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In this study, we analyze the changes over time in the complexity and structure

of words used in article titles and the connections between articles in citation

networks, focusing on the topic of artificial intelligence (AI) up to 2020. By

measuring unpredictability in word usage and changes in the connections

between articles, we gain insights into shifts in research focus and diversity

of themes. Our investigation reveals correspondence between fluctuations in

word complexity and changes in the structure of citation networks, highlighting

links between thematic evolution and network dynamics. This approach not

only enhances our understanding of scientific progress but also may help in

anticipating emerging fields and fostering innovation, providing a quantitative

lens for studying scientific domains beyond AI.
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1 Introduction

The study of citation networks is pivotal in understanding the progression and

dissemination of scientific knowledge within various research communities. These

networks are directed graphs, where each node represents an article, and each edge points

from one article to another that it cites (or the opposite: to an article from another

that cited it, depending on the implementation). They form a complex web of scholarly

communication, reflecting how ideas propagate, gain attraction, and evolve over time

(Newman, 2001).

Here we focus on a citation network of artificial intelligence (AI) papers, which is

a branch of computer science that aims to create systems capable of performing tasks

that would normally require human intelligence (Jiang et al., 2022). Understanding the

dynamics of citation networks in AI research provides a unique lens through which we can

observe the evolution of this rapidly advancing field. By examining the citation patterns,

we can uncover how foundational ideas have emerged, transformed, and influenced

subsequent work. This temporal analysis is crucial for identifying critical periods and key

shifts in research focus, methodology, and application areas.

Objective: The primary objective of this study is to propose new methods for

analyzing complex networks, particularly citation networks in AI research. The sub-

objectives include:
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• To track the evolution of the network’s fractal dimension and

the Shannon entropy of titles over time.

• To analyze the relationship between the diversity of research

titles and the overall connectivity of the citation network.

• To provide a novel perspective on the dynamic and non-linear

interactions in AI research and development.

1.1 Literature review

Different articles provided a comprehensive overview of the

advancements and emerging themes in artificial intelligence (AI)

research, utilizing various methodologies to track and analyze

developments in the field. For instance, Liu et al. (2018)

highlights the rapid growth and increasing collaboration in AI

research, identifying key topics and influential entities over the

first 16 years of the 21st century. On the other hand, Shao

et al. (2021) explores the phenomenon of research convergence,

where scholars from different regions show increasingly similar

research interests, and applies principles like Pareto’s rule to

assess the distribution of scholarly output and influence in the

AI domain.

Complementing these perspectives, Soliman et al. (2023)

explore the major trends and emerging themes in AI research,

particularly in the context of the COVID-19 era, highlighting how

the pandemic has influenced research priorities and accelerated

innovation in AI. Tang et al. (2020) focus on the pace of

AI innovations, analyzing the factors that drive the speed of

developments, including talent dynamics and the trial-and-error

processes inherent in AI research.

Recent studies have further expanded on these analyses by

applying bibliometric methods to trace the evolution of AI over the

past decade, particularly focusing on the significant advancements

in deep learning, self-learning algorithms, and reinforcement

learning. These studies provide a comprehensive overview of the

research landscape and forecast future trends in AI development

(Shao et al., 2022). Additionally, the impact of AI on higher

education has been explored through a combination of bibliometric

analysis and topic modeling, which reveals the rapid growth in

research output and the emergence of distinct thematic clusters

in this domain (Maphosa and Maphosa, 2023). Moreover, a broad

bibliometric analysis of AI research over the last 20 years offers

insights into the evolution and current status of AI technologies,

highlighting key trends and future directions (Gao and Ding,

2022). This analysis revealed a significant increase in publications

in recent years, with China emerging as the largest contributor,

reflecting the broad application of AI in information science

(Hussain and Ahmad, 2024).

While these studies offer valuable insights into the development

of AI, they primarily focus on the surface-level dynamics of

research output and influence. However, they do not deeply

explore the underlying structural complexities of citation networks

and the phase transitions that may occur within these networks.

Therefore, our primary objective is to propose new methods

for analyzing complex networks, while also providing a novel

perspective on the dynamic and non-linear interactions in AI

research and development.

Since citation networks can be viewed as complex systems

with self-similarities and scaling behavior related to fractal

structures (Skums and Bunimovich, 2020), tracking the evolution

of the network’s fractal dimension (Wei et al., 2014) and

the Shannon entropy of titles (Shannon, 1948) over time can

enhance the analysis, providing a dynamic understanding of the

network’s development (Clough and Evans, 2016; Bentley and

Maschner, 2000; Ramirez-Arellano et al., 2023). Temporal analysis

of these metrics can reveal shifts in research paradigms, the

rise of influential publications, and the diffusion of scientific

innovations. Changes in the fractal dimension may indicate

periods of rapid expansion or stabilization of research fields,

while variations in Shannon entropy can highlight changes in

the diversity and distribution of topics (Vale Cunha et al.,

2020). This integrated approach offers a comprehensive view of

the emergent properties and evolutionary dynamics of citation

networks, deepening our understanding of scientific progress and

information dissemination.

Simultaneously with the microscopic analyses, we computed

the macroscopic properties of the citation network, specifically

the average degree of the network for each year and its time

derivative. The average degree indicates the connectivity and

citation density within the network, providing insights into how

interlinked the AI research community has become over time.

By plotting the annual entropy alongside the derivative of the

average degree, we investigate the relationship between the diversity

of research themes (a microscopic property) and the overall

change of connectivity of the citation network (a macroscopic

property). Our findings suggest a notable similarity between these

two measures, indicating that periods of high thematic diversity

often coincide with increased scholarly connectivity. These changes

are intriguingly related to the particular growth changes seen in

the fractal dimension, indicating a “thermostatistical” connection

relating complexity in such system.

2 Methods

2.1 Data acquisition and preprocessing

The citation network data was obtained from MAG (Microsoft

Academic Graph), comprising information regarding paper

citations. The raw data was provided by the Collaborative Archive

& Data Research Environment (CADRE) project at Indiana

University (Mabry et al., 2020). The specific data set used here

builds upon source previously selected and published by Benatti

et al. (2023). The authors filtered the data for publications of AI

up to 25th June, 2020 (when MAG was then discontinued). The

citation network was generated by selecting titles and abstracts

containing at least one of the predefined keywords (complete

list bellow), all citations between these selected documents

were considered. Non-connected documents were excluded and

only the largest connected component of the resulting network

was kept. The resulting network has 897,991 nodes (articles),

10,713,033 edges (citations) and an average degree of 11.93 (citation

per article).

• Linear discriminant analysis
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• Maximum entropy classifier

• Decision list

• K-nearest-neighbor

• Neural network

• Support vector machine

• Categorical mixture model

• K-means clustering

• Kernel PCA

• Bootstrap aggregating

• Mixture of expert

• Markov random field

• Particle filter

• Kriging

• Independent component analysis

• Conditional random field

• Markov model

• Dynamic time warping

• Quadratic discriminant analysis

• Decision tree

• Kernel estimation

• Naive Bayes classifier

• Perceptron

• Gene expression programming

• Hierarchical clustering

• Correlation clustering

• Boosting

• Ensemble averaging

• Bayesian network

• Kalman filter

• Gaussian process regression

• Linear regression

• Principal component analysis

• Maximum entropy

• Hidden Markov model

2.2 Word cloud generation

We conducted a comprehensive analysis of research trends

by examining the frequency of word appearances in the titles

of papers within a citation network. Titles, despite their brevity,

serve as effective proxies for full-text content, providing clear

indicators of research themes and shifts in academic focus.The

titles of papers were subjected to a rigorous text preprocessing

pipeline to ensure the consistency and reliability of the analysis.

In this process we employed the NLTK library (Bird et al., 2009),

which included:

• Punctuation and Special Character Removal: All non-

alphabetic characters were removed to eliminate noise and

irrelevant information.

• Case Normalization: Titles were converted to lowercase

to maintain consistency in word representation,

reducing the potential for discrepancies caused

by capitalization.

• Tokenization: Titles were split into individual words or

tokens, which were then analyzed separately.

• Stopword Removal: Common stopwords, such as “the,” “and,”

and other frequently occurring but semantically irrelevant

words, were removed using both the standard NLTK stopword

list and a custom list tailored to exclude non-thematic words

specific to research titles (e.g., “use,” “study,” and “data”).

• Lemmatization and Stemming: Words were lemmatized

and stemmed to normalize different forms of the same

word, ensuring that variations like “run,” “running,” and

“ran” were treated as a single term. This dual approach

of stemming and lemmatization enhanced the consistency

of word representation, allowing for a more accurate

thematic analysis.

To identify underlying research themes within the citation

network, we employed Latent Dirichlet Allocation (LDA), a widely

recognized probabilistic model used for topic modeling in text

analysis (Blei et al., 2001, 2003). LDA assumes that documents

are mixtures of topics, where each topic is a distribution over

words. By analyzing the co-occurrence of words across the dataset,

LDA infers the hidden thematic structure of the text. We applied

LDA to the preprocessed titles within 3-year intervals, covering

the period from 1968 to 2020. The LDA model was implemented

using the LatentDirichletAllocation function from the

scikit-learn library (Pedregosa et al., 2011). The LDA

model was trained on the vectorized title data, with each title

represented as a sparse matrix of word counts. The model

then generated a set of topics, each defined by a distribution

of words, reflecting the dominant themes in the research

corpus during each 3-year window. The following parameters

were used:

• Number of Topics (n_components): Set to 10, thus

the model identifies ten distinct themes per triennium.

This value was found as the best average value by a

systematic scan evaluating perplexity and coherence

scores (Newman et al., 2010) using gensim,sklearn

libraries (Pedregosa et al., 2011; Řehůřek and Sojka,

2010), which leads to optimal thematic granularity

and interpretability.

• Maximum Document Frequency (max_df): Set to 0.90,

excluding too common words appearing in more than 90% of

the titles as thematically non-informative.

• Minimum Document Frequency (min_df): Set to 2,

ensuring that only words appearing in at least two documents

were considered, thereby filtering out noise from very rare

words.

• Random State (random_state): Set to 42, providing

reproducibility of results by ensuring consistent output across

different runs of the model.

Finally, word clouds were generated to visually represent

the most relevant words. For each triennial time interval, up

to 2 words from each of the 10 themes detected by LDA

contributed to create clouds using the WordCloud library

(Mueller, 2020). A consistent color was assigned to each word

across all word clouds, allowing for visual coherence and making

it easier to track the presence and prominence of research trends

over time.
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2.3 Shannon entropy calculation

The Shannon entropy has been widely applied to quantify

informational content and variability measures in different systems

(Isik, 2010; Eskov et al., 2017; Zachary and Dobson, 2021),

for instance, also as an indicator of dynamical stability (Eskov

et al., 2017; Cincotta et al., 2021). Traditionally, the study of

phase transitions assume thermodynamic equilibrium and employ

the canonical ensemble, which ensures entropy concavity, being

signaled by regions in the phase diagram where a system undergoes

a significant change in its state or behavior (Sethna, 2021). However,

for the class of systems in which long-range interactions are not

negligible, assumptions over local equilibriummight not be allowed

so requiring a microcanonical description (Gross, 2001). In the

context of citation networks, we are dealing with this class of

systems (Li et al., 2007; Hung and Wang, 2010); phase transitions

can manifest as sudden (disruptive) shifts in research focus or the

emergence of new influential fields. These structural transitions

are often marked by metastabilities or “convex intruders” in the

microcanonical entropy, as described by Gross (2001) as anomalies

where the entropy function deviates from its typical concave

shape and becomes convex. These convex regions indicate phase

coexistence, such as in nuclear fragmentation (Chomaz, 2002; Ogul

et al., 2005) or water ice-melting (Ramírez et al., 2018), where

the system can exhibit negative specific heat and other unusual

thermodynamic properties. Therefore, in the context of citation

networks, convex intruders are expected to happen in Shannon

entropy during (structural) phase transitions indicating emergence

or significant reorganization of scientific fields, as also observed in

physical systems as proteins (Nakagawa and Peyrard, 2006; Frigori

et al., 2013; Frigori, 2017; Trugilho and Rizzi, 2022) and magnetic

spins (Barré et al., 2001; Alves and Frigori, 2016).

Shannon entropy was computed as a function of words

appearing in titles for each year to quantify the diversity or

randomness of the words used. The following formula was utilized

(Shannon, 1948):

H(t) = −

n∑

i=1

p(xi) log2(p(xi)), (1)

where n is the number of different words (or tokens) in the titles

and p(xi) is the probability of word xi occurring in the titles per

year. While small-sized, titles effectively capture the essence of the

research and serve as excellent proxies for abstracts and even the

full content of the articles.

The smoothed Shannon entropy (HS) was computed to obtain

a more refined and continuous representation of entropy over

time, thereby enabling the identification of trends and fluctuations

in word diversity. To this end, the Savitzky-Golay filter Schafer

(2011), a digital filter known for its ability to smooth data without

significantly distorting the signal, was applied to the selected

entropy values. We tried various window sizes and we choose a

polynomial order of 3 to balance smoothness and fidelity to the

original data. The Savitzky-Golay filter is a function of the Scipy

library (Virtanen et al., 2020).

Then, the values ofHS were normalized to a range of [0, 1] using

MinMaxScaler from the Scikit-Learn library. This step ensured

proper visualization scales for the entropy and the derivative of the

average degree. To identify regions of entropy instability denoting

structural phase transitions, the second derivative (curvature) of the

smoothed and normalized entropy curve was calculated. Regions

where the second derivative was positive ( d
2HS(t)
dt2

> 0) indicated

convexity and potential instability, while regions where the second

derivative was negative ( d
2HS(t)
dt2

< 0) indicated concavity and

stability (Gross, 2001).

2.4 Average degree and its derivative

The citation network data was represented as a directed graph

with papers as nodes and citations as edges. For each node (paper)

in the citation network, its degree was calculated, representing its

number of cited papers. This procedure was done for papers of

each year, so that the average degree per year was computed. Since

temporal changes in this quantity might be a signal of change

in research activity, and so in citation patterns, we used it as a

surrogate “order parameter” in which peaks in its numeric time

derivative (i.e., Dt < Degree >) indicates the eventual phase

transitions also expressed by the entropy.

2.5 Fractal dimension computation

Fractal dimension quantifies the complexity of a network by

describing how its structure changes with scale and how densely

it fills the space. The box-counting method (Wei et al., 2014;

Sun and Zhao, 2014), a popular technique for computing fractal

dimension, involves overlaying the network with a grid of size ǫ and

counting the number of boxes N(ǫ) that contain at least one node.

By varying ǫ and plotting log(N(ǫ)) against log(1/ǫ), the fractal

dimension (Dfrac) is estimated from the slope of the linear fit to this

log-log plot:

Dfrac = lim
ǫ→0

logN(ǫ)

log 1
ǫ

. (2)

By systematically decreasing ǫ and counting the occupied

boxes, meaningful insights into the network’s topology and its

hierarchical organization can be derived. As more papers are

published and added to the network, the fractal dimension can

change in several ways:

1. Growth and density: Initially, as new papers are added, the

network grows, increasing the potential complexity. This can

increase the fractal dimension if the network becomes more

interconnected and densely packed.

2. Scaling behavior: The fractal dimension measures how the

number of connections scales with the size of the network. As

more papers are added, if the connections grow in a self-similar

manner, the fractal dimension might stabilize.

3. Connectivity patterns: If new papers are highly connected to

a few existing ones (preferential attachment), it might increase

local density but not necessarily the overall fractal dimension.
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FIGURE 1

Histogram of publications per year, from 1950 to 2020, extracted

from Microsoft Academic Graph (MAG).

4. Structural changes: Introducing new fields or interdisciplinary

papers can change the network’s structure, potentially affecting

the fractal dimension by altering connectivity patterns.

5. Saturation: At some point, adding more papers might not

significantly increase the fractal dimension if the network

reaches a saturation point in terms of connectivity.

Therefore, this method effectively captures the scaling behavior

of the network, where a higher fractal dimension indicates a more

complex and densely interconnected structure. This contributes to

our understanding of the dynamics of scientific knowledge and

information dissemination. To analyze this, we track changes in

fractal dimension over time as new papers are added, observing

how these changes relate to the newly introduced citations.

3 Results

To provide readers with a birds’ eye graphic perspective of AI

time evolution, we commence the analysis of the citation network

by presenting a graphic showing the number of articles published

annually from 1950 to 2020 (Figure 1). For some, the inception of

artificial intelligence began with the publication of Turing’s work

in 1950 (Turing, 2009), while others consider the pivotal moment

to be the conference held at Dartmouth in 1956. The scale of the

figure does not allow for easy visualization, but there are indeed

articles published between 1950 and 1970, starting from a single

publication in 1950 and increasing to 159 in 1970. By observing

the figure, we can identify a clearer picture of the development and

increasing popularity of AI over the decades. It is worthmentioning

that in 2020 the number of publications does not come close to

that of the previous year as the data collected is only up to July

2020.Historically AI has transitioned from a niche academic field

to having a direct impact on everyday life (Liu et al., 2018; Shao

et al., 2021).

It is interesting to consider the insights provided by

information theory in understanding the trends within the field.

Shannon entropy (Shannon, 1948), a cornerstone of information

theory, measures the unpredictability or information content

within a dataset. When applied to the occurrence of words

FIGURE 2

The scaled Shannon entropy as a function of word occurrence in

paper titles along the years, metastabilities (red) correlate with peaks

in the temporal derivative of normalized network average degree

(Dt < Degree >) (black). The network fractal dimension (Dfrac) is

displayed in (purple). The green regions presents stability.

in the titles of scientific papers, entropy can provide valuable

information about the diversity and focus of research topics over

time, particularly in AI. A high entropy indicates a wide range of

topics and a diverse research landscape, whereas a low entropy

suggests a concentration on specific topics. The examination of

entropy metastability regions (Figure 2), identified by analyzing the

second derivative of the entropy curve with respect to time, offered

insights into temporal shifts in the diversity of words utilized in

paper titles.

Noteworthy, two market metastabilities are observed in the

entropy, coinciding with peaks in the derivative of the degree

distribution (Dt < Degree >) around the 1990s and the end

2010s. These peaks indicate paradigm shifts in AI research due

to the emergence of new methodologies. The observed peaks in

(Dt < Degree >) simultaneously correlated with curvature changes

in entropy are fingerprints, in the statistical mechanics language,

of critical phase transitions of knowledge (i.e., revolutions) in AI.

These transitions likely are driven by technological innovation and

intellectual contributions.

These findings are in agreement with the monotonic increase

in the network fractional dimension (Dfrac), which is not

only an extensive function of the field growth shown by

the increasing number of published papers, but also tracks

its internal complexity change embedded on citation patterns

as described in the methodology section. Deserves to be

noted that by inspecting Dfrac(t) we can testify the life-

cycle from the inception of a still incipient research area

(t ≈ 1970s, the average Dfrac (< Dfrac >) ≈ 0.15), clearly into a

scenario we previously named “Growth and Density” and

“Structural Changes”. This field grows and develops until it

becomes an emerging field (t ≈ 1990s, < Dfrac >≈ 0.45) and

then matures, within an intermediate period exhibiting “Scaling

Behavior,” “Connectivity Patterns,” and “Saturation” whereas

Dfrac(2000 < t < 2010) stays almost constant. Finally, a new

phase emerges with a surge in complexity observed in the citation

patterns, with higher interconnection and scale-invariance as time

evolves after 2010s. This result shows an explosive growth of Dfrac
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occurring almost at the beginning of the 2020s, likely feed not only

by the exponential increase in published articles but also by their

citation patterns.

The observation of disruptive behaviors in citation networks

within the field of artificial intelligence (AI) during the late 1980s

to 1990s and again from the late 2010s to 2020 indicates significant

paradigm shifts and increasing complexity. These shifts can be

attributed to the emergence of new technologies, applications, and

paradigms in AI. Figure 3 presents an overview of AI research by

illustrating the evolution of the most frequently occurring words in

the titles of publications from 1968 to 2019.

Following we intend to present possible interpretations of these

shifts seen in Figure 2 based on historic events, which are also

illustrated in our word clouds of Figure 3. In the late 1980s to

1990s, several key developments catalyzed a paradigm shift in AI

[the first peak in the Dt < Degree > and instability in the scaled

Shannon entropy accompanied by growth in Dfrac(t) exhibited in

Figure 2]. Figure 3 shows the term “neural” emerging around 1986,

gaining prevalence, and consistently maintaining its prominence

thereafter. The period witnessed a resurgence in neural networks,

specifically with the development of backpropagation algorithms

for training multi-layer perceptrons. A publication by Rumelhart

et al. (1986) was a critical moment, demonstrating that neural

networks could learn data representations, thereby reinvigorating

interest and research in this area. Concurrently, expert systems

(Kastner and Hong, 1984), which had dominated the AI landscape

in the early 1980s, began to show limitations. The complexity

and brittleness of rule-based systems underscored the need for

more flexible learning approaches, driving interest toward neural

networks and othermachine learning techniques. As observed from

the word clouds, as these techniques emerged and gained strength,

the use of the Kalman filter (Welch, 2021) and regression models

(Fahrmeir et al., 2013) gradually lost their prominence, at the same

epoch that Dfrac(t) remained stabilized.

The period from the late 2010s to 2020 witnessed

another significant phase transition in AI (the second peak

in Dt < Degree > and another instability appeared in

the scaled entropy, which was concurrent to an explosive

increase in Dfrac(t), as shown in Figure 2) ) marked by the

deep learning (Bengio et al., 2013) revolution and advances

in AI applications. In Figure 3, we observe that the words

“deep” and “learn” appeared in small size in 2016 (indicating

low occurrence), and subsequently increased in size by 2019,

reflecting a growing usage in deep learning techniques. The

success of AlexNet (Krizhevsky et al., 2012) in the ImageNet

competition in 2012 (https://www.image-net.org/challenges/

LSVRC/) demonstrated the potential of deep learning for image

recognition tasks, leading to its widespread adoption across

various domains.

Besides that, generative models and transfer learning

techniques, such as generative adversarial networks (GANs)

(Goodfellow et al., 2014) and variational autoencoders (VAEs)

(Kingma and Welling, 2013), opened new possibilities for

data generation and unsupervised learning. Transfer learning,

exemplified by models like BERT (Devlin et al., 2018) and

GPT (Radford et al., 2018), allowed for the transfer of

knowledge from large pre-trained models to specific tasks,

enhancing performance and reducing the need for large labeled

datasets. Advances in natural language processing (NLP) were

significant during this period, with models like Transformer

architectures revolutionizing the field. Applications such as

machine translation, sentiment analysis, and conversational

agents saw substantial improvements, contributing to the

observed paradigm shift. The continuous evolution of AI,

driven by new methods, increased computational power, and

broader application domains, underscores the dynamic nature of

the field.

As we can see, the words observed in the word clouds

are essentially related to the methodologies used rather than

the problems to which they were applied. Interestingly, some

of the terms identified as most prevalent over time by Shao

et al. (2021) are absent from the word clouds generated in our

analysis. Notably, terms like “Computer vision” and “Genetic

algorithm” do not appear. These discrepancies are likely due to

differences in the datasets used, which is a common limitation in

studies of this nature, along with the temporal boundaries of the

collected data.

4 Conclusions

The exponential growth in article publications reflects the

growing importance of AI in modern society. Our investigation

into Shannon entropy and phase transitions within artificial

intelligence (AI) citation networks has yielded profound insights

into the dynamic evolution of scientific research. Through the

analysis of word occurrences in paper titles, Shannon entropy

has emerged as a robust metric, revealing significant temporal

fluctuations that correspond to critical shifts in AI research focus,

reminiscent of phase transitions observed in physical systems.

These entropy shifts correlate closely with peaks in the derivative

of the average degree of citation networks, indicating periods

of heightened connectivity and structural transformation within

the field.

Furthermore, our exploration of the fractal dimension (Dfrac)

clarified the evolving complexity and hierarchical organization

of AI citation networks. Initially characterized by a lower

Dfrac, reflecting a nascent phase, AI research progresses through

phases of expansion and maturation, marked by increasingly

interconnected and scale-invariant structures. This evolutionary

trajectory underscores the emergence of influential clusters

and pivotal papers, shaping the dissemination and impact of

scientific knowledge.

The present integrated approach, combining entropy

analysis, fractal dimension computation, and a macroscopic

network property examination, provides a comprehensive

understanding of AI research dynamics. Moreover, our

findings advance the methodological analysis of citation

networks and offer valuable insights into the historical and

structural development of AI research. By bridging information

theory with network science, our study underscores the

interdisciplinary nature of scientific inquiry and establishes

a quantitative framework for anticipating future trends and

fostering innovation not only in AI but also across diverse

scientific domains.
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FIGURE 3

Word clouds showcasing up to the 20 most relevant words from 10 themes in the titles of AI articles published in triennial intervals between

1968 and 2019.
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