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Introduction: This study examines the performance of active learning-aided

systematic reviews using a deep learning-based model compared to traditional

machine learning approaches, and explores the potential benefits of model-

switching strategies.

Methods: Comprising four parts, the study: 1) analyzes the performance

and stability of active learning-aided systematic review; 2) implements a

convolutional neural network classifier; 3) compares classifier and feature

extractor performance; and 4) investigates the impact of model-switching

strategies on review performance.

Results: Lighter models perform well in early simulation stages, while other

models show increased performance in later stages. Model-switching strategies

generally improve performance compared to using the default classification

model alone.

Discussion: The study’s findings support the use of model-switching strategies

in active learning-based systematic review workflows. It is advised to begin the

review with a light model, such as Naïve Bayes or logistic regression, and switch

to a heavier classification model based on a heuristic rule when needed.

KEYWORDS

active learning, systematic review, convolutional neural network, model switching,

simulations, work saved over sampling

1. Introduction

Researchers write systematic reviews and conduct meta-analyses to provide an
exhaustive summary of a specific scientific field, providing essential, comprehensive
overviews of relevant topics (Moher et al., 2015). Each systematic review requires manually
screening hundreds to tens of thousands of records, only to include a few relevant papers.
Few relevant records result in a highly imbalanced dataset, with relevant records being
very sparse (i.e., usually <5%). The classification process can be significantly improved by
utilizing an active learning-based systematic review pipeline (Settles, 2012). This pipeline
uses machine learning models to help users screen the records that are most likely to be
relevant (also called certainty-based sampling) and, simultaneously, enhance the model to be
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more adept at finding and presenting those relevant records to
the user. Active learning has been shown to outperform random
reading using various feature extraction techniques and classifiers
(van de Brand and van de Schoot, 2021). These techniques apply
many different forms of processing, each having its advantages and
disadvantages (Naseem et al., 2021).

Human-computer interaction plays a crucial role in the
systematic review process, particularly in computer-aided systems
where collaboration between human reviewers and machine
learning models is essential for improved efficiency and accuracy.
In linguistics, computer-aided systems improve functional style
identification and correction in texts (Savchenko and Lazebnik,
2022); in science education, they help measure complex science
reasoning (Liu et al., 2008); in healthcare, they guide the
research-to-policy and practice cycle (Best et al., 2009); in
software development, they boost effectiveness and reduce defects
(Tiwana, 2004); and in physics-informed symbolic regression,
they advance the discovery of meaningful symbolic expressions
(Keren et al., 2023). These works highlight the importance of
designing user-friendly interfaces, providing accurate and timely
feedback, and understanding the cognitive processes involved in
human decision-making when interacting with machine learning
models. By building on these insights, our current work aims
to research the active learning-based pipeline that effectively
combines the strengths of both human expertise and machine
learning algorithms, ultimately enhancing the overall systematic
review process.

The active learning-based pipeline used for aiding systematic
reviews consists of different steps turning natural language into
practical representations that can be used to make predictions on
relevance. Computational time is of great importance in the case
of applying active learning to the use-case of systematic reviewing.
That is, while a human is screening the next record in the queue,
based on the model’s relevance estimates of the previous iteration,
a model is trained in the back-end. Ideally, the model should
be done with re-training before the human annotator (reviewer)
has finished reading the current record so that the next abstract
shown to them is the result of the new model. Therefore, limited
computational time is vital in the case of systematic reviewing.

There is a wide range of algorithms for text classification, from
logistic regression to naive Bayes, a probabilistic classifier, and
more advanced machine learning techniques like support vector
machine (SVM) or decision tree. However, the interconnectivity
of records is not an exact science. Similar records might be
found by comparing the record vocabulary, but not in all cases.
Records can be hard to find due to concept ambiguity, the different
angles from which a subject can be studied, and changes in
the meaning of a concept over time, known as concept drift
(Chen et al., 2012; Gama et al., 2014). These characteristics
make it difficult for standard techniques to learn which texts are
relevant, and the algorithms must “dig deeper” into a text to
find its essence (Goodfellow et al., 2016). Deep learning networks,
such as convolutional or recurrent neural networks, are better
at finding complex connections within data when compared
to classical machine learning algorithms. According to previous
research (Rolnick and Tegmark, 2017), it is exponentially easier
to approximate sparse multivariate polynomials with deep neural

networks compared to shallow networks performing the same task.
The term deep learning references the multiple layers a deep neural
network has. Where shallow networks only have one or two layers,
a deep learning network can have many layers, only restricted by
the computing power available. These deep layers are where the
complex connections are found.

A convolutional neural network (CNN)-based approach is
proposed to implement a deep neural network. This type of
neural network is often successfully used in text classification
tasks (Collobert and Weston, 2008; Hughes et al., 2017) but is,
as far as is known, never used in aid of systematic reviews.
The convolutional layers found in CNNs are a specialized and
efficient neural network foundation, more so than standard dense
layers are. In dense layers (often called a “fully connected layer”),
each neuron is connected to every neuron in the layer before,
making them expensive to compute. Convolution layers are only
connected to a few neighboring neurons, and the weights are
the same for each connection. Having fewer connections makes
convolutional layers cheaper to compute than dense layers. These
local connections extract information from input data where
features are locally related. This makes convolutional layers
strong in text-related neural networks and thus applicable for the
systematic review process.

However, CNN models require much more training data
(Montavon et al., 2012) and, as Alwosheel et al. show, the
performance of neural networks in classification problems
increases with dataset sample size (Alwosheel et al., 2018). For
example, Giga5—a commonly used dataset for training deep
learning models—contains almost 10 million documents (Parker
et al., 2011). A study shows that shallow neural networks can
achieve better error rates than deep neural networks for text
classification in some situations, with deep neural networks
outperforming shallower models when the dataset was 2.6 million
documents but performing poorly when training data was 120K
documents (Johnson et al., 2016). Systematic reviews usually have
a few thousand records (De Boer et al., 2021). Moreover, active
learning for systematic reviewing can already start with only a
few labeled records as training data for the first iteration of the
model (van de Schoot et al., 2021a). Therefore, starting with
a CNN model in the first couple of iterations is not expected
to result in a good performance. Only when enough labels are
available, a CNN might outperform shallow classifiers. Therefore,
we propose to start with a shallow classifier and only switch to
a CNN model when enough labeling decisions are available for
training in the model.

Another reason why switching to a CNN model might be
beneficial is that often the first set of relevant records can easily
be found, whereas the last records take significant effort for the
active learning model (van de Schoot et al., 2021a). The last-to-
find records might therefore be semantically different compared to
the records found in the early phase. The distribution of relevant
records can form clusters if the dataset spans multiple semantic
clusters. If the classifier has found many records from one cluster,
it can be over-fit to find records from other clusters. The classifier
can only begin identifying additional records within a cluster once a
record from that cluster has been located. These clusters can create
some difficult situations during classifying.
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Therefore, for the current study, we first demonstrate the
advantage of using Active Learning over manual screening for
a large labeled dataset of >46K records. We computed the
Work Saved over Sampling (WSS) to evaluate the performance
compared to random reading. We also computed the average time
to discovery (ATD) of the relevant records to show there are last-
to-find papers. Then, we present the results of the original meta-
analysis (Brouwer et al., 2019) and test what would have happened
if the last-to-find papers were not taken into account. In a second
study, we developed an optimized convolutional neural network.
In the third study, we compared the performance in terms of WSS
and computational time for different combinations of classifiers
(NB, SVM, LR, RF, and two-layer-NN) with feature extraction
techniques (TF-IDF, Doc2Vec, and SBert), and compared these to
the newly developed 17-layer CNN model. In the fourth study,
we examined if switching from a classical algorithm to a neural
network increases performance compared to the best performing
method of simulation study 3. All simulations were carried out with
the simulationmode of the open-source software ASReview (van de
Schoot et al., 2021b). For reproducibility, all scripts and output are
available on Github (Teijema et al., 2022).

1.1. Data

The dataset used in this study comes from a systematic
review-based meta-analysis focusing on the evidence for leading
psychological and biological theories on the onset, maintenance,
and relapse of depressive disorders (Brouwer et al., 2019; Kennis
et al., 2020; Fu et al., 2021). For this project, 18 researchers screened
approximately 150,000 records for relevance, which took them 3
years. Within a sub-project of this project, the researchers screened
over 46 thousand records for a question on psychological theories
of depressive relapse. They identified only 63 eligible papers for
the final meta-analysis (0.13% inclusion rate). In this project, only
longitudinal and prospective studies were included to establish
a hypothesized causality between the theories and depressive
disorders for five leading psychological theories of relapse and
recurrence of major depressive disorder: cognitive, diathesis-stress,
behavioral, psychodynamic, and personality-based.

In the study by Brouwer et al. (2019), information about
the dataset construction can be found, providing insights into
the methodology and approach used by the researchers. For an
understanding of the search strategy and selection process of
relevant records, readers can refer to Appendix B of Brouwer et al.
(2019), which contains the search keys used during the literature
review. This information is important for replicating the process or
conducting further research on the topic.

To establish a direct link and robust effects, any factor derived
from one of the five theories needed to be assessed before the
relapse or recurrence of major depressive disorder. The status of the
disorder was required to be at least at two-time points prospectively
through a clinical interview or expert opinion. The goal was to
investigate the leading psychological theories, and thus all factors
derived from that leading theory were pooled and analyzed. The
primary outcome was the effect of the theory-derived factor on
the risk of relapse or recurrence of major depressive disorder. The
effect sizes Hazard Ratios (HR) and Odds Ratios (OR) for all factors

were calculated using reported statistics from each study with the
software programComprehensiveMeta-Analysis (Borenstein et al.,
2021). The effect sizes were pooled using random-effects models,
and the results were published (Brouwer et al., 2019). All pooled
odds ratios and hazard ratios are available on the Open Science
Framework (Brouwer and van de Schoot, 2021).

1.2. Pre- and postprocessing

The data (Brouwer et al., 2019) consist of the title and abstracts
of all the records identified in the search and their respective
labeling decision (i.e., relevant/irrelevant). Before this data could be
used for simulations, it needed to be pre-processed. The researchers
used several spreadsheets to manage the enormous number of
records and labeling decisions. However, the simulations required
a single file with three columns (title, abstract, labeling decision)
and a low percentage of missing data. Therefore all original files
were merged, and missing abstracts were added. A description of
the entire preprocessing procedure is found on the Open Science
Framework (Brouwer et al., 2021).

For this study, the pre-processing procedure was continued
on the dataset with the addition of stricter deduplication rules, to
increase the cleanliness of the dataset. On top of that, missing DOIs
were obtained, and noisy labels were corrected in two rounds of
quality checks. The deduplication scripts are available on Zenodo
(van den Brand et al., 2021).

The exact number of records in the post-processed dataset is
46,376, of which 63 were included in the final meta-analysis. This
ratio results in a relevance rate of less than 0.14%. The average
abstract contains 218 words.

2. Study 1—Active learning-aided
systematic reviewing

The purpose of the first study is to increase the confidence
in active learning for systematic reviews. It investigates the work
saved by using active learning, expressed in the WSS metric (Work
Saved over Sampling). This metric is calculated from the ratio of
effort saved compared to screening records randomly. The study
also investigates the stability of the active learning aided systematic
review by measuring the impact of skipping the last-to-find records
of the original meta-analyses calculations.

When using the active learning pipeline, not all records are
screened. This method saves time but introduces a chance that
relevant records are not suggested for screening, although it is
unknown if this impact is equal to or smaller than the impact
of screening fatigue losses. If the effect of missing the last-to-
find records is low, this will lower the perceived risk of using
this method. Study 1 aims to address this risk by answering the
following research questions:

RQ1.1 How much time would the active learning application
have saved during the systematic review that resulted in the
Brouwer et al. dataset (Brouwer et al., 2019)?

RQ1.2 What effect does the selected prior knowledge have on
the average time to discover the relevant records?
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RQ1.3What is the impact of failing to discover the last-to-find
records in the systematic review from the Brouwer et al. dataset
(Brouwer et al., 2019)?

2.1. Method

Using a pre-labeled dataset, such as the one used in this study,
the labeling via the active-learning pipeline can be simulated,
replicating the choices made by the reviewer, and training the
model as it would during authentic use. Using these simulations,
different models can be compared on how many records would
have been found before the user stops reviewing. To answer RQ1.1
and RQ1.2, a simulation was run for each relevant record, and
differences between simulation records were examined.

For RQ1.3, the median last-to-find records were removed from
the meta-analysis, and the Hazard Ratios (HR) and Odds Ratios
(OR) were re-calculated.

2.2. Setup

In study 1, we utilized the dataset from Brouwer et al. to assess
the efficiency of our active learning-based approach.

The simulation study was conducted with the default settings of
ASReview v0.18 (van de Schoot et al., 2021c). The default settings
are classification by naïve Bayes combined with term frequency-
inverse document frequency (TF-IDF) feature extraction approach
for the active learning model. The number of runs was set equal to
the number of inclusions in the dataset (i.e., 63). Every run started
with training data consisting of only one relevant and ten randomly
chosen irrelevant records (held constant across runs).

Randomly screening records and screening records using the
active learning pipeline are compared using the WSS metric. This
metric is defined as the percentage of papers a researcher does not
have to screen. WSS@95% is measured at a recall level of 95%,
meaning that it reflects the amount of work saved by using active
learning at the cost of failing to identify 5% of relevant publications.
Note that humans typically fail to find about 10% due to screening
fatigue (Wang et al., 2020).

For the 63 included records, the Average Time to Discovery
(ATD) was computed by taking the average of the time to discovery
of all relevant records (Ferdinands et al., 2020). The time to
discovery for a given relevant publication was computed as the
number of records needed to screen to detect this record. All
code to reproduce the simulation results and the output of the
simulations can be found at (Ferdinands et al., 2021).

Finally, the original meta-analysis was redone, excluding the
5 and 10% last-to-find records (i.e., with the highest ATD). The
results of the original meta-analysis and the new results are
available on the Open Science Framework (Brouwer and van de
Schoot, 2021).

2.3. Results

Our findings build upon the Brouwer et al. (2019) dataset
by demonstrating that active learning can significantly reduce

screening time and efficiently identify relevant records in
a systematic review. This suggests that our approach could
potentially enhance the methodology used in Brouwer et al. (2019)
study by increasing the speed and accuracy of the review process.

Figure 1 shows the simulation results of study 1, comparing
the active learning-based approach to random reviewing, when
testing on the Brouwer et al. (2019) dataset. It appeared that
with active learning, on average, 92% (SD = 0.18; Min/max =

91.65/92.25) of the screening time (WSS) could have been saved
compared to reading records at random. After screening only 5%
of the total number of records, already 95% (SD = 0.35; Min/max
= 95.16/96.77) of the relevant records were found. Based on
these results, active learning shows significant time-saving potential
compared to random reading.

Results show that excluding the 5 or 10% of last-to-find records
from the analysis has no impact on analysis results. The conclusions
drawn from these papers would have been similar when excluding
the last. Even when excluding the last 10% of found records,
the results overall remained alike for the analyses on time to
relapse (Hazard Ratio) with an insignificant difference in pooled
effects. For the odds ratios, the primary analyses (pooled effect
sizes for the five leading theories) remained similar and differed
only numerically for some subgroup analyses. When analyzing the
effect of depressive symptoms on the predictive value of behavioral
theories on the odds of depressive relapse, the effects changed
from “just”-significant to “just” not-significant (Odds Ratio), which
was due to one missing study. All other results were similar to
the initial results. According to the original authors, neither the
original paper’s conclusion nor the clinical advice would have
changed had the last-to-found records not been included in the
review, indicating that these records are not of special relevance to
the dataset.

Our results address the research questions as follows: For
RQ1.1, we found that active learning saved an average of 92% of
screening time compared to reading records at random during
the systematic review that resulted in the Brouwer et al. dataset.
In terms of RQ1.2, we observed that the prior knowledge had no
impact on the average time to discover relevant records in the
systematic review. Lastly, addressing RQ1.3, our analysis revealed
that failing to discover the last-to-find records in the systematic
review from the Brouwer et al. dataset did not impact the analysis
results or clinical advice, indicating these records were not of special
relevance to the dataset. This suggests that stopping the review
process earlier does not carry any particular risk associated with
missing critical information, as the last records were not found to
be more significant or influential compared to the others.

3. Study 2—Development of deep
neural networks

In ASReview, the implemented neural network is a feed-
forward two-layer-based model (van de Schoot et al., 2021a).
The goal of the second study is to propose an optimized deep
neural network as a classification model. For this study, the
chosen implementation of deep learning was a convolutional neural
network consisting of 17 hidden layers. CNNs have been proven
to be very effective in text classification problems (Hughes et al.,
2017). No such neural network has been used for active learning
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FIGURE 1

Simulation results of study 1. The absolute amount of relevant publications found is displayed on the y-axis, and the absolute amount of screened

publications is on the x-axis. The solid blue lines are a combination of all the Recall curves, representing the relevant records found as a function of

the screened publications for each of the 63 ran simulations.

in systematic reviewing before, to the best of our knowledge.
However, this type of neural network is often used in hierarchical
classification problems such as ordering records on relevance
(Jaderberg et al., 2016). The convolutional layers found in a CNN
have fewer connections than the fully connected layers often found
in neural networks. The fewer connections and weights make
convolutional layers cheaper in terms of memory and compute
power needed. Their structure is designed not to be fully connected,
opting to find local patterns first and combine them later. Reduced
computational power is an essential feature, as every iteration in
the classification re-trains the neural network. On the other hand,
a fully connected neural network with a similar amount of layers
as the implemented network would not be a feasible solution
when considering the computational time in relation to the active
learning pipeline.

In the second study, the only objective was to develop the CNN
network. This leads to the following research question:

RQ2.1: Can a convolutional neural network be effective
in text classification for the purpose of active learning in
systematic review?

3.1. Setup

The model implemented in this study has a comparable
structure but with different layer sizes. Since this simulation study
classifies collections of sentences, Doc2Vec was used as the feature
extraction method instead of Word2Vec. As shown in Figure 2,
the implemented model is made up of a combination of separable
layers following:

• SeparableConv1D: this is a one-dimensional convolutional
layer, mostly used for text, that can be used to detect features in
a vector. This type of layer will detect patterns and connections

within the records. The ReLu activation accompanying this
layer has been beneficial for training deep neural networks
(Glorot et al., 2011). This layer has a size setting and a filter size
setting (represented as K5 and K3). The size setting shows the
number of filters (in this case 256), and the filter size represents
the sliding window in the convolution layer, 5 by 5, and 3 by
3, respectively.

• Dropout: this type of layer is used as partial prevention for
overfitting by setting a part of the nodes to 0 during each
training step. Without Dropout, a node can correct behavior
for another node during training. This corrective behavior can
lead to overfitting because these fused nodes do not generalize
to unseen data. Dropout prevents this from happening and
thus reduces overfitting (Srivastava et al., 2014). Figure 2
shows what percentage of the nodes are dropped in each
Dropout layer.

• MaxPooling1D: this layer reduces the network dimension
size and generalizes patterns found by having kernels in the
following layers by looking at relatively more data while
keeping the same size.

• Dense: two Dense (or fully connected) layers are set up at the
end of the CNN-based architecture, finalizing the network.
These layers connect all patterns, which does not happen in
the local-only convolutional layers. The number shown in
Figure 2 represents the number of neurons.

As the size of the training data increases with each labeled
record, so does the optimal amount of training epochs for the
neural network. As a result, there is no universally optimal number
of training epochs. A heuristic stopping rule was implemented to
compensate for a fluctuating training data size. This rule is based
on the network loss delta to avoid having under or overfit networks.

For a neural network to work best, it needs to be optimized. The
settings steering the behavior of this convolutional neural network
were empirically optimized using the GridSearchCV function
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FIGURE 2

Proposed convolutional neural network model. Each element represents a di�erent layer of the neural network. Numbers behind the layer title are

settings for that layer.

found in the Scikit-learn library (REF). This grid search function
cross-validates every setting five times1 and records network
accuracy as a performance metric for each run. The following
settings were available for optimization: batch size, early stopping
patience, early stopping delta, dropout rates, optimization method,
kernel size, and filter size. The settings with the highest network
accuracy were implemented in the final model.

To adjust for the possible sparsity of a dataset, a convolutional
neural network usually adjusts its weights based on class imbalance.
The implemented CNN in this study was modified not to calculate
a class weight, as the ASReview software has an integrated balancer,
making rebalancing the class weights redundant.

The implemented convolutional neural network is built from
combinations of these dense neural network layers, separable
convolutional layers, activation layers, pooling layers, and dropout
layers. The resulting 17 hidden layers deep architecture shown in
Figure 2 is published on GitHub and Zenodo (Teijema, 2021a) as a
plugin for ASReview.

1 Five-fold cross-validation is the default setting in scikit-learn following

version 0.22, which is widely adopted because it strikes a good balance

between bias and variance. This helps to mitigate overfitting and ensures that

the model generalizes well to new data.

As this network can handle a wider input size (as a
result of being more computationally efficient), a companion
feature extractor was created based on the current doc2vec
implementation. Doc2vec can be a powerful feature extractor but
fails to capture out-of-vocabulary words (Naseem et al., 2021). The
standard doc2vec implementation has a vocabulary size of 40. The
new feature extractor will be a wider doc2vec implementation with
different vocabulary size. The vocabulary size for the new wider
doc2vec feature extractor was set to 120 after 5-fold cross-validation
in WSS@100% performance using 80, 120, and 250 as potential
vocabulary sizes. This resulted vocabulary size should not be taken
as universal vocabulary size but rather as near optimum for this
dataset. This wider doc2vec v0.1.2 is available as a plugin for the
software ASReview (Teijema, 2021b).

3.2. Results

The performance of the CNN is evaluated in the subsequent
two studies by using it as a stand-alone classifier and a switch-
to model for switching performance. It will be compared using
the 95 and 100% WSS metrics. In response to RQ2.1, our
findings demonstrate that a convolutional neural network can be
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implemented effectively in text classification for active learning in
systematic reviews.

4. Study 3—Performance and
computation time

The third study compares the classifier performance in terms
of work saved over sampling (Cohen et al., 2006) for different
combinations of classifiers with feature extraction techniques and
compares these combinations with the newly developed 17-layer
CNN model. In this study, we aim to answer the following
two questions:

RQ3.1:Which combination of feature extraction technique and
classification method gives the best performance in terms of WSS
for the Brouwer et al. dataset?

RQ3.2: How do the available models compare in terms of
computational time and performance?

4.1. Method

All possible combinations of feature extraction techniques
and classification methods are used in different simulations using
the Brouwer dataset. Those simulations are then analyzed for
performance and computational statistics. Computational time
is presented for the feature extractor and the average iteration
time. The order in which records are found in the simulations is
registered, and a correlation between this order is calculated for
each model.

4.2. Setup

This study combined all classifiers (naive Bayes, logistic
regression, random forest, support vector machine, and a 2-layer
neural network) with feature extraction techniques (TF-IDF,
Doc2Vec, and SBERT) available in ASReview v0.18, plus the CNN
model developed in Study 2. Only viable combinations were tested
as it is impossible to test naive Bayes in combination with doc2vec
and SBERT because the multinomial naive Bayes classifier cannot
handle matrices containing negative values, which these feature
extraction strategies generate in their representations. Moreover,
the combination of a neural network and TF-IDF is not feasible
because the feature matrices produced by TF-IDF are too wide
to realistically employ in the implemented neural network due to
limitations in working memory. The remaining combinations were
used for simulations.

The results from study 1 show that the performance for
simulations with different prior records is very similar, with a low
standard deviation in performance. Based on these results, only 1
set of priors for the subsequent simulations was picked through
a simulation seed. Furthermore, as study 1 found the last-to-find
records of no particular relevance, and since human screening
misses 10% of records on average, classifiers are compared at
a WSS of 95%, judging performance more similar to real-
world application.

The simulations were terminated when all relevant publications
were found to save computational time. Running the simulations
further would not influence the results, and termination reduces
the computational time required to finish the simulation. Each
simulation was initiated with 20 records of prior knowledge; ten
included records and ten excluded records. The selected prior
knowledge was the same for each simulation.

Note that while saving computational time, terminating after all
relevant records are found is not representative of any behavior in a
real active learning-based systematic review, as it is unknown when
all relevant records are found.

4.3. Results

While some combinations perform better than others, all
simulations outperform random reading significantly. The
simulation with the highest WSS@95% used Logistic Regression
as a classifier, combined with SBERT as a feature extractor. This
model combination found 95% of all records after screening 587
records, only 1.3% of all records. For comparison, on average
with random reading, only one relevant record is expected to
be found for every 750 screened papers. The recall of models
can be seen in Figure 3, and the WSS@95 is provided in the first
column in Table 1. To zoom in on the neural network models,
we isolated the recall of these three models in Figure 4. As can be
seen, the deeper network starts to outperform the lighter networks
only at the very end of the simulation, finding the last records
significantly faster than the other models. The best performance
is nn-2-layer + SBERT, finding the 48th record significantly faster
than the other models. Figure 5 shows the correlation matrix of
cohesion between the order in which records were found (the
rank order) for different classifiers and feature extractors. Note
how the correlation is lowest between feature extractors but high
for classifiers. Therefore, the order in which records are found
is different for each model and is mainly caused by the different
feature extractors.

Table 1 shows the computational time for each model. The
feature extractor vs. the iteration time difference in computational
time can be found. Especially, sBERT significantly increases
computational time, followed by doc2vec. Most shallow classifiers
are done by training a newmodel in a split second, and, as expected,
the CNN takes much longer.

Our results address RQ3.1 and RQ3.2 as follows: The best-
performing combination of feature extraction technique and
classification method in terms of WSS for the Brouwer et al.
dataset was Logistic Regression with SBERT as a feature extractor,
achieving a WSS@95% of 94.21%. In terms of computational
time and performance, we found that SBERT significantly
increased computational time, followed by Doc2Vec. Most shallow
classifiers trained new models quickly, while the CNN took
much longer. Notably, the deeper neural network started to
outperform the lighter networks only at the very end of the
simulation, finding the last records significantly faster than the
other models, with the best performance being the 2-layer
neural network with SBERT. The order in which records were
found varied for each model, mainly caused by the different
feature extractors.
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FIGURE 3

Recall curves for each of the simulation runs performed in this study. The x-axis shows the number of screened records. It is cut o� after 4,000

records, less than 10% of the total amount of available records. The y-axis represents the found relevant records. The dataset contains 63 relevant

records in total, and ten were given as prior knowledge, making the relevant record axis in this figure go up to 53 records. The dotted gray line

represents random reading. The colored dotted lines represent the WSS@95% for each simulation. LR, logistic regression; SVM, support vector

machine; NB, naïve Bayes; RF, random forest; nn-2-layer, 2 layers deep neural network; CNN, 17 layers convolutional neural network; TF-IDF, term

frequency-inverse document frequency; SBERT, Sentence-BERT. Each simulation was cut o� after all relevant records were found (n = 4000).

TABLE 1 Performance metrics for each simulation run.

Classifier + FE WSS@95% Feature
extractor

time

Median
iteration
time

LR+ SBERT 94,21% 6:27:23.23 0:00:00.19

LR+ TF-IDF 94,14% 0:00:23.35 0:00:00.05

nn-2-layer+ SBERT 93,01% 6:58:30.89 0:00:02.79

NB+ TF-IDF 92,81% 0:00:13.62 0:00:00.03

SVM+ TF-IDF 92,69% 0:00:15.57 0:00:08.95

CNN+ wide-doc2vec 92,34% 0:32:25.44 0:00:59.17

RF+ TF-IDF 91,82% 0:00:15.56 0:00:02.45

LR+ doc2vec 90,93% 0:18:01.80 0:00:00.02

RF+ doc2vec 88,14% 0:15:42.61 0:00:00.57

nn-2-layer+ doc2vec 86,57% 0:18:03.91 0:00:01.75

LR, logistic regression; SVM, support vector machine; NB, naïve Bayes; RF, random forest; nn-

2-layer, 2 layers deep neural network; CNN, 17 layers convolutional neural network; TF-IDF,

term frequency-inverse document frequency; SBERT, Sentence-BERT.

5. Simulation study 4—Model
switching

The fourth study investigates the performance of the models
when switching from one model to another, aiming to create a
form of artificial paradigm shift. As different models struggle with
different records, switchingmodels might increase the performance
of the pipeline. A re-representation of the information should
have a significant transformative value for the machine learning
algorithm. Here, we aim to answer the following research question.

RQ4.1: Can the performance of the active learning pipeline
improve by switching models during the live review process?

5.1. Method

This study uses simulations of different machine learning
models to investigate whether switching models during the
active learning process can improve performance. An ASReview
extension was developed to switch betweenmodels after a manually
set number of records have been screened. The study compares
the number of relevant records found after a certain percentage of
screened records in the switched simulations to the values of the
results of simulation study 3.

5.2. Setup

In the fourth study, model simulations from the third study
were terminated after a stopping heuristic was reached (e.g., 50
irrelevant records are labeled consecutively) and continued with
a different model to investigate if this increases performance. For
the simulations, naive Bayes and TF-IDF were selected because it is
the default in the software, and Logistic regression with SBERT was
chosen as it was the best performing model from study 3. In aid
of this switching process, an ASReview extension was developed to
switch between models after a manually set number of records have
been screened (Teijema, 2021c).

To quantify the performance of models after switching, the
number of relevant records found after 1% (464 records), 1.5%
(696), 2% (928), and 2.8% (1,391) of screened records in the
switched simulations are compared to the values of the results of
simulation study 3. The metric used for this is Relevant Records
Found. The RRF@X% value represents the number of records
found after X% of records are screened. The RRF values for
switched simulations take this into account and thus represent X%
of screened records, including those screened before switching.
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FIGURE 4

Neural network comparison at WSS@90%. The convolutional neural network with the wider doc2vec implementation and the two-layer neural

network with both SBERT and doc2vec as feature extractors. When compared in finding the last record, only the convolutional neural network finds

these records before the cuto�.

5.3. Results

Figure 6 shows the performance of switching models from the
original model. NB+TF-IDF and LR+ SBERT serve as benchmark
values since, in those simulations, the model was not switched from
the starting model.

The stopping rule was triggered at 326 records for the Naïve
Bayes simulation, having found 40 of 53 records at that point, see
Figure 6A. For Logistic Regression, it was triggered at 367 records,
having found 45 records, see Figure 6C. As can be seen in Figure 6B,
switching from Naïve Bayes + TF-IDF to a different model almost
always results in a performance increase, especially when a different
feature extractor is selected. For LR + SBERT, the results are less
different since continuing with LR+SBERT already has the best
optimal performance.

Figure 7 shows the total number of relevant records found after

screening X% of records when switching to the CNN model. As can
be seen, and as expected, first running a shallow model and then
switching to the CNN model outperforms only screening with the
CNNmodel.

Figures 8A, B show the performance increase due to switching
to a different classifier. Switching classifiers seems to outperform
the default Naïve Bayes classifier for nearly every model, even by
models that performed worse than Naïve Bayes in study three. No
average improvement is found relative to the optimal classifier,
Logistic Regression. However, models outperform even logistic
regression in certain steps, whereas LR was superior in every
situation previously. Note that in real review situations, the optimal
model is unknown, and the selection for Naïve Bayes is more likely
the selected classification model.

For RQ4.1, our results from the fourth study demonstrated
that the performance of the active learning pipeline can indeed
improve by switching models during the live review process.
Specifically, we found that switching from Naïve Bayes + TF-
IDF to a different model almost always resulted in a performance
increase, especially when a different feature extractor was selected.

FIGURE 5

Rank order cohesion correlation matrix. This figure shows how

similar or di�erent the order can be between models.

Although there was no average improvement found relative to the
optimal classifier, Logistic Regression, some models outperformed
even logistic regression in certain steps, whereas LR was superior
in every situation previously. This suggests that model-switching
can enhance the active learning pipeline’s performance in the live
review process.

6. Discussion

The main goal of this study was to analyze performance in
active learning-aided systematic reviews for a newly developed
deep learning-based model compared to traditional machine
learning approaches and investigate if switching between these
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FIGURE 6

Study 4 simulation results. (A, C) Show the recall curve for the simulation starting as Naïve Bayes (A) and logistic regression (C) before and after

switching. (B, D) Show the recall plots of the other models after switching.

FIGURE 7

Study 4 switching results for the 17-layer CNN model combined with (A) Naïve Bayes and (B) logistic regression. The value on the y-axis is the total

number of records found. The RRF@X% represents the number of found relevant records after screening X%.

models increases performance. The paper was divided into four
different studies.

The goal of the first study was to analyze the performance
and stability of the active learning-aided systematic review. The
average time to discovery (ATD) was calculated for each record,
and then the original meta-analyses were re-analyzed, excluding

the 5 and 10% of the records with the highest ATD. Scenarios
excluding the last-to-find records, the meta-analysis would have
concluded with the same results for almost all topics. Overall,
the results remained alike for the analyses on time to relapse
(Hazard Ratio) and primary analyses (pooled effect sizes for the five
leading theories).
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FIGURE 8

(A, B) The relative performance of classifiers after switching. (A) Shows the performance of switching from Naïve Bayes to other models (x). (B) Shows

logistic regression to other models (x).

The screening is terminated when using active learning before
all records are screened. While simulations show that terminating
has a very low chance of excluding relevant records, the only way
to an absolute certainty is to screen all records (assuming 100%
manual screening accuracy). Results from the first study show that
last-to-find records (and thus those most likely to be missed) are
not last to find due to their importance and that the impact of
terminating is minimal. Even the most last-to-find records are
found after screening <10% of total records in the simulations.
Finally, random screening by humans misses on average about
10% of records as a result of, among others, screening fatigue.
Considering that screening fatigue is reduced when using active
learning, the number of missed records by human error is reduced.
Combining these results supports the use of active learning-
based systematic reviews over random screening-based systematic
reviews, saving screening time without sacrificing quality.

The second study implemented a convolutional neural network
as a classifier for active learning-based systematic reviews. The
implementation was made open source and is available online. In
support of this model, the study implements a specialized doc2vec

feature extractor. The performance of this model was measured in
the third study.

The third study provides a performance overview for available
classifiers and feature extractors. While these results should only be
interpreted in the context of the selected dataset, it shows that while
performance is generally good, there is a notable performance gap.
Choosing the best models for a dataset is critical, as even minor
performance differences can save work hours. The results show
significant differences in computing time for classifiers and feature
extractors. The results can be found on the Github page (Teijema
et al., 2022).

Regarding performance, the results show that the default model
of NB + TF-IDF in ASReview v0.18 is only fourth on the fastest
combination available. LR + SBERT was the best performing
combination for this dataset, finding 95% of all relevant records in
only 587 screened records. The performance of LR+ TF-IDF was a
close second. As the computational time for TF-IDF is significantly
lower, the results of this paper show that LR + TF-IDF was the
best choice of model for this dataset. Whether or not this result
is unique to this dataset or universal should be the topic of future
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work. Only after empirical testing can a suggestion for a new default
model be given.

The study compared the performance of different neural
network-based classifiers. It showed that while the smaller networks
are quicker in finding the bulk of the relevant records, the deeper
convolutional neural network is the first and only to find all relevant
records before termination.

Suppose the last-to-find record is indeed last due to being
farther removed from the other relevant records in terms of
content. In that case, the deeper convolutional neural network
is expected to have the best performance in finding it, as it was
designed to identify more complex patterns. Whether or not the
last-to-find record is different in content and distinct from other
records is the topic of further work.

Interesting is that neural networks usually only perform well
when the dataset contains millions of samples. In our case, only
a small amount of samples what available, and still, the network
performed well.

Finally, the order in which classifiers find relevant records
was compared on order correlation. It was found that the lowest
correlations are found between feature extractors rather than
classifiers. The feature extractor indicates which information is
gathered from each record, creating a hidden network of patterns.
The classifiers’ job is to sort out which patterns are relevant as
quickly as possible. The shape of the resulting network of classified
hidden patterns is thus more dependent on the feature extractor
than the classifier, even though the WSS performance is relatively
more dependent on the latter. This phenomenon follows from the
third study. It shows thatWSS@95% performance is not dominated
by either classifier or feature extractor, where correlation is highly
dependent on the feature extractor.

Study four shows the performance of switching from one
model to another after a set heuristic switching rule was reached.
Performance was measured for switching from the default model
and for the best-performing model found in study 3. The models
were switched to every available model, including the newly
developed convolutional neural network in study 2.

The expectation for the fourth study was that lighter models
perform best in the early stages of the simulation, while other
simulations have increased performance in later stages. This was
indeed observed in the results, as models that previously would not
outperform the lighter models now suddenly performed equal or
better than from the start.

Naïve Bayes with TF-IDF performed average in the simulations
from the third study, being the fourth-fastest model on average.
However, when measured from the switching point onwards,
almost every model outperformed Naïve Bayes + TF-IDF. From
that point, the original NB model was on par with the worst-
performing models found in the simulations of study three.

The optimal model from study three was logistic regression.
Even this model was outperformed by other switched-to models
at certain steps. In the simulations found in study three, LR
was superior in every step. Note that in systematic reviews, the
optimal model is unknown. It is unlikely that the optimal model
is selected from the start, and the default model is more likely to be
chosen. This paper found that, on average, switching models is the
preferable choice when the optimal is unknown.

6.1. Limitations

Based on the study presented in the paper, we have identified
the following major challenges in the domain of active learning-
aided systematic reviews:

1. Model selection and performance: Choosing the best models
for a dataset is critical, as even minor performance differences
can save work hours. While the performance of different
models was assessed in this study, further investigation is
needed to determine if the results are unique to this dataset
or universally applicable.

2. Re-training frequency: Determining the optimal frequency
for re-training a model is a significant challenge. The
difference in performance between re-training with every
newly found record, every n amount of records, or even
training only once remains unclear.

3. Training time trade-offs: Balancing training time and model
performance is crucial. In practice, if a model takes longer to
train, it can lead to skipping training iterations. This might
lead to a fast training model potentially outperforming a
slower but better model in certain situations.

4. Optimal model switching point: Identifying the optimal point
in the active learning process for model switching is a
challenge. This point might be when the order of records does
not change any further, but further investigation is required
to verify this.

5. Contentual differences in record findability: Understanding
how contentual differences in records impact their findability
and rank order can help improve active learning-aided
systematic review performance. This aspect requires
further research.

6. Generalizability of results: The simulation results of this
study are specific to the Brouwer dataset and cannot be
directly applied to other datasets. For generalizable results,
a benchmark platform comprising several different datasets
with divergent topics and characteristics is suggested to
empirically compare the performance of different models.

6.2. Future work

For future datasets like the depression disorder dataset used in
this study, researchers can use active learning to their advantage
by leveraging its ability to expand their original search. Active
learning reduces the screening effort, allowing researchers to
screen more records and potentially identify more relevant records.
Furthermore, as shown in this study, switching classification
models can be beneficial in improving the performance of the
active learning-based systematic review. Hence, future researchers
should consider incorporating model switching strategies into
their active learning-based systematic review workflow to achieve
better performance. Finally, further research can investigate the
application of active learning in other mental health research areas,
such as anxiety disorders or substance abuse, to explore its potential
benefits in these domains.
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7. Conclusion

The main conclusion from this study is that models have
a preferred simulation stage in which the model performs
best. Some work better in the early stages of the review,
while others shine in the later stages of the simulation.
This behavior is most apparent in heavier models like the
two layer deep neural network and the convolutional neural
network. These models go from being among the worst to top-
performing models when applied correctly in the later stages of
the simulation.

Considering the results of this study leads to a strong
suggestion for the switching-model use case. On average,
switching models increases performance over the default
classification model. In future applications of active learning-
based systematic reviews, ensemble models or hybrid
models could replicate the results from this research.
Until then, the current advice is to start the review with
a light model such as the Naïve Bayes classifier or logistic
regression and set a heuristic rule (such as labeling 50
irrelevant models in a row) as a point to switch to a heavier
classification model.
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