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This mini-review arrays the pertinent tools and purposes of “Tech Mining” –

shorthand for empirical analyses of Science, Technology and Innovation (ST&I)

data. The intent is to introduce the range of tools, and show how they can

complement each other. Tech Mining aims to generate powerful intelligence

to help manage R&D and innovation processes. We o�er a 5-part array to

help relate the analytical elements. An overview of a case study of Hybrid

and Electric Vehicles illustrates the complexities involved and the potential to

generate valuable “intel.”
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Introduction

“Tech Mining” is short for the analytical combination of bibliometrics [counting

research and development (R&D) activities] and text analyses of Science, Technology and

Innovation (ST&I) information resources. ST&I information can be drawn from various

sources, but especially from topical searches of R&D publication and patent databases

(e.g.,Web of Science; Derwent World Patents Index). Tech Mining can be done for a range

of purposes – particularly including competitive technical intelligence to track possible

competitors and/or collaborators, or to profile R&D for scholarly studies for publication.

Tech Mining is vital to project emerging technologies. Such empirical results can inform

R&D prioritization and innovation management.

Tech Mining, as initially defined in the book— Tech Mining: Exploiting New

Technologies for Competitive Advantage– by Porter and Cunningham (2005), systematically

defined an analytical framework of retrieving technological information from ST&I data

sources. Since the late 2000s, with close interactions with technology opportunities analysis

(Porter and Detampel, 1995), tech mining has become one of the most significant

analytical approaches for profiling technological areas (Guo et al., 2010) and informing

technology R&D (Porter and Newman, 2011) by understanding “WWWW”— who is

doing what, where and when?— in its technology space. Comprehensive communications

between quantitative-approach-based tech mining tools and expert-knowledge-based,

qualitative approaches created great potential to investigate technological forecasting

through concepts and systematic tools of technology management, e.g., forecasting

innovation pathways (FIP) (Robinson et al., 2013), technology roadmaps (Zhang et al.,

2013; Huang et al., 2014), technology delivery systems (TDS) (Guo et al., 2012; Huang et al.,

2018), and technology life cycle analyses (Huang et al., 2020). Consequently, tech mining’s

functional accessibility with science maps, including co-occurrence maps and science

overlay maps (Rafols et al., 2010) further enabled visualization and network analytics in

the late 2010s (Zhang et al., 2018b; Zhou et al., 2019).
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Recently, the tech mining community also expressed great

passion to elaborate cutting-edge artificial intelligence (AI)

and data analytical techniques, from word embedding (Zhang

et al., 2018a), steaming data analytics (Zhang et al., 2017), to

heterogeneous and dynamics network analytics (Huang et al., 2021;

Zhang et al., 2022b), and graph representation learning (Choi et al.,

2022).

While it has been nearly 20 years since the launch of the tech

mining story, it is time to revisit what the community has achieved

and help navigate some potential future directions. Targeting

its community and broad audiences in technology management,

ST&I studies, and bibliometrics/scientometrics, this paper briefly

summarizes the general concepts, tasks, and tools of tech mining.

It ties it to the context of ST&I management through a case

example on hybrid and electric vehicles (HEVs).We discuss current

interplays between AI tools and techmining, addressing some open

questions such as tech mining’s elaboration with knowledge graphs

and large language models.

Tech mining: concepts, tasks, and
tools

The book – Tech Mining: Exploiting New Technologies for

Competitive Advantage – by Porter and Cunningham (2005)

provides the foundation for tech mining. The book is organized in

two parts. The first part (Chapters 1-5) introduces the principles

of such analyses and how they help fulfill aims of translating

ST&I advances to successful technology commercialization more

effectively. The second part (Chapters 6-16) details how to perform

Tech Mining. Topics include identifying prime data resources

and retrieving the pertinent information, often as abstract record

compilations. Basic analyses address the reporters’ questions –Who

is doing What, Where, and When? (Answering How? and Why?

questions needs additional human insights, and might be aided by

AI). Answers need to be reported effectively via multiple modes

– usually incorporating visualizations. Such empirical analyses

can provide valuable research profiling. The book lays out R&D

publication and patent analyses, and guides how to track changes

over time (trend analyses). It offers a framework of 13 management

issues, within which one can distinguish some 39 questions for Tech

Mining, pointing toward over 200 innovation indicators. The book

also extends advice on managing the Tech Mining process and on

evaluating results.

Tech Mining combines data mining tools with ST&I domain

knowledge. Performing it calls for data manipulation, statistical

analyses, specialized text analyses, visualizations, and report

generation. One can draw on general purpose software tools to

do these (e.g., MicroSoft Excel, R, Python). But the book leans

Abbreviations: CTI, Competitive Technical Intelligence (a key use for

tech mining); FIP, Forecasting Innovation Pathways; FTA, Future-oriented

Technology Analyses; GTM, Global Tech Mining (a series of conferences on

tech mining); HEVs, Hybrid and Electric Vehicles (case study considered);

R&D, Research and Development; SDGs, Sustainable Development Goals;

ST&I, Science, Technology and Innovation; TDS, Technology Delivery System;

TRIZ, Theory of Inventive Problem Solving; WoS, Web of Science (a major

R&D publication database); WWWW, Who, what, where, when? (4 so-called

“reporter’s questions).

heavily on VantagePoint (www.theVantagePoint.com, or closely

related, Derwent Data Analyzer) software expressly developed

for Tech Mining. These programs have routines for combining

data sets, consolidating name variations (e.g., topical variants),

and extracting data subsets for in-detail analyses. The software

enables one to list top items in target fields (e.g., leading

authors), cross two fields against each other as a matrix to seek

relationships (e.g., leading inventors by patent classes), cluster

entities in a field, categorize records, or generate data maps (e.g.,

present the network of co-cited authors to ascertain patterns of

shared interests). Advanced tools include generation of emergence

indicators, various specialized visualizations, and reporting tools to

facilitate generation of tables and charts.

Terminology and emphases vary; “Tech Mining” is only one

descriptor of analyses of ST&I information resources. Another

term, of which to be cognizant of tools and findings, is “research

profiling” (Porter et al., 2002). Search in Google Scholar finds

∼2200 “tech mining” hits and∼2390 “research profiling” mentions

(December 29, 2023). The Introduction and Acronyms list note

several related labels for various ST&I analyses.

Tech mining in the context of ST&I
management

Figure 1 arrays elements pertinent to analysis of emerging

technologies [see also “future-oriented technology analysis (FTA)”

(Cagnin et al., 2008)]. Location of the elements is somewhat

arbitrary – items are not aligned across columns. The Figure aims

to alert the reader to the variety of ST&I analytics and uses for

them. A danger lies in having rich data resources with an abundance

of analytical tools that tempt us to generate too many results and

pretty visualizations that lack focus on ST&I management uses.

Figure 1 is structured in five columns that attempt to categorize

important related elements:

1. Data (information resources) – we note two main types (of

many possible resources); one needs to consider how much

data is enough for the task at hand.

2. TechMining (analytics) – this is the focus of this mini-review;

here we note a range of tools that one could use to refine,

analyze, and visualize elements extracted from the data being

used. One purpose in presenting Figure 1 is to remind that the

analytics are a means to various ends (suggested in the next

three columns). We note “Integrative” procedures that draw

together empirical, data-based findings and expert judgment,

to gain the best of both. Our HEV case study on “Forecasting

Innovation Pathways” will illustrate.

3. “Intel” (i.e., intelligence – valuable analytical results) – that

serve intended uses and aims (the last two columns). The

items that we list are not comprehensive, just suggestive of

some considerations in applying Tech Mining. We mention

systems models to encourage consideration of organizational

capabilities and external socio-economic forces that bear

upon a technology under study and its prospects for success

(e.g., commercial innovation). We mention Generative AI

to call attention to potential AI uses in associating results,

and further discuss the interplays between AI tools and tech

mining in the Future Directions section.
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FIGURE 1

Tech mining in the context of technology management.

4. ST&I Management (uses) – in the last two columns

we merely offer a few ideas on using Tech Mining

results. Under Uses, we nominate planning (prioritizing,

organizing) an organization’s R&D. Innovation decision

processes entail translating one’s R&D results into

effective research, commercial, or governmental

applications. Intellectual property (IP) (especially

patent) can use Tech Mining results to help gain

value from those resources. Assessment of results can

range from checks on their validity and robustness to

exploration of intended and unintended, and direct and

indirect implications.

5. Payoffs (aims) – by making better informed

decisions, one may well aspire to increase

profits in various ways. We mention Sustainable

Development Goals (SDGs) to encourage

consideration of sustainability with respect to one’s

ST&I activities.

Examining 177 Web of Science (WoS) abstract records from

a search on either “Tech Mining” or “research profiling” –

alerts us to some associated keywords: technical intelligence,

science mapping, and Semantic TRIZ. From our experience, in

recent years, we see increasing Tech Mining engagement of:

intelligent bibliometrics (incorporating various AI capabilities)

(Zhang et al., 2020, 2021a), knowledge modeling (to identify

related research, not limited to use of particular terms in

searching) (Cassidy, 2020; Wu et al., 2023), and Literature-

Based Discovery (to identify related research falling outside

one’s topical search domain) (Porter et al., 2020; Zhang et al.,

2023b).

To locate related research not constrained to papers

using the term “Tech Mining” per se, we examine papers

associated with the thirteen annual Global Tech Mining

(GTM) Conferences (through 2023, and continuing). We

located DOIs for 151 related papers associated with those

GTM conferences. A WoS citation report on these 151

provides a perspective on the scientific communities pursuing

related interests:

• Leading Web of Science Categories of the citing papers

are Environmental Sciences, Information Science/Library

Science, and Business/Management.

• China and the USA most fund these citing papers (National

Natural Science Foundation of China and the U.S. National

Science Foundation).

• The citing research is most associated with Sustainable

Development Goals (SDGs) 09 – Industry Innovation and

Infrastructure, and 13 – Climate Action.

And, a sampling of nine GTM papers with over 40 cites gives a

sense of Tech Mining’s topical spread:

1. Clustering scientific documents with topic modeling by Yau

et al. (2014) (Scientometrics)

2. Spaces for sustainable innovation: Solar photovoltaic

electricity in the UK by Smith et al. (2014) (Technological

forecasting and social change)

3. A patent analysis method to trace technology evolutionary

pathways by Zhou et al. (2014) (Scientometrics)

4. A hybrid visualization model for technology roadmapping:

bibliometrics, qualitative methodology and empirical study
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by Zhang et al. (2013) (Technological analysis and

strategic management)

5. Parallel or Intersecting Lines? Intelligent Bibliometrics for

Investigating the Involvement of Data Science in Policy

Analysis by Zhang et al. (2020) (IEEE Transactions on

Engineering Management)

6. How competitive forces sustain electric vehicle development

by Wesseling et al. (2014) (Technological forecasting and

social change)

7. Four dimensional Science and Technology planning: A

new approach based on bibliometrics and technology

roadmapping by Huang et al. (2014) (Technological

forecasting and social change)

8. Big Pharma, little science? A bibliometric

perspective on Big Pharma’s R&D decline by

Rafols et al. (2014) (Technological forecasting and

social change)

9. The state-of-the-art on Intellectual Property Analytics (IPA):

A literature review on artificial intelligence, machine learning

and deep learning methods for analysing intellectual property

(IP) data by Aristodemou and Tietze (2018) (World

patent information)

Showcases of tech mining: forecasting
innovation pathways

We sought a case study to illustrate how Tech Mining and

associated analytics can be incorporated with human knowledge

to assess an emerging technology and associated opportunities.

Robinson et al. (2013) introduce the “FIP” framework. That

paper presents two case analyses – deep brain interface devices,

and U.S. nanobiosensors (Figure 4 there connects each of four

nanostructures, via functions they serve, to develop products, that

selectively support different applications).

In Figure 2, we highlight another FIP exercise done with

the Swedish company, SKF. We draw from two versions (Porter

et al., 2013, 2015). This study is interesting in combining

empirical Tech Mining analyses with expert opinion gained via a

focused workshop.

SKF conducted an FIP exercise on HEVs. HEVs combine

multiple sub-systems, advancing at different rates technologically,

with complex technical and market infrastructures. For instance,

Asian automotive production and markets appear vital for the

future of HEVs, and various technologies and applications (e.g.,

two-wheelers) warrant tracking.

FIGURE 2

Final workshop “future innovation pathways” for HEVs (Porter et al., 2013).
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The FIP project entailed four process stages that we briefly treat:

1. Understand the target technology (i.e., HEVs) and its

Technology Delivery System.

2. Tech mining – profile relevant R&D and key players; identify

potential applications.

3. Forecast innovation paths – lay out alternative paths;

explore components and dependencies; perform technology

assessment; engage experts.

4. Synthesize and report to different audiences.

Stage 1 – TDS – identifies key system players; it interweaves

EVs and hybrid vehicles, showing complementarities (shared

technological and market components), but, also, competition.

Multiple HEV technological and contextual forces are

rapidly evolving.

Stage 2 – Tech Mining – patent analyses led to a landscape

map that helped define major subsystems. Additional emphases

included answering “WWWW” (Who, What, Where, When) for

HEV R&D, including:

• Prominent actors – e.g., top publishing universities in five key

HEV subsystems

• Potential applications – see Figure 2, facilitated by tracking

R&D emphases over time.

Stage 3 – FIP – The project organized a workshop to integrate

multiple human perspectives with empirical intelligence. The

workshop split into small groups to address three priority market

segments and three prime geographical regions, then regrouped to

review and develop consensus re: opportunities for SKF. Manifold

factors influence HEV innovation paths, so technology delivery

systems are complex.

Figure 2 (from the 2013 paper) shows the FIP template after

extensive workshop revision of the initial version presented to

them. Note, for instance, influence of product segmentation

(top row) ‘driving’ vehicle performance objectives, and on down

through key tech subsystems, to key R&D thrusts. What is

desired for urban mobility differs markedly from what long

range heavy trucking needs. The requirements of future military

vehicles offer another different “driver” re: HEV development

and deployment.

Stage 4 – Conveying Findings – Results were consolidated

for each of three target market segments and for three target

regions. Regional differences (among the U.S., Europe and

Asia) reflect in altered roles for key players – e.g., Original

Equipment Manufacturers – and governments interact variously

with technological developments (no worldwide standards

are set).

Consider one segment – use of HEVs in urban areas. This is

affected by trends, including growth in global urban population,

climate concerns, and parking availability. Alternative modalities

will compete (e.g., electric 2-wheelers); vehicle range matters

(as urban regions grow); infrastructure (recharging) is critical.

Workshop exploration of the pertinent TDS features noted that

city governments exert strong influence (e.g., what are allowable

vehicle power systems and sizes?); ownership models could change;

and customer values are apt to evolve rapidly (It is interesting to

revisit findings a decade since the study as EVs “take off,” rapidly

passing hybrids).

Future directions of tech mining: a
vision with artificial intelligence

Tech Mining uses bibliometrics and text analytics especially

to garner insights from R&D publications and patents. To do

so, it can gain extraordinary benefits from the emergence of

AI, with increased computational capabilities in analyzing large-

scale ST&I data, discovering complicated ST&I patterns, and

forecasting related activities. We summarized this impressive

direction as intelligent bibliometrics in Figure 1, and collected

such AI-empowered endeavors in our journal special issues, for

advanced tech mining (Zhang et al., 2022a), big data-driven

tech mining (Huang et al., 2022b), etc. Moreover, the “AI +

Informetrics” workshop series further extends the utilization

of AI-enhanced bibliometric models to broad ST&I interests

(Zhang et al., 2023c). The infusion of AI techniques into Tech

Mining has become vital. Embedding techniques have become

essential for identifying technological topics (Zhang et al., 2018a).

Network analytics bring effective tools to analyze ST&I networks

(Huang et al., 2022a) and diversifies the measures of technological

characteristics and emergence (Zhang et al., 2021b). Interest to

utilize knowledge graphs (i.e., heterogeneous ST&I networks) to

understand emerging technologies is on the rise (Lee et al., 2022;

Choi et al., 2023).

Such activities inspire us to anticipate a few future pathways of

Tech Mining with AI.

AI as an intelligent tool to achieve advanced Tech Mining:

We have already observed such interactions in our community’s

current endeavors, and AI has demonstrated impressive analytical

capabilities in answering the fundamental questions about Who,

What, Where, and When? Despite potential challenges in

understanding complicated ST&I patterns, we anticipate in-depth

engagement between Tech Mining and AI in proposing novel

solutions for the How and Why questions re: ST&I development.

Our attempt to develop a heterogeneous knowledge graph mining

approach to track knowledge trajectories is one example (Zhang

et al., 2023b).

We consider AI to be a game-changer of the paradigm

of Tech Mining and ST&I management. ChatGPT triggered

societal awareness of the Pandora’s Box of AI, and the incredible

power of large language models (LLMs) is revolutionizing the

thinking modules and analytical processes of human beings. The

computer science community is working on the synergy of LLMs

with knowledge graphs (Pan et al., 2023) and the exploitation

of such capabilities for broad tasks in information extraction,

summarization, and annotation (Zhang et al., 2023a).

Tech Mining invites a hybrid approach, with quantitative and

qualitative methodologies. We wonder whether a new paradigm

may minimize human knowledge and more heavily rely on

intelligent machines and models?

A first pathway forward could be continuous, with the Tech

Mining community already in a transformative process to adapt
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to these new capabilities. Alternatively, a second pathway would

be disruptive and may re-build the entire Tech Mining ecosystem.

We thus urge our community, and those analyzing technological

emergence in other terms, to prepare for such a challenging, but

exciting, future.

Conclusions

This mini-review seeks to bring together various elements

of analyzing emerging technologies. Figure 1 arrays five key

ingredients: Data, Tech Mining, “Intel,” ST&I Management, and

Payoffs. Within that framework, we position Tech Mining as

the core analytics to provide key empirical results concerning a

target ST&I topic under study. Tech Mining is complemented by

human judgment (experiential knowledge and preferences). This

mini-review also re-visits its evolution over the past two decades

and its interplays with a range of theories, concepts, and tools,

crossing multiple disciplines including technology management,

bibliometrics, computer science, etc. Our case example on HEVs

demonstrates a study of technological forecasting by utilizing

Tech Mining and related analytical tools. While AI is increasingly

enriching that juxtaposition of empirical and expert ST&I

knowledge, we open discussion on some future pathways of Tech

Mining with AI, to prepare for this game-changer.
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