter it was discovered that
TIF-IA, TFIC, and Factor C* were the same protein and were the
mammalian homolog of yeast Rrn3 (Bodem et al., 2000; Moorefield
et al., 2000).

Work from yeast and mammalian systems showed that RRN3/
TIF-IA is the limiting factor for rRNA synthesis. Pol I that is
unbound to DNA can exist freely or associated with RRN3/TIF-
IA. However, only RRN3/TIF-IA-bound Pol I is recruited to DNA to
initiate transcription (Peyroche et al., 2000; Blattner et al., 2011),
although RRN3/TIF-IA is inactivated and may dissociate following
transcription (Brun et al., 1994; Hirschler-Laszkiewicz et al., 2003).
Thus, it is likely needed only for DNA recruitment, melting of DNA,
and promoter escape (Sadian et al., 2019). Given its key role in
regulating rRNA synthesis, RRN3/TIF-IA is a target of many
pathways that regulate stress response and growth. In addition to
being regulated by mTOR activity, RRN3/TIF-IA is a target of JNK,
ERK, RSK, and AMPK (Zhao et al., 2003; Mayer et al., 2005; Hoppe
et al., 2009).

Pathologies arising from defects in
rDNA genes or rRNA synthesis

Treacher Collins syndrome

Treacher Collins syndrome (TCS) is the most common cause of
mandibulofacial dysostosis, occurring in 1 in 50,000 live births
(Gorlin et al., 1990; Ulhaq et al., 2023). Prior to the identification
of the causative gene for TCS, it was noted that this disorder followed
an autosomal dominant inheritance pattern but that most cases were
sporadic, likely arising from novel private mutations (Jones et al.,
1975). Through laborious genetic mapping using short tandem
repeat polymorphisms and the generation of yeast artificial
chromosomes (YACs) containing the affected genomic region,
the major causative gene was identified and named TCOF1
(Dixon et al., 1996). A wide array of seemingly sporadic
mutations in TCOF1 have been associated with or are causative
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of the development of TCS (Wise et al., 1997). Eventually, a mouse
model generated heterozygous knockouts of TCOF1, mimicking the
disease conditions (Dixon et al., 2006). In this model, there was a
defect in neural crest cell migration during development, which led
to defects in facial bones, cleft palate, and ear defects consistent with
clinical presentations (Jones et al., 2008). The complete analysis of
the TCOF1 amino acid sequence led to the hypothesis that it was a
possible nucleolar phosphoprotein, based on its similarity to other
resident nucleolar proteins (e.g., NOLC1 and NPM) (Wise et al.,
1997). This work also noted that TCOF1 displayed particularly low
complexity throughout its amino acid sequence, a feature that is now
known to aid in the condensation of non-membranous organelles
such as the nucleolus (Lafontaine et al., 2021). Experiments formally
demonstrated that TCOF1 localized to the nucleolus, and this
required sequences in its C-terminus (Winokur and Shiang, 1998;
Isaac et al., 2000). A subset of TCS patients do not have mutations in
TCOF1. The second and thirdmost commonmutations are found in
POLR1D and POLR1C, which are subunits of both Pol I and Pol III
(Dauwerse et al., 2011). Disease-associated mutations destabilize the
function of these enzymes which are critical for the synthesis of
rRNAs, emphasizing that TCS arises from a defect in this process
(Walker-Kopp et al., 2017).

The first clues about the mechanistic function of
TCOF1 emerged as its role in rRNA transcription was revealed.
Co-immunoprecipitation and yeast two-hybrid experiments
demonstrated that TCOF1 formed a direct complex with UBF
(Valdez et al., 2004). Consistent with these data, siRNA-mediated
depletion of TCOF1 resulted in a reduced rate of rRNA synthesis.
However, data from Xenopus laevis also support the hypothesis that
TCOF1 may be involved in rRNA methylation, another form of
dysfunction found in rRNA synthesis (see below) (Gonzales et al.,
2005). However, there is mounting evidence that the rate of rRNA
synthesis is linked to the effectiveness of rRNA methylation, so it is
unclear whether the effect on rRNA methylation is direct or is a
secondary effect from altered rRNA synthesis. However, proteomic
analysis of Nop56, a key factor in rRNA methylation, has identified
TCOF1 as an interacting factor (Hayano et al., 2003).

Cockayne syndrome

Cockayne syndrome (CS) is an autosomal recessive disorder
that results in diverse clinical presentations. The most common
presentations are neonatal failure of growth and neurological
dysfunction that worsens with age. However, microcephaly,
dwarfism, cardiac defects, increased sensitivity to UV light,
and ophthalmologic dysfunction, including retinal
degeneration and the increased propensity for cataract
formation, are also common (Nance and Berry, 1992). Life
expectancy for afflicted individuals is 12 years (Laugel et al.,
2008). Fibroblasts from CS patients display reduced
proliferation after exposure to UV light based on colony-
forming assays (Schmickel et al., 1977). Curiously, these cells
appear to have no defect in the rate of DNA repair but have a
reduced rate of recovery based on RNA synthesis (Mayne and
Lehmann, 1982; Lehmann et al., 1993). In these studies, RNA
synthesis was monitored by the uptake of 3H-uridine into acid-
soluble RNA. Since rRNA accounts for the majority of all cellular

RNA synthesis, it can be inferred that these studies monitored the
resumption of rRNA synthesis after UV irradiation. Genetic
analysis revealed that CS patients fell into at least two distinct
complementation groups: CSA or CSB (Tanaka et al., 1981).
Clarity regarding the complementation groups and the effect on
nucleic acid synthesis came with the isolation of the relevant
genes, which were termed CSA (ERCC8) and CSB (ERCC6)
(Troelstra et al., 1990; Henning et al., 1995). Both CSA and
CSB were determined to associate with transcription factor IIH
(TFIIH), which originally implicated a defect in RNA Pol II
transcription in CS. However, later data demonstrated that
TFIIH was also crucial for Pol I transcription initiation and
elongation (Bradsher et al., 2002; Iben et al., 2002; Assfalg et al.,
2012). These data, and the dramatic effect on bulk rRNA
synthesis, implicated rRNA synthesis as a component of
CS pathology.

To date, multiple mechanisms have been proposed for how
mutations to CSA and CSB alter rRNA synthesis rates. These
mechanisms are not mutually exclusive, and some interplay between
proposedmechanisms is possible. TFIIH, which interacts with CSA and
CSB, is essential for Pol I transcription initiation in humans and yeast,
and it interacts with Pol I and SL1 (Iben et al., 2002; Koch et al., 2014).
CSB andTFIIH are also necessary for efficient Pol I elongation (Lebedev
et al., 2008; Assfalg et al., 2012). The elongation-promoting activity
found in these studies may be related to recent data showing that CSA
and CSB can resolve G4 structures (Scheibye-Knudsen et al., 2016;
Liano et al., 2021). These are highly stable structures that can block a
polymerase if not resolved. Reduction of CSA or CSB leads to the
stalling of polymerases at sequences capable of forming G4s. Further
analysis shows that CSB can melt these structures, which would allow
for more efficient transcription elongation. Surprisingly, chemical
stabilization of G4 leads to decreased rRNA synthesis and an
increased rate of aging (Scheibye-Knudsen et al., 2016; Liano et al.,
2021). These results could tie the rRNA synthesis seen in CS mutations
to the pathological aging symptoms in CS patients. CS has also been
proposed to function through interaction with nucleolin (NCL) (Okur
et al., 2020), which is noteworthy, as NCL has also been implicated in
the regulation of G4 structures in rDNA (Drygin et al., 2009; Xu and
Hurley, 2022).

Other work has hinted at an alteration of the epigenetic
landscape as a mechanism for reduced rRNA transcription. Co-
immunoprecipitation studies established that CSB interacts with
G9a, a histone methyltransferase that deposits mono- and di-methyl
groups on H3K9 (Yuan et al., 2007). The authors propose that these
methylation marks aid the recruitment of HP1γ which promotes Pol
I elongation. CSB may also interact with the NuRD complex, which
establishes a chromatin state that poises individual rDNA genes for
transcription (Xie et al., 2012).

Finally, CS is also associated with aberrant ribosome function,
although it has not been formally established that this is a
consequence of altered rRNA synthesis rates. Nevertheless, cells
harboring CS mutations have reduced translation fidelity (Alupei
et al., 2018). In these conditions, proteins with misincorporated
amino acids have an increased propensity tomisfold, which activates
the unfolded protein response. Mutations in TFIIH have similar
effects on proteostasis and translation fidelity (Khalid et al., 2023).
These mutations are associated with trichothiodystrophy (TTD)
developmental disorder, which shares common pathologies with CS.
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Alterations to rDNA number in disease

The rDNA repeats are highly recombinogenic (Gaubatz et al.,
1976; Kobayashi, 2011). In humans, the average number of rDNA
genes is 300, but the absolute number can differ between individuals
and within an individual (Johnson and Strehler, 1972; Medvedev,
1972; Johnson et al., 1975; Wang and Lemos, 2017; Malinovskaya
et al., 2018). Early work suggested an age-dependent loss of rDNA
repeats in brain and heart tissue (Johnson and Strehler, 1972;
Medvedev, 1972; Johnson et al., 1975). Follow-up studies have
found similar reductions in rDNA number during aging
(Zafiropoulos et al., 2005; Ren et al., 2017). This suggested an
intriguing hypothesis that an age-related decrease in fitness may
be partly due to the loss of proliferative potential by reducing the
number of rDNA transcription units. In turn, this would reduce the
rate of rRNA synthesis and ultimately ribosome production. In fact,
earlier work using Drosophila melanogaster genetics had
demonstrated that to be true (Ritossa et al., 1966). Correlative
work has shown that a low rDNA copy number is associated
with mild cognitive impairment and dementia, although these
studies could not demonstrate a causative link (Hallgren et al.,
2014; Veiko et al., 2022). Expansion and loss of rDNA repeats are
associated with human cancers (Wang and Lemos, 2017). In these
cases, there is a trend for expansion of the 5S rDNA genes and a
decrease in the 47S rDNA genes, leading to a general imbalance. Loss
of rDNA repeats is also common in Werner’s syndrome (Caburet
et al., 2005), a progeroid syndrome characterized by adult onset
rapid aging (Oshima et al., 2017). These are coupled with a wealth of
data from S. cerevisiae demonstrating an age-dependent loss of
rDNA on linear chromosomes and the generation of
extrachromosomal rDNA circles (Sinclair and Guarente, 1997).
Age in yeast can be measured by replicative lifespan, which is the
number of daughter cells a mother cell may produce. Recent data
have demonstrated that the loss of rDNA repeats is a major driver of
replicative senescence (Hotz et al., 2022).

However, the relevance of this phenotype in humans and its
causal effect on aging has been challenged (Gaubatz et al., 1976). A
Russian population study demonstrated a narrowing of the range of
rDNA copy number with age, but the mean and median number of
repeats were unchanged (Malinovskaya et al., 2018).

As the maintenance of rDNA repeats has been implicated in
regulating longevity and aging, so has the maintenance of epigenetic
rDNA silencing. Overexpression of SIRT1, a component of the
eNoSC, has been shown to extend lifespan in D. melanogaster,
Caenorhabditis elegans, and mice (Tissenbaum and Guarente, 2001;
Satoh et al., 2013; Whitaker et al., 2013). In contrast, patients with
Alzheimer’s disease also show an increase in epigenetic silencing of
rDNA repeats, which would result in a reduced transcriptional
potential (Pietrzak et al., 2011).

Alterations to rRNA synthesis in cancer

As loss of rRNA synthesis, either due to epigenetic silencing or
rDNA loss, is linked to reduced fitness, increased rRNA synthesis is
intrinsically tied to hyperproliferation. The ability to duplicate the
cell’s complement of ribosomes is a key factor in its ability to divide,
and rRNA synthesis is a rate-limiting step in this process. Some of

the earliest histological analyses of cancer cells revealed enlarged
nucleoli—the site of rRNA transcription and ribosome biogenesis
(Maccarty, 1936). Nearly a century of work has now shown that this
is due to an increase in rRNA synthesis.

Stabilization of c-Myc, a protooncogenic transcription factor, is
a key feature of carcinogenesis. Transcriptional regulation of RNA
Pol II and RNA Pol III genes had been under intense investigation in
regulating cell transformation. Data showed that ribosomal protein
genes were stimulated by c-Myc (Kim et al., 2000). However, in
2005, three groups independently revealed that c-Myc is also a major
driver of rRNA (Arabi et al., 2005; Grandori et al., 2005; Grewal
et al., 2005). c-Myc was shown to localize to the nucleus, and its
overexpression triggered a dramatic increase in transcription.
Conversely, siRNA knockdown of c-Myc reduced rRNA synthesis
rates. E-boxes are the DNA element to which c-Myc binds. Analysis
of rDNA repeats demonstrates a wide distribution of these sites
throughout each repeat, which ChIP experiments demonstrated
were bound by c-Myc. Later work showed that c-Myc may re-
organize the chromatin to better allow access to SL1 and UBF (Shiue
et al., 2009). Recent data also point to UBF mutations as playing a
role in acute myeloid leukemia (Stratmann et al., 2021; Umeda et al.,
2022; Duployez et al., 2023). Screening of adult and pediatric cases
showed internal tandem duplication of exons in UBF. However, the
effect of these tandem duplications on rRNA expression is
not known.

The increased requirement for de novo ribosome production in
cancer andmetastasis has made inhibition of RNA Pol I an attractive
target for anti-cancer therapies. CX-3543 is a small molecule that has
been shown to inhibit rRNA synthesis. A proposed mechanism of
action is to disrupt nucleolin (NCL) fromG-rich sequences in rDNA
(Drygin et al., 2009). Under normal conditions, NCL has been
proposed to prevent G4 structures from forming, suggesting a
mechanism in which CX-3543 displaces NCL from rDNA,
leading to an increase in G4 formation and impaired Pol I
elongation. This is similar to a proposed cause of Cockayne
syndrome. A derivative of CX-3543—CX-5461—was shown to
target RNA Pol I more directly (Mars et al., 2020). This drug
allows the recruitment of Pol I/RRN3 complexes to promoters
but prevents promoter escape and transition to an elongation
phase. However, polymerases that have begun elongation are not
inhibited, and the validity of this proposed mechanism is a matter of
debate. Other work has suggested that the primary mode of action is
through the “poisoning” of topoisomerase II (Bruno et al., 2020).

Mechanism and regulation of rRNA
maturation

In mammals, the synthesis of four mature rRNAs involves the
transcription of two precursor rRNAs. The pre-5S rRNA is
transcribed by RNA polymerase III, while the tricistronic 47S
pre-rRNA (equivalent to 35S in yeast) is transcribed by RNA
polymerase I. Minimal 5′-end processing is required to convert
pre-5S rRNA into mature 5S rRNA, whereas the 47S precursor
undergoes an intricate maturation process that leads to the release of
18S, 5.8S, and 28S rRNAs (Figure 2). Significant strides in
understanding rRNA maturation have been achieved using S.
cerevisiae, yielding foundational discoveries. However,
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distinctions between yeast andmammals underscore our incomplete
understanding of the maturation process in humans. This review
will primarily focus on the maturation of mammalian rRNAs, with a
conscientious acknowledgment of pivotal findings derived from
yeast studies.

The mature 5S rRNA is the smallest of the four rRNAs. The
human 5S is homologous to the prokaryotic 5S rRNA and shares a
similar secondary structure. The establishment of in vitro
transcription systems using isolated human or rat nuclei revealed
that the transcription product for the 5S genes was longer than the
mature 5S rRNA, suggesting the possibility of a longer precursor
(Yamamoto and Seifart, 1978; Hamada et al., 1979). However, these
apparent precursors contained extended uridine residues at their 5′-
end, so researchers acknowledged the possibility that these arose
because of the artificial nature of in vitro transcription.

Later work confirmed that this 3′-extended precursor was a
natural transcription product. These experiments took advantage of
antisera from patients with systemic lupus erythematosus (Rinke
and Steitz, 1982). The antisera recognized that the La protein and

immunoprecipitation effectively precipitated most Pol III
transcripts, including the 5S rRNA. These transcripts were shown
to contain similar U-rich 3′-extensions, as had been seen in in vitro
transcription experiments. Shortly thereafter, mutagenesis
experiments established the existence of 5S precursor molecules
in yeast (Piper et al., 1983). Similarly, it was discovered that the
initial transcripts contained short uridine-rich 3′-extensions.
Further work on the mechanism of Pol III termination has
shown that these U-rich sequences function as a termination
signal, like that seen in prokaryotic transcription (reviewed in
Arimbasseri et al. (2013)).

Despite the relatively simplistic processing required to mature
the pre-5S to 5S rRNA, the mechanism remains unclear in humans.
Work from yeast has shown that the 3′-end of the pre-5S is
exonucleolytically processed by Rex1p to generate the mature
rRNA (van Hoof et al., 2000). A distantly related protein, Rexo5,
appears to be involved in D. melanogaster (Gerstberger et al., 2017).
However, there are important differences that have yet to be resolved
in species-specific processing. In yeast, mutants of Rex1p are viable,

FIGURE 2
Simplified model of the major 47S rRNA processing pathway. Processing sites and identified processing enzymes are noted on the 47S rRNA, when
known. This only schematizes the major pathway. Note that alternative minor maturation pathways exist.
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whereas mutations to fly Rexo5 are lethal. It is unclear if this is due to
added functions of Rexo5 or a reduced stringency in yeast for 3′-
extensions. Further complicating this is the unclear role of the
mammalian homolog of Rexo5, known as NEF-sp (Silva et al.,
2017). In mice, this protein is restricted to gonads, and its loss
does not alter viability. The maturation of human 5S rRNA clearly
warrants additional research to determine its unique process relative
to yeast.

Mammalian tricistronic precursor maturation has been better
characterized, although important gaps in knowledge remain. In
humans, the most commonly used reference 47S rRNA sequence is
13,304 nucleotides. This sequence is known to contain errors, and
increasing evidence supports heterogeneity amongst 47S sequences.
The initial transcript contains the 18S, 5.8S, and 28S rRNAs, which
are flanked by 5′- and 3′-external transcribed spacers (ETSs). The
18S and 5.8S sequences are separated from each other by internal
transcribed spacer 1 (ITS1), while the 5.8S and 28S sequences are
separated by ITS2. This general structure is conserved in metazoans,
but the spacer regions have greatly expanded in mammals. As with
5S, the presence of precursor molecules from which the 18S, 5.8S,
and 28S originated was not a foregone conclusion. The 18S and 28S
can be analyzed by radiolabeling RNA and purification by sucrose
gradient ultracentrifugation (Philipson, 1961; Scherrer and Darnell,
1962). Brief labeling of RNA identified larger intermediates that are
dependent upon active transcription, suggesting that these were
precursors of the mature rRNAs (Scherrer and Darnell, 1962;
Scherrer et al., 1963; Tiollais et al., 1971).

The first processing events occur nearly simultaneously at the
extreme 5′- and 3′-ends to convert the 47S to the 45S pre-rRNA. The
5′-end processing occurs at two closely related sites: A′ and 01 (A’/
01). In humans, this site is located approximately 415 nucleotides
from the 5′-end of the 47S, although the precise cleavage site is not
known. S1 nuclease protection assays and primer extension assays
suggest a heterogeneous distribution of cleavage events (Kass et al.,
1987). This processing site is not present in yeast, making this
system unable to provide further insights into the mechanism of
cleavage in humans. Despite these challenges, a pivotal contributor
to A’/01 processing is the U3 small nucleolar RNA (snoRNA)
(Bachellerie et al., 1983; Crouch et al., 1983; Tague and Gerbi,
1984; Parker and Steitz, 1987; Kass et al., 1990). Notably, this RNA
molecule assumes multiple roles in the intricate process of maturing
the 18S rRNA. The U3 snoRNA is a member of the Box C/D
snoRNA family that primarily guides the 2′-O methylation of rRNA
(see below). However, the U3 snoRNA assembles with a host of
protein co-factors to then base-pair with the pre-rRNA to direct the
processing of the 18S rRNA (Prestayko et al., 1970; Calvet and
Pederson, 1981). Evidence suggests that A’/01 processing occurs
within minutes (Popov et al., 2013).

Processing at the 3′-end of the 47S is less clear in humans. A
processing site known as 02 is found at the 3′-end of the mature 28S.
However, it is not known if this is generated by an exo- or endo-
nucleolytic processing event. In yeast, the concerted efforts of an
endonuclease—Rnt1p—and exonuclease—Rex1p—are required
(Kempers-Veenstra et al., 1986; Kufel et al., 1999). As with 5′-
end processing, a snoRNA has been implicated in this processing
reaction in vertebrates and mammals. Work in Xenopus oocytes
demonstrated that the U8 snoRNA was involved in this process
(Peculis and Steitz, 1993), and later work has confirmed that this is

conserved in mammals (Srivastava et al., 2010; Langhendries
et al., 2016).

Although minor processing pathways exist in metazoans, the
next major processing event is endo-nucleolytic cleavage in ITS1,
which separates the small and large subunit rRNAs. This cleavage
event at Site 2 is mediated by the MRP complex, a ribonucleoprotein
that contains the RMRP catalytic RNA (see below for
additional details).

Maturation of the 18S requires removal of the 5′-ETS and the 5′-
portion of ITS1 after cleavage. Like cleavage at A’/01, the discrete
processing requirements for the removal of 5′-ETS still require
clarification. However, they are dependent upon the U3 snoRNP,
which aids in the assembly of the small-subunit (SSU) processome.
There are two identified processing sites remaining in the 5′-ETS
after A’/01 cleavage—A0 and 1—which may be functionally related
to the A0 and A1 sites in yeast. This supposition is strengthened by
the fact that Site 1 in humans and A1 in yeast is cleaved by
homologous protein Utp24, a PIN (PilT N terminus) domain-
containing endonuclease. Utp24 and other U3 proteins (Utp) are
associated with the U3 snoRNP (Bleichert et al., 2006). Genetic
evidence, crosslinking, and in vitro cleavage experiments in yeast
and humans have established that Utp24 performs this processing
(Bleichert et al., 2006; Wells et al., 2016). Some evidence has
suggested that another UTP, Utp23, may be involved in both
A0 and A0 cleavage in humans and yeast, respectively. However,
in yeast, the catalytic nucleotides are not required for efficient
cleavage, suggesting that Utp23 serves a structural role (Bleichert
et al., 2006; Hoareau-Aveilla et al., 2012). In humans, the catalytic
PIN domain does appear to have a role in promoting cleavage,
though it is yet to be validated if Utp23 is directly responsible (Wells
et al., 2017).

Utp24 also has a role in generating the mature 3′-end of the 18S
rRNA by cleaving at Site E to generate the 18S-E precursor (Bleichert
et al., 2006; Wells et al., 2016). However, the ITS1 fragment may be
exonucleolytically trimmed by the exosome before Utp23 cleavage to
generate the 21S-C precursor (Carron et al., 2011). It is not clear if
this is an obligatory step in processing, although the 21S-C precursor
is stabilized in patients with Diamond–Blackfan anemia, a
ribosomopathy that arises due to mutations in ribosomal
proteins. 18S-E contains approximately 78 extra nucleotides at its
3′-end relative to the mature rRNA. Unlike other steps in this
process, the final maturation is completed in the cytoplasm by Nob1,
another PIN-domain-containing protein (Udem and Warner, 1973;
Rouquette et al., 2005). Various proteins, including PNO1, a binding
partner of Nob1, ensure that pre-40S ribosomes do not prematurely
engage with the translation machinery before final maturation
(Tone and Toh-e, 2002; Lebaron et al., 2012). Phosphorylation of
PNO1 by RIOK1 triggers its displacement from pre-40S ribosome
and allows for final 18S maturation by Nob1 (Ameismeier
et al., 2020).

Maturation of the large subunit rRNAs requires separation of
the 28S from the 5.8S rRNA via cleavage in ITS2 and final 5′- and 3′-
end processing of each mature rRNA. The endonuclease Las1L
cleaves within ITS2 to separate the two immature rRNAs,
requiring the polynucleotide kinase activity of Grc3/Nol9 (Gasse
et al., 2015; Fromm et al., 2017; Pillon et al., 2017; Pillon et al., 2018;
Pillon et al., 2019). The majority of these analyses have been
conducted in yeast, but it is presumed that their function is
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conserved in humans. Yeast Grc3 recruits Las1 to the site of cleavage
and “programs” it by promoting its proper conformation. In
humans, RNAi-mediated depletion of these proteins blocks
ITS2 cleavage (Castle et al., 2010; Heindl and Martinez, 2010).
Las1L and Nol9 also assemble into a complex whose components
are necessary for ITS2 processing (Castle et al., 2012).

The 5′-end of the 5.8S rRNA is likely matured primarily through
the action of exo-nucleolytic trimming. This generates two distinct
5′-ends, resulting in the longer 5.8SL or the 5.8SS, which differ by
seven nucleotides (Henry et al., 1994). While most mechanistic
details were discovered in yeast, the basic processes appear to be
conserved in humans. The 5′- to 3′-exonuclease Rat1 is responsible
for 5.8S 5′-end maturation in yeast (Amberg et al., 1992; Xue et al.,
2000). Structurally, human Xrn2 is homologous to yeast Rat1
(Shobuike et al., 1995), and its depletion impairs 5′-end
maturation of the 5.8S rRNA (Wang and Pestov, 2011). These
same proteins are responsible for 5′-end maturation of the 28S
rRNA after ITS2 cleavage (Geerlings et al., 2000; Wang and
Pestov, 2011).

Finally, the maturation of the 3′-end of the 5.8S rRNA is a
concerted effort of several exonucleases that generate discrete
intermediates. The major player in this process is a multi-subunit
complex known as the exosome (Mitchell et al., 1997). Human
exosome was first characterized using autoantisera from patients
with scleroderma, while the yeast exosome was identified genetically
(Reimer et al., 1986; Allmang et al., 1999; Brouwer et al., 2001). The
Exo9 complex is the structural unit of the exosome that contains
nine polypeptides in a barrel-like structure. Each polypeptide has
features of an exonuclease, but catalytic activity is granted by adding
one or two additional proteins—Exosc10 (Pm/Scl100) and Dis3—to
form the Exo10 or Exo11 complex. The exosome trims the largest
5.8S precursor, known as the 12S, to generate the 7S precursor. This
processing may also involve a second exonuclease called interferon-
stimulated 20-kDa exonuclease-like 2 (ISG20L2) (Coute et al., 2008).
The exosome then completes the next processing reaction to
generate the 5.8S + 40 precursor. As the name implies, this
precursor contains an additional 40 nucleotides at the 3′-end of
the 5.8S rRNA. This length is dictated by the distance an RNA must
traverse through the Exo9 barrel before reaching the catalytic
subunits (Schuller et al., 2018). At this point, Exosc10 can
function independently of the exosome complex to trim the 5.8S
+ 40 to generate the final precursor, known as the 6S. As with the
final 3′-end-maturation of the 18S, the final processing event occurs
in the cytoplasm. The multifunctional exonuclease Eri1 (3′-hExo)
removes the final nucleotides in the cytoplasm (see below for
additional details).

Cartilage–hair hypoplasia

Cartilage–hair hypoplasia (CHH) is a type of dwarfism first
described by McKusick in Old Order Amish populations (McKusick
et al., 1965). CHH is a pleiotropic disease causing a variation of
clinical presentations that include immune dysfunction and
increased cancer risk (Ridanpaa et al., 2001). The etiology of
CHH was unknown until the late 1990s, when a candidate
genomic region was mapped to chromosome 9 using linkage
analysis on genomic data from affected Finnish families (Sulisalo

et al., 1993). This region was further narrowed down to
Chr9p13 using both linkage and physical mapping techniques
(Sulisalo et al., 1994; Vakkilainen et al., 1999). The causative gene
remained elusive until 2001, when an insertion in RMRP was
discovered in a patient suffering from CHH. The RMRP gene
encodes an untranslated RNA that acts as the RNA component
of the ribonuclease RNase MRP (Ridanpaa et al., 2001).

Ribonuclease mitochondrial RNA processing (RNase MRP) was
first identified in 1987 as a ribonuclease responsible for the cleavage
of mitochondrial RNA transcribed during replication in mice and
humans. It was subsequently discovered that RNase MRP has an
RNA component encoded in the nucleus that is required for activity
(Chang and Clayton, 1987a; Chang and Clayton, 1987b). Despite
having mitochondrial processing functions, RNase MRP was
predominantly localized to the nucleolus, suggesting an
alternative role outside of mitochondria (Yuan et al., 1989;
Topper and Clayton, 1990; Karwan et al., 1991; Kiss et al., 1992;
Schmitt and Clayton, 1992). Due to its known processing roles, it
warranted further investigation as an rRNA processing factor.
RMRP is also referred to as 7-2 RNA and NME1 (Kiss et al.,
1992; Schmitt and Clayton, 1992). Interestingly, RNase MRP has
a conserved secondary structure similar to that of RNase P, which
plays a role in tRNA processing. Taken together, its nucleolar
localization and RNA cleavage activity suggested that RNase
MRP was acting as an rRNA processing enzyme (López et al., 2009).

This supposition was strengthened by extensive studies in S.
cerevisiae. Two temperature-sensitive (ts) mutants, coined rrp2-1
and rrp2-2, were found to display impaired rRNA processing (Shuai
and Warner, 1991; Lindahl et al., 1992). Northern blotting studies
revealed an abnormal processing of yeast 35S rRNA. Further
characterization of ts-mutants revealed misprocessing of the 5.8S
rRNA, with the major effect being a non-canonical product that was
extended by 149 nucleotides. They also determined there was an
alteration to the stoichiometry between 5.8SL and 5.8SS forms.
(Lindahl et al., 1992). Two years later, the NME1 gene was
shown to complement the rrp2-2 mutants. By deleting portions
of the NME1 gene at various lengths (14, 22, and 65 nucleotides), it
was found that longer deletions prevent the ability of NME1 to
complement rrp2-2 mutations. These data provided evidence that
rrp2-2 mutants were actually NME1 mutants (Chu et al., 1994).
Studies in S. cerevisiae revealed that NME1, the gene homologous to
human RMRP, was required for viability (Schmitt and Clayton,
1992). Schmitt and Clayton (1993) later confirmed that RNase
MRP/NME1 in the nucleus is required for appropriate processing
of yeast 5.8S rRNA. The complete processing activity of RNase MRP
in S. cerevisiae was proposed shortly after these studies. In vitro
experiments revealed that yeast RNase MRP-mediated processing of
pre-rRNA is achieved through cleavage at the A3 site, which is
located in ITS1 (Henry et al., 1994; Lygerou et al., 1996). It was also
shown that mutations in POP1, a protein component of the RNase
MRP RNP, cause defects in pre-rRNA processing similar to RNase
MRP mutants, as well inhibiting A3 cleavage (Lygerou et al., 1994).

It took significantly longer to clarify the role of RMRP in humans
and the connection to CHH, but this has now been validated to
direct the analogous cleavage event at site 2 in ITS1 of the human
pre-rRNA. Earlier studies initially shed doubt on whether RMRP
served a similar role as yeast NME1. RNAi-depletion of POP1,
RPP38, or RPP40 protein cofactors of RNase MRP and RNase P did
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not show alterations in rRNA processing (Sloan et al., 2013).
However, the Cech group later concluded that siRNA or
antisense oligonucleotides were not sufficient to disrupt RMRP
and used CRISPR-Cas9 to edit RMRP (Goldfarb and Cech,
2017). In agreement with yeast studies, complete ablation of
RMRP is lethal. An increase in rRNA precursors, specifically on
the 5′-end of the 5.8S, was observed in HeLa clones that did
accumulate RMRP mutations.

In CHH, two main classes of mutation have been described; the
first consists of either insertions or duplications that occur between
the promoter and the transcription initiation site. It is thought that
these mutations prevent the effective transcription of RMRP. The
second category consists of single-nucleotide substitutions that are
generally found in conserved regions of RMRP. These mutations,
primarily A70G and G262T, are thought to have functional
consequences (Ridanpaa et al., 2001). The authors also found
that all patients with mutations in RMRP express RNase MRP to
some degree, but patients who are heterozygous for 5′-end
insertions have one allele silenced, resulting in lower expression
of RNase MRP RNA; this indicates that the 5′-insertion mutations
do, in fact, suppress transcription. Co-immunoprecipitation studies
show that proteinaceous subunits still interact with mutant RMRP
(Ridanpaa et al., 2001). In contrast with yeast rrp2-2 mutants, CHH
patients do not present with the 149 nt extended 5.8S. Stabilization
of such an rRNA may be inviable outside of the context of
ts-mutants.

Recent studies have described A70G mutations resulting in a
decreased abundance of cytosolic ribosomes, as well as a reduction
in rRNA on a per-cell basis (Robertson et al., 2022). While previous
studies found abnormalities in pre-rRNA processing, effects on
ribosomal biogenesis of abundance were not previously described.
Robertson et al. (2022) has cemented CHH as a bone fide
ribosomopathy. A previously uncharacterized mutation in the
gene NEPRO was recently described as causing a CHH-like
phenotype. While NEPRO is thought to interact with RMRP
components, these studies are still in their infancy and warrant
further investigation (Narayanan et al., 2019; Remmelzwaal
et al., 2023).

CHH has been primarily investigated on the level of pre-rRNA
processing, although only recently has it been studied at the level of
ribosome abundance and biogenesis. It would be interesting to
explore with new biochemical tools whether these ribosomes are
translation competent and, if so, what their translation capacity and
efficiency is. While the pre-rRNA processing role in CHH has been
well established, understanding downstream effects on translation
would be a significant continuation of research.

North American Indian childhood cirrhosis

North American Indian childhood cirrhosis (NAIC) is a familial
disease displaying an autosomal recessive inheritance that
specifically affects the Oji-Cree people of Northwestern Quebec
(Betard et al., 2000). The disease is characterized by neonatal
intrahepatic cholestasis, jaundice, and progressive liver damage
(Weber et al., 1981).

Using genome-wide scanning techniques and linkage analysis
on samples from affected and unaffected individuals, the locus

responsible for this condition was mapped to chromosome 16q22
(Betard et al., 2000). Just 2 years after identifying the locus, the gene
implicated in NAIC was found, which encoded an uncharacterized
protein referred to as FLJ14728—now called Cirhin/CIRH1A. This
protein is homologous to yeast UTP4, which is a component of the
SSU processome. Homozygous individuals who had the R565W
mutation (c.1741C>T), located in the C-terminal end of the protein,
were identified. Conservation of theCirhin gene has also been shown
across vertebrates and specifically the presence of a dibasic residue in
the 565 position (Chagnon et al., 2002).

As Cirhin was previously uncharacterized, its normal function
was largely unknown. It was found that both wildtype and R565W
mutant Cirhin localize to the nucleolus. Interestingly, the nucleolus
is not generally implicated in diseases of intrahepatic cholestasis,
suggesting a potential function for Cirhin in the nucleolus (Yu et al.,
2005). In S. cerevisiae, U3 snoRNA and associated proteins (t-Utps)
are required for processing of 18S pre-rRNA. In the absence of
t-Utps, production of mature 18S rRNA is abrogated (Dragon et al.,
2002). While the function of t-Utps has been well established in pre-
18S rRNA processing, it has also been characterized as linking its
ribosomal RNA processing function with the transcription of rDNA
(Gallagher et al., 2004). Through TBLASTN searches, potential
human orthologs of several yeast t-Utps were identified: hUTP4,
hUTP5, hUTP10, hUTP15, and hUTP17, with Cirhin being hUTP4.
These UTPs comprise the SSU processome (Prieto and McStay,
2007). Given that CIRHIN/Utp4 are part of the SSU processome,
this may indicate potential processing defects of rRNA in the small
ribosomal subunit.

To further elucidate the functions of CIRHIN and its role in the
pathogenesis of NAIC, yeast two-hybrid (Y2H) screens and mass
spectrometry (MS) were performed to identify potential binding
partners for CIRHIN. NOL11, another member of the human t-Utp
complex, was found to be a binding partner with CIRHIN. To
further parse this, co-immunoprecipitation revealed that NOL11 is
part of the SSU processome based on its co-immunoprecipitation
with FBL. Interestingly, NAIC mutations (R565W) in CIRHIN
ablate interaction with NOL11 (Freed et al., 2012). In addition to
association with CIRHIN, siRNA knockdown of NOL11 indicates
that it is required to generate mature 18S rRNA (Freed et al., 2012).
While it has been shown that hUTP4 with the R565Wmutation can
localize to the nucleolus normally (Yu et al., 2005), it is reported that
CIRHIN interaction with NOL11 may be required for appropriate
localization, as C-terminal truncations of CIRHIN prevent nucleolar
localization (Freed et al., 2012). While the R565W mutation in
hUtp4 appears to interfere with NOL11 interaction, it is curious that
nucleolar localization still occurs despite the potential weakening of
this interaction. While biochemical data are beginning to reveal the
function of this protein, the precise effect on rRNA production and
ribosome activity in NAIC awaits clarification.

ERI1: an emerging disease target

ERI1 (3′-hExo) is a multifunctional member of the DEDDh
family of exoribonucleases that possesses 3′- to 5′-exonuclease
activity. Amongst other activities, it conducts the final processing
reaction to generate the mature 3′-end of the 5.8S rRNA. Originally
identified via genetic screening of C. elegans mutants with a
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sensitivity to dsRNA, the ERI1 gene was identified as a potentially
important regulator of siRNA. It was found that mutations in eri-1
result in an accumulation of siRNAs, potentially pointing toward
regulatory role for ERI1 in siRNA levels. In fact, ERI1 acts as a 3′- to
5′-nuclease and can degrade siRNAs at the 3′-end (Kennedy et al.,
2004). This nuclease function against siRNAs is found to be
conserved in humans and the fission yeast S. pombe (Kennedy
et al., 2004; Iida et al., 2006). In addition to negatively regulating
siRNAs, ERI1 has also been shown to degrade the 3′-end of histone
mRNAs, as well as 3′-end processing of the 5.8S rRNA (Gabel and
Ruvkun, 2008). Despite its low sequence homology, structural
studies using crystallography and characterization of its nuclease
activity confirm its identity as a DEDDh nuclease (Dominski et al.,
2003; Yang et al., 2006).

Given the characterized function of ERI1 as a 3′-end processing
enzyme of the 5.8S rRNA in C. elegans, (Gabel and Ruvkun, 2008), it
appears that this function is conserved to mouse ERI1, as ERI1-
deficient mice exhibit a longer 5.8S rRNA and can be rescued by
reintroducing wild-type Eri1. Biochemical in vitro processing
studies indicate that recombinant ERI1 can catalyze the final 3′-
end processing required for the appropriate formation of the 3′-end
of 5.8S. ERI1 performs its 3′-end processing activities in a duplex
formed by a 5.8S and 28S rRNA molecule, and subsequently
chewing back unpaired nucleotides at the 3′-end of the 5.8S
rRNA (Ansel et al., 2008). In addition to carrying out processing
activities of the 5.8S, ERI1 also appears to associate with ribosomal
proteins and co-sediments with the 40S, 60S, and 80S peaks, but is
depleted from actively translating polysomes. While the rRNA
processing function has been characterized, the significance of
sustained association with the ribosome after processing is
unclear (Ansel et al., 2008).

Aside from rRNA processing functions, ERI1 is also necessary
for the efficient decay of histone mRNAs at the end of the S-phase
(Dominski et al., 2003). Histone mRNAs are the only cellular
mRNAs that are not polyadenylated, instead ending in a
conserved stem-loop. At the end of the S-phase, when bulk
histone production is no longer necessary, they are rapidly
degraded. ERI1 binds to the histone stem-loop and participates
in the early stages of degradation.

In recent years, an emerging set of data implicates ERI1 in
several disease types. Skeletal and cardiac malformations and
intellectual disability were reported in an individual with a
homozygous deletion of ERI1, MFHAS1, and MIR4660 (miR-
4660). While ERI1 deletion likely plays a role in this pathology, it
cannot solely be attributed to it (Choucair et al., 2017). Another
patient was also identified recently as having a homozygous
nonsense mutation (K188Stop) (Hoxha and Aliu, 2023).
Similarly, this patient presented with limb abnormalities and
intellectual disabilities, strengthening the case that ERI1 loss was
the disease-causing mutation in the previous case. Finally, a recent
study contrasts clinical manifestations in patients with either
missense variants or bi-allelic null mutations in ERI1 (Guo et al.,
2023). Patients with missense variants tend to have major skeletal
defects known as severe spondyloepimetaphyseal dysplasia (SEMD),
while those with biallelic null mutations suffer from much milder
skeletal malformations and intellectual disabilities. Patients with
ERI1 mutations exhibit defective processing of the 3′-end of 5.8S
rRNA, as well as accumulating replication-dependent histone

mRNAs (Guo et al., 2023). While these recent cases strongly
implicate ERI1 in disease, the cause of these diseases is not
known. Since ERI1 has many RNA targets, it is unclear whether
these conditions arise from the misprocessing of rRNA, a defect in
histone mRNA decay, or the stabilization of other uncharacterized
RNAs. Future work is needed to determine the mechanistic causes of
these disease states.

Modification of ribosomal RNA under
non-pathogenic conditions

Production of mature rRNAs requires both efficient processing
and elaborate chemical modifications. rRNAs are second only to
tRNAs in the number and diversity of chemical modifications
deposited on the RNA (Figure 3). Most of these modifications
are 2′-O methylations (2′-Ome) and pseudouridylations (Ψ),
although other base modifications, such as methylations and
acetylations, are also present. While these modifications can be
found throughout an rRNA, they are clustered around active sites on
the ribosome, such as the decoding center and the peptidyl
transferase center. The majority of the functional experimental
data are derived from yeast and prokaryotic work, but data from
various human disease states strongly suggest that these results also
hold true for humans. It has been shown for 2′-Ome and Ψ
modifications that loss of one or two modifications often has
little impact on ribosome structure or function. However, defects
begin to emerge as increasing modifications are lost. A seminal study
from yeast analyzedmodifications found in helix 69 of the 25S rRNA
(Liang et al., 2007); helix 69 interacts with helix 44 of the 18S rRNA
to form an inter-subunit bridge between the 40S and 60S ribosome
and is well conserved from prokaryotes to humans (Yusupov et al.,
2001). This helix contains several modifications over an 11-
nucleotide stretch (AmCΨAΨGACCΨCΨ). Preventing the
deposition of the modifications in this region has a severe effect
on protein synthesis and growth (Liang et al., 2007). Yeast ribosomes
lacking these modifications have a loss of translational fidelity, a
decreased rate of protein synthesis, an increased rate of turnover,
and a decreased rate of rRNA processing. Data from prokaryotes
demonstrate that the Ψ modifications are important for the proper
structure of helix 69 (Jiang et al., 2014). Other work analyzed 18S
rRNA modifications present within the decoding center and found
similar perturbations to ribosome function and maturation (Liang
et al., 2009). More recent data analyzing only 2′-Ome and Ψ
modifications highlight the global role of these modifications in
accurate translation and in mediating proper ribosome dynamics
(Khoshnevis et al., 2022; Zhao et al., 2023).

Functionally, we are still gaining new knowledge about how
these modifications regulate translation, although their chemical
role is broadly clear. The 2′-OH groups of the rRNA are hydrophilic,
which encourages preferential orientation away from the more
hydrophobic core of the ribosome. Methylation of this group
increases the hydrophobicity of the nucleotides, allowing them to
be buried within the ribosome, and stabilizes RNA helices.
Isomerization of uridine by 180° rotation around C6 converts U
to Ψ. This generates a carbon–carbon glycosidic bond and frees the
N1 to take part in additional hydrogen bonding interactions, further
stabilizing the ribosome structure.
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rRNA modifications are a significant source of ribosome
heterogeneity. This is a hypothesis that not all ribosomes are
identical and that the cellular pool of ribosomes is more
heterogeneous than previously thought. In recent years, this
hypothesis has gained widespread acceptance (Xue and Barna,
2012; Genuth and Barna, 2018). Further speculation has
proposed that some ribosomes may have specialized activities in
cells by actively translating distinct subsets of mRNAs. The existence
of such specialized ribosomes is still a matter of debate. While some
studies strongly suggest the existence of specialized ribosomes, the
field awaits definitive proof (Ferretti and Karbstein, 2019). Much of
these data have focused on alterations of the protein complement of
ribosomes, either through differences in core r-proteins or through
association with different ribosome-associated factors, although
alterations in rRNA modifications have now been seen in various
organisms. Ribo-meth seq revealed that several sites of 2′-O
methylation are sub-stoichiometric and that the stoichiometry of
modification changes depending upon cell type, leading to the
proposal that it may provide the basis for differential regulation
through methylation (Birkedal et al., 2015; Krogh et al., 2016). This
has been given further credence by a quantitative mass-spectrometry
approach showing that other modifications, such as Ψ and base
methylations (e.g., m1A), are also sub-stoichiometric at some
positions (Taoka et al., 2018). Furthermore, there are
developmentally regulated changes in rRNA methylation in mice
(Hebras et al., 2020). Recent work has even shown that these
developmental changes are important for proper cellular

differentiation in mouse embryos (Hafner et al., 2023). Loss of
U3904 2′-O methylation on the 28S rRNA drives mouse embryonic
stem cells toward neuroectodermal cell fate.

Inmetazoans, 2′-Ome andΨmodification are catalyzed by small
nucleolar ribonucleoproteins (snoRNPs) (Ojha et al., 2020).
SnoRNPs fall into two classes based on their structure, associated
proteins, and which chemical modifications they catalyze: Box C/D
snoRNPs and Box H/ACA snoRNPs. Box C/D snoRNPs catalyze 2′-
Ome, while Box H/ACA catalyzes Ψ deposition. SnoRNPs are
assemblages of catalytic protein subunits and snoRNA subunits
that guide chemical modification through Watson–Crick base-
pairing. Fibrillarin (FBL) assembles onto Box C/D snoRNAs
along with SNU13, NOP58, and NOP56. FBL is a
methyltransferase that uses S-adenosylmethionine as a donor to
deposit methyl groups. Alternatively, dyskerin (DKC), a
pseudouridine synthetase, assembles on Box H/ACA snoRNAs
with NHP2, NOP10, and GAR1 to form the active Box H/ACA
snoRNP. The assembly of these snoRNPs and their functional
regulation have undergone intense study, initially in archaea and
yeast systems and eventually in mammals (Ojha et al., 2020).
However, new discoveries are still being made. N4-acetylation of
C1773 (ac

4C1773) is required for ribosome biogenesis in yeast and is
deposited by KRE33 (Ito et al., 2014a). In humans, NAT10 was
identified as the acetyltransferase required for this event at C1337 and
C1842 of the 18S (Ito et al., 2014b; Sharma et al., 2015). Surprisingly,
the U13 snoRNP was shown to guide this modification. The
U13 snoRNA is a Box C/D snoRNA, but it has not yet been

FIGURE 3
Nucleotide modifications found in rRNA. Chemical modification found on (A) ribose, (B) uridine, (C) cytosine, (D) guanosine, or (E) adenosine.
Carbon number is noted on unmodified nucleotides in blue, and additional groups added during modification are identified in red.
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shown to guide 2′-O methylation of any other nucleotide. Thus, it is
likely that this snoRNA has evolved to direct the acetylation rather
than the methylation of rRNA.

This highlights the fact that, while the majority of modifications
are 2′-Ome and Ψ, others, including ac4C, are present. Simple base
modifications such as 7-methylguanosine (m7G) and 1-
methyladenosine (m1A) are typically carried out by standalone
methyltransferases. More elaborate modifications, such as 1-
methyl-3-(3-amino-3-caboxypropyl) pseudouridine (m1acp3Ψ),
take the concerted efforts of several modification enzymes. In the
case of m1acp3Ψ, uridine is first isomerized to Ψ, at which point a
methyl group is added to the N1 position by EMG1 (Wurm et al.,
2010; Meyer et al., 2011). Finally, a 3-amino-3-carboxypropyl
moiety is added by TSR3 (Meyer et al., 2016). Recent evidence
points to this modification as being important in the development of
cancer in addition to previous evidence highlighting this
modification in Bowen–Conradi syndrome (see below).

Dyskeratosis congenita

X-linked dyskeratosis congenita (XDC), also known as
Zinsser–Cole–Engman syndrome, is a rare multisystem disease
presenting clinical features such as reticulate skin
hyperpigmentation, nail dystrophy, bone marrow failure, oral
leukoplakia, and an increased risk of cancer (Savage et al., 1993).
The original name for the syndrome suggests an X-linked pattern of
disease inheritance, although a haplo-insufficient autosomal dominant
and autosomal recessive mode of transmittance has since been
demonstrated. A second disorder, Hoyeraal–Hreidarsson (HH)
syndrome, is considered a severe form of XDC that is associated
with cerebellar hypoplasia, intrauterine growth retardation (IUGR),
and immunodeficiency (Hoyeraal et al., 1970; Aalfs et al., 1995).

Earlier genetic analysis linked the causative gene for XDC to Xp28
(Connor et al., 1986). Later analysis determined that the vast majority of
XDC and HH patients have mutations in the DKC gene (Heiss et al.,
1998; Knight et al., 1999). DKC is the catalytic subunit of Box H/ACA
snoRNP that catalyzes the isomerization of uridine to pseudouridine in
rRNA and is the human homolog of yeast S. cerevisiaeCbf5 (Meier and
Blobel, 1994; Cadwell et al., 1997). However, mutations in other Box
H/ACA-associated factors—NOP10 and NHP2—have been shown to
cause disease with similar clinical presentations (Walne et al., 2007;
Vulliamy et al., 2008; Benyelles et al., 2020).

Despite the clear role of DKC in ribosome biogenesis, the cause of
symptoms in XDC patients has been a matter of debate due to the
assembly of DKC in the non-canonical snoRNP telomerase RNA
component (TERC). Importantly, TERC is necessary for the
maintenance of telomeres (Heiss et al., 1998); patients with XDC
also have defects in telomere maintenance (Mitchell et al., 1999).
However, XDC patients also have a marked decrease in rRNA
pseudouridylation and defects in translation. Model system data
have reported conflicting data, with mouse models recapitulating
disease while primarily altering ribosome dynamics with no
immediate loss of telomere length (Ruggero et al., 2003); however,
work on iPSCs demonstrates the opposite (Gu et al., 2015).
Furthermore, mutations in the RNA component of telomerase
(hTR) cause disease similar to XDC (Vulliamy et al., 2001), which
would implicate telomerase maintenance as the major culprit in XDC

etiology. Mutations in nucleophosmin, another ribosome biogenesis
factor, perturb 2′-Ome rather thanΨ and cause XDC (Nachmani et al.,
2019). These data support the model in which alterations to rRNA
modifications are the major driver of disease. Recent data have also
implicated mutation of DKC and NOP10 in nephrotic syndrome
(Balogh et al., 2020). Like XDC, these mutations result in a defect in
telomere maintenance and in ribosome activity. However, the clinical
presentations are distinct, further highlighting the pleiotropic role of
DKC mutations. Thus, it is likely that the clinical symptoms arise from
an additive effect of telomere and translational dysfunction.

The global reduction of Ψ in rRNA, as seen in DKC, is
intrinsically linked with translational dysfunction as are site-
specific losses of Ψ (Liang et al., 2007; Penzo et al., 2015).

A mouse model of XDC demonstrates diverse defects in
ribosome function, demonstrating a loss of Ψ deposition and a
reduced rate of rRNA maturation (Ruggero et al., 2003). This same
model system reveals a defect in the translation of p27, BCL-xL, and
XIAP mRNAs and a concomitant decrease in p27, BCL-xL, and
XIAP protein levels in DKC-mutant cells (Yoon et al., 2006; Bellodi
et al., 2010a). Further work also implicated alterations in p53 mRNA
translation as having a role in XDC (Bellodi et al., 2010b). In each
case, the defect in translating these mRNAs appears connected with
non-canonical modes of translation initiation. In particular, these
mRNAs have been proposed to contain internal ribosome entry sites
(IRES) that may recruit the ribosome to each mRNA independently
of a 5′-cap. While the concept of IRES is well established in viral
mRNAs, the existence of cellular IRES remains controversial
(Jackson, 2013; Akirtava et al., 2022). However, defects in the
synthesis of these mRNAs also explain the predisposition toward
cancer observed in XDC patients.

Williams–Beuren syndrome

Williams–Beuren syndrome (WBS) is a rare condition that
affects approximately 1 in 20,000 live births and is characterized
genetically by a of 1.5–1.8 Mb deletion at chromosomal position
7q11.23 (Pober, 2010). This deletion results in the loss of
28 individual genes. Patients with WBS have mild to moderate
neurocognitive defects, hypersensitivity to sounds, and difficulty
with visual–spatial abilities in addition to connective tissue
abnormalities and premature skin aging. Because of the many
genes deleted in WBS, disease symptoms are likely an
accumulated effect of many insufficiencies. However, one of the
28 deleted genes encodes Nop2/Sun RNA methyltransferase 5
(NSUN5). This is a member of a family of methyltransferases
that deposits methyl groups on specific RNAs, including tRNAs
and rRNAs. Defects in these proteins have been associated with
other neurological disorders, including WBS (Blanco et al., 2014;
Paramasivam et al., 2020; Mattioli et al., 2023; PerezGrovas-Saltijeral
et al., 2023).

NSUN5 is responsible for m5C3782 modification of the 28S rRNA
and is the homolog of yeast Rcm1, which similarly modified m5C2278

in the yeast 25S rRNA (Sharma et al., 2013; Heissenberger et al.,
2019). Loss of Rcm1 in yeast induces structural changes to the
ribosome which results in a defect in translational fidelity
(Schosserer et al., 2015), but also confers increased lifespan and
expression of stress-responsive genes. This seeming paradox
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between disease state and presumed beneficial gene expression is
also seen in cancer at this site (see below). Mouse knockout studies
have also shown that this gene is necessary for proper cerebral cortex
development, which may link the cognitive defects in WBS to the
loss of this gene (Chen et al., 2019; Zhang et al., 2019). In contrast to
studies in yeast, CRISPR/Cas9-mediated knockout of NSUN5 in
HeLa cells decreased rates of global translation but did not show
defects in translational fidelity (Heissenberger et al., 2019).
Importantly, this same study formally demonstrated that the loss
of one copy in WBS patients was sufficient to reduce m5C3782 levels
on patient 28S rRNAs. It is currently unclear how much of the
symptoms present in WBS are directly related to the
haploinsufficiency of NSUN5 or a reduction of m5C3782.
However, given the defects in model systems, it is worthy of
further investigation and highlights the role of a single nucleotide
modification in ribosome function.

Bowen–Conradi syndrome

Bowen–Conradi syndrome (BCS) is a rare lethal autosomal
recessive disorder that was first described in a pair of brothers from
aHutterite family in 1976 (Bowen and Conradi, 1976). Despite its rarity
in the larger population, its incidence in Hutterite communities is
greater than 1 in every 400 live births. Patients present with low birth
weight, microcephaly, and anatomical malformations. Failure to thrive
typically results in death within the first year of life (Hunter et al., 1979).
Lineage and linkage analysis isolated the gene to a 1.9 Mbp region of
chromosome 12p13.3 (Lamont et al., 2005). This region contained
59 genes. Of these, 35 were sequenced and revealed a single nucleotide
change (NM_006331.6:c.400A>G) in the EMG1 gene as segregating
with disease (Armistead et al., 2009). This mutation results in a D86G
mutation in the EMG1 protein.

EMG1 is the human homolog of yeast Nep1, which had previously
been shown to be a methyltransferase that acted upon the 18S rRNA
(Eschrich et al., 2002; Buchhaupt et al., 2006). Crystallographic analysis
of archaeal Nep1 had shown that D86 interacted with R84, which is
essential for RNA binding (Taylor et al., 2008). Further studies of
archaeal Nep1 and human EMG1 revealed that it is the N1-
pseudouridine methyltransferase that aids in the conversion of U1248

tom1acp3Ψ1248 in the human 18S rRNA. It is also important to note that
N1-methylation is a prerequisite for 3-amino-3-carboxypropyl
modification at this location. Later, the yeast homolog of EMG1 was
identified and validated to be a pseudouridine synthetase acting upon a
homologous site in the yeast 18S rRNA (Meyer et al., 2011).
Surprisingly, this study revealed that mutation of this aspartic acid
residue did not diminish methyltransferase activity. These data strongly
suggest that BCS is not a defect in rRNA modification but that
EMG1 plays additional roles in the cell. Importantly, this is coupled
with the initial study demonstrating that D86G results in
EMG1 aggregation and a dramatic decrease in EMG1 protein in
patients (Armistead et al., 2009).

Indeed, further analysis revealed that EMG1 also plays a key
structural role in ribosome biogenesis. Patient samples displayed a
decreased rate in 18S rRNA synthesis, although, basal levels of
protein synthesis are unaffected (Armistead et al., 2014). The major
phenotype thus appears to be a defect in ribosome assembly rather
than in ribosome function. Indeed, siRNA-mediated depletion of

EMG1 results in an accumulation of 30S precursors and a relative
depletion in 18S-E precursors (Warda et al., 2016). Therefore, it is
likely that BCS arises from a failure to properly form the SSU
processome and efficiently generate 18S rRNA, despite the relevant
mutation being found in an enzyme required for chemical
modification of the rRNA.

Alterations to rRNA modifications in cancer

The burgeoning pool of data consistently highlights significant
variation in rRNA modification, particularly 2′-Ome and Ψ, during
oncogenesis. Nevertheless, the prevailing trend is toward correlative
connections rather than establishing clear causative effects in the
majority of these instances. Misregulation of either FBL or DKC is
commonly seen in cancers (Montanaro et al., 2006; Marcel et al.,
2013). Unsurprisingly, this correlates with alterations in the Ψ and
2′-Ome profiles of rRNAs (Marcel et al., 2020; Barozzi et al., 2023;
Zhou et al., 2023). The modulation of snoRNA expression has long
been seen as a biomarker of tumorigenesis (Williams and Farzaneh,
2012; Krishnan et al., 2016; Gong et al., 2017; Barros-Silva et al.,
2021). In various tumor types, decreases or increases in specific
snoRNAs are common, but specific effects from gain or loss of
modification guided by these snoRNAs have been more difficult to
validate. Some data suggest that specific snoRNAs and the
modifications they guide may promote tumor development. A
form of acute myeloid leukemia (AML) undergoes genetic
alterations that culminate in the enhanced formation of snoRNPs
(Zhou et al., 2017). In particular, SNORD14D and SNORD35A have
been shown in vivo and in vitro to be necessary for AML cells’
oncogenic properties. These two snoRNAs direct the 2′-Ome of
C1708 in the 18S rRNA and G1328 in the 28S, respectively.

In contrast to Ψ and 2′-Ome modifications, there appears to be a
stronger causative link between oncogenesis and base methylations.
METTL5 is a methyltransferase that installs m6Amodifications at A1832

of the 18S rRNA (m6A1832) (van Tran et al., 2019). Studies using mouse
genetic models implicated METTL5 and m6A1832 in transcript-specific
translation regulation, suggesting that METTL5 misregulation could be
important in reshaping the translatome in specific disease contexts
(Sepich-Poore et al., 2022). Indeed, METTL5 was shown to be
upregulated in breast cancer cell lines, with its loss reducing their
growth rate in vitro (Rong et al., 2020). Research suggests that m6A1832

localization to the decoding center is important for efficient translation
initiation. More recently, both METTL5 and m6A1832 were found to be
elevated in nasopharyngeal carcinoma (NPC) and intrahepatic
cholangiocarcinoma (ICC) (Chen et al., 2023; Dai et al., 2023).
Similarly, loss of METTL5 has reduced tumorigenesis in vitro and in
vivo for these cancers.

Surprisingly, not all alterations to the rRNAmodification profile
are negative. NSUN5, which is also implicated in WBS, was
identified as being alternatively regulated in a subset of gliomas
(Janin et al., 2019). This gene becomes epigenetically silenced but
was shown to be associated with better prognosis in patients. This
same work paradoxically suggested that loss of m5C3782 reprograms
the ribosomes to better translate stress-responsive mRNAs, which
aids in cancer cell survival in response to tumor-associated stresses.
This seeming contradiction may be reconciled by the fact that
NSUN5-depleted cells have lower rates of protein synthesis.
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Thus, while these cells can better survive stress, they are less prolific,
leading to a better prognosis for patients.

One intriguing case regarding a potential causative link occurs,
again, with the case of m1acp3Ψ. Analysis of colorectal carcinoma
(CRC) cells revealed downregulation of m1acp3Ψ at 1,248 of the 18S
rRNA (Babaian et al., 2020). Given its location in the P-site of the
ribosome, the authors suggest that the loss of this site may be key to
loss of translational control seen during oncogenesis. Indeed, loss of
the acp3 moiety following TSR3 knockout revealed an increase in
ribosomal protein synthesis, an important driver in cancer
development. While more work is needed to confirm loss of
m1acp3Ψ as an oncogenic driver, these data support the
hypothesis that alterations to individual modifications can
promote cancer development.
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