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Social media rumors have the capacity to harm the public perception and

the social progress. The news propagation pattern is a key clue for detecting

rumors. Existing propagation-based rumor detection methods represent

propagation patterns as a static graph structure. They simply consider the

structure information of news distribution in social networks and disregard

the temporal information. The dynamic graph is an e�ective modeling tool for

both the structural and temporal information involved in the process of news

dissemination. Existing dynamic graph representation learning approaches

struggle to capture the long-range dependence of the structure and temporal

sequence as well as the rich semantic association between full graph

features and individual parts. We build a transformer-based dynamic graph

representation learning approach for rumor identification DGTR to address

the aforementioned challenges. We design a position embedding format for

the graph data such that the original transformer model can be utilized for

learning dynamic graph representations. Themodel can describe the structural

long-range reliance between the dynamic graph nodes and the temporal

long-range dependence between the temporal snapshots by employing a

self-attention mechanism. In addition, the CLS token in transformer may

model the rich semantic relationships between the complete graph and each

subpart. Extensive experiments demonstrate the superiority of ourmodel when

compared to the state of the art.

KEYWORDS

rumor detection, dynamic graph, transformer, rumor propagation, neural network

1. Introduction

With the expansion of social networks, people are more likely to obtain their news

through social media than traditional news sources. Social media platforms such as

Twitter and Weibo facilitate the transmission and distribution of the information.

However, because of the lack of adequate control and fact-checking methods for

posts, they also facilitate the quick dissemination of misinformation. Rumors are

false information intentionally published by users on the social media. The rumor

detection task (Zhou and Zafarani, 2020) aims to identify rumors automatically based

on their features.

Intuitive rumor detection methods determine the veracity of a rumor based on the

content of the rumor (Yu et al., 2017; Chen et al., 2019). Content-based rumor detection
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approaches employ deep learning models to model news

text or image content and identify rumors based on the

semantic information. Although content-based rumor detection

methods have produced some positive results, they suffer

from some issues. First, rumors are created intentionally to

confuse readers. Rumor-spreaders skillfully imitate the accurate

information’s lexicon, syntax, and the writing style (Ma et al.,

2019). Thus, it is challenging to distinguish rumors based on

their content alone. Second, a brief textual material frequently

carries a rich background knowledge. Existing natural language

comprehension models frequently fail to cover such a vast

scope of knowledge (Dun et al., 2021), making it challenging to

comprehend the exact content of news articles and resulting in a

decline in performance.

Previous studies (Liu and Wu, 2018) have found that

the rumor propagates differently than real news, which

suggests that the propagation network of news on social

networks can be used to detect rumors. It is challenging

for individual users to control the propagation of rumors

in social networks; consequently, propagation-based rumor

detection approaches are more robust. The propagation-based

approaches also do not need any additional knowledge. Due

to these factors, a rising number of researchers (Ma et al.,

2018; Bian et al., 2020; Lin et al., 2020; Ma and Gao, 2020)

are studying the distinction between how rumors and actual

facts propagate in social networks. Numerous rumor detection

methods have been created depending on news propagation

patterns.

Several studies (Ma et al., 2016; Chen et al., 2018; Liu and

Wu, 2018; Khoo et al., 2020) have represented the process of

rumor spread as a one-dimensional sequential sequence. In

addition, the sequence is modeled utilizing deep neural network

modeling techniques, such as RNN (Zia and Zahid, 2019), CNN

(Simonyan and Zisserman, 2015), and transformer (Vaswani

et al., 2017). There are certain drawbacks to the sequence

structure because it just takes the sequence of information

propagation into account and ignores structural information

about the rumor propagation. Some studies (Bian et al., 2020;

Lin et al., 2020; Silva et al., 2021) model news propagation

patterns using graph structure to better capture the structure

of rumor dissemination. They treat the initial news, as well

as the comments and retweets, as nodes and the propagation

process as edges. They turn the rumor detection problem

into a graph classification problem, which got good outcomes.

The approaches mentioned earlier all describe propagation

patterns via static graphs. They assume that the overall

structure of propagation is determined prior to the algorithm

learning. All precedingmethods disregard the dynamic temporal

information of rumor spread. However, as shown in Figure 1,

the rumor-propagation process is dynamically evolving. The

dynamic evolution process of rumor propagation provides a

wealth of action and time information, which can aid in

our comprehension of the news propagation process and,

consequently, the identification of rumors. Nonetheless, the

static graph-based method disregards news transmission’s

dynamic and temporal information, which hinders the model’s

performance.

The dynamic graphs (Kazemi et al., 2020) model the entire

graph as a collection of graphs under distinct time snapshots.

As a result, dynamic graphs are able to accurately explain the

structural and temporal information involved in the process

of news propagation (Barros et al., 2021). Consequently, we

intend to model the process of news spread in social networks

using the dynamic graph architecture. Furthermore, we embed

the structure of dynamic graphs utilizing the graph neural

network approaches.

However, it is a significant problem to encode both

time and structural information. The majority of the current

dynamic graph-based methods (Rossi et al., 2020) use GCN

to encode structural information and RNN-based methods

to encode temporal information, and then use pooling

methods to obtain a complete graph representation. Even

though the fact that they have achieved some success, there

are still specific issues. First, the GCN technique can only

combine the information of first-order neighbors, and its

simplistic aggregation approach ignores the semantic link

between nodes. Second, it is difficult for the RNN-based

temporal encoder to capture long-range relationships and

is prone to gradient dispersion. Third, it is challenging

for the simple pooling readout method to capture the

complex semantic relationships between nodes, negatively

impacting performance.

Motivated by the fact that the transformer model (Vaswani

et al., 2017) efficiently captures the semantic association between

parts via a self-attention mechanism, it has achieved excellent

performance in both the natural language processing and

computer vision fields. Furthermore, the special token CLS in

the transformer captures the rich semantic association between

it and each part, which can be used to characterize the overall

semantics adequately. We propose transformer-based dynamic

graph representation learning for rumor detection DGTR.

Specifically, we employ a pretrained BERT model (Kenton and

Toutanova, 2019a) to extract textual information as semantic

representations of nodes from rumors and comments. We

employ the row vectors of the adjacency matrix with the degree

vectors of the nodes as the position embedding of the nodes.

Then, the structure transformer is used to encode the structural

information of the graph under each time snapshot, and the CLS

token is used as the representation vector of the graph under

that snapshot. Utilizing the temporal transformer to express

the temporal relationship between the embedding vectors of

each temporal snapshot, we obtain a temporal snapshot graph

representation embedding with a fused temporal relationship.

The classifier for the rumor detection is then fed the embeddings

of each fused temporal relationship’s graph representation to

obtain the final classification.
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FIGURE 1

Subfigure (A) illustrates how to model the propagation of news using a dynamic graph structure, whereas subfigure (B) illustrates how to model

the propagation of news using a static graph structure, where nodes signify tweets or retweets and edges denote retweets or comments. (A)

Dynamic graph; (B) Static graph.

In summary, our contributions are as follows:

• We consider the impact of both the structural and dynamic

temporal evolution information during the dissemination

process on the authenticity of the rumor. Furthermore, we

propose transformer-based dynamic graph representation

learning for rumor detection called DGTR. The DGTR

can capture rich structurally and dynamically evolving

information during news propagation, enabling improved

rumor detection.

• We employ the raw transformer for learning dynamic

graph representations. We create positional embedding for

the graph’s nodes. We utilize the structural transformer to

discover the graph’s structure and the temporal transformer

to discover its dynamic evolution.

• Extensive experiments on two rumor detection benchmark

datasets demonstrate that our proposed method achieves

state-of-the-art performance.

The rest of the article is organized as follows. In

Section 2, the related study is reviewed. In Section 3, we

introduce the problem statement of dynamic graph-based

rumor detection. In Section 4, we present the proposed

method. The extensive experimental results and analysis are

presented in Section 5. Finally, we conclude the article in

Section 6.

2. Related study

The rumor detection task (Alzanin and Azmi,

2018) seeks to automatically identify rumors in social

media using the news features. Depending on the

news features, rumor detection tasks can be broadly

categorized as either content-based or propagation-based.

In this section, we briefly describe the current works for

rumor detection.

2.1. Content-based rumor detection

Rumors in social networks commonly include text, and

some also include visual information such as images or videos.

The content-based rumor detection studies seek to determine

a rumor’s truthfulness based on its content. According on

the quantity of content modalities, the content-based rumor

detection approaches can be classified as single-modal methods

and multi-modal methods.

2.1.1. Single-modal methods

Text being the primary component of rumors, several

studies on rumor detection rely on textual information. Earlier

study (Agichtein et al., 2008; Song et al., 2019) employed

machine learning techniques for rumor detection based on

the human-specified linguistic cues. These studies are highly

dependent on complex feature engineering and have limited

generalization performance. Since deep neural networks can

automatically extract features, they offer great modeling and

generalization abilities. Numerous studies employ deep neural

networks to model unimodal information for the rumor

detection. Ma et al. (2016) employed recurrent neural network

RNN to model the textual information of rumors, which is

the first attempt at a deep neural network in the field of

rumor identification. To increase the model’s robustness, Ma

et al. (2019) incorporated adversarial training into the RNN

architecture. RNN models have difficulty modeling the long-

range dependencies of text, hence Vaibhav and Hovy (2019)

modeled the text with graph structures to better capture the

long-range connections between words.

With the development of multimedia, the news of social

networks contains not only text information but also images,

videos, and other visual information that involves rich

semantics. Some early studies utilize basic statistical features

of the attached images such as the number of attached

images (Yang et al., 2012; Wu et al., 2015), image popularity,

and image type (Jin et al., 2016) to help detect rumors.

For those tampered images which are digitally modified,
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Boididou et al. (2015) extracted advanced forensics features of

image and combined them with the post-based and user-based

features to detect rumors. However, these statistical features

are insufficient for describing the complicated distributions

of visual information in rumors. Considering deep learning

approaches’ high representation ability, some studies (Wang

et al., 2018; Khattar et al., 2019) utilize convolutional neural

networks (Simonyan and Zisserman, 2015) to mine semantic

information in images to identify rumors.

2.1.2. Multi-modal methods

Textual and visual features are efficacious in rumor detection

tasks, respectively. It is a natural idea to combine them for

better performance. Early multimodal rumor detection methods

(Singhal et al., 2019, 2020) considered text and images as

complementary information. They use a text encoder to extract

the semantic information in the text, and an image encoder

to extract the semantic information in the image, and then

obtain the multimodal representation of the news through

vector concatenation. However, the aforementioned methods

regard image and text as complementary information, ignoring

the correlation between image and text. Indeed, there are many

rich semantic associations between texts and images, and the

aligned parts between them usually contain crucial clues for the

rumor detection. Some recent efforts (Zhang et al., 2019; Qian

et al., 2021; Song et al., 2021a; Wu et al., 2021) have achieved

promising results by aligning the local information of images

and texts using well-designed attention mechanisms to improve

information understanding the cross modalities.

Although content-based rumor detection methods can

achieve good results, they are susceptible to attack from

people. However, rumor authors intentionally imitate the

lexical, syntactic, and writing-style features of actual news.

In reality, rumor authors frequently imitate the lexical,

syntactic, and writing-style characteristics of credible news to

mislead the model into making incorrect decisions but current

content-based approaches have difficulty in countering these

artificial attacks.

2.2. Propagation-based rumor detection

Social psychologists have demonstrated that the process

of rumor propagation in social networks differs significantly

from that of real reporting. Patterns of rumor spread can be

utilized as a clue to identify rumors. Earlier spread-based rumor

detection methods (Liu and Wu, 2018) modeled the rumor

propagation process as a linear sequence using RNN. However,

the sequence simply considers the sequential information of

rumor propagation and disregards the structural information.

Ma et al. (2018) modeled the process of rumor propagation as

a tree structure using a recurrent neural network and achieved

positive results. However, they only addressed local propagation

information, and it was difficult to represent global propagation

information. Bian et al. (2020) employed graph structure to

model rumor propagation and a graph neural network to encode

it, transforming rumor detection into a graph classification

task. As a result of the fact that graph topologies may model

complex propagation information, good results were achieved.

All the previous studies approach rumor propagation as a

static structure and disregard its time-series dynamic evolution.

The time-series evolution information dynamically displays the

rumor propagation process in fine detail, which helps the model

detect rumors.

The dynamic graph contains subgraphs at distinct time

snapshots. It is able to accurately model the temporal and

structural details of rumor propagation. Song et al. (2021b,

2022) proposed modeling rumor propagation patterns using

dynamic graphs, using GCN to encode structural information,

gating networks to encode temporal information, and average

pooling of individual node embeddings to produce the full graph

representation. Sun et al. (2022) leverage external knowledge

to improve the model’s comprehension of the text, while the

way of encoding spatial and temporal information is similar

with the previous methods. The GCN-based structural encoder

layer can only collect first-order neighbor information, which is

limited by perceptual field size and difficult to capture spatial

long-range dependencies. The RNN-based temporal encoders

represent sequence properties, making temporal long-range

relationships challenging to capture. Simple pooling cannot

model the complicated interactions between global and local

information. Due to the aforementioned reasons, the existing

models are inefficient. Our suggested model captures spatial

and temporal long-distance relationships via the self-attentive

mechanism of the transformer. Full graph information is

represented by transformer’s special CLS token, which contains

rich global—local interaction.

3. Problem formulation

We translate rumor detection into a temporal subgraph

classification problem on dynamic graphs. We model rumor

propagation using a dynamic graph structure. A dynamic graph

is defined as a series of observed snapshots G =
{

G1, . . . ,GT
}

,

whereT is the number of time steps. Each snapshotGt =
(

V , E t
)

is a undirected graph with a shared node set V , a link set E t , and

the weighted adjacency matrix At at time t. We use the structure

transformer to model the association between subgraph nodes

under each time snapshot t and the S− CLSt token to express

the embedding representation of the propagation graph Gt

under time snapshot t. We employ a temporal transformer
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to model the temporal connections between the propagation

networks under each temporal snapshot of rumor propagation

and use the T − CLSt token as the final rumor representation.

Finally, we train a classifier to classify the representations of

rumors.

The dynamic graph-based rumor detection problem can be

characterized as: given static subgraphs under each snapshot of

time under the dynamic graph G =
{

G1, . . . ,GT
}

, we want

to train a classification function F :F (G) → ŷ to predict the

veracity of rumors.

4. Model

4.1. Model framework

The proposed framework is displayed in Figure 2. The

DGTR’s fundamental modules are the structural transformer

component and the temporal transformer component. The

input is a collection of static graph snapshotsG =
{

G1, . . . ,GT
}

and the output is a class label ŷ. First, for a static graph

snapshot Gt derived from G, the model initially generates

the raw feature representation of each node in Gt via the

input embedding layer. Second, the adjacency matrix and the

node feature representations are fed as input to the structure

transformer in order to capture the structural information of the

propagation graph at this moment in time. Third, the output

of the structure transformer module’s propagation structure

feature is fed into the temporal transformer to capture network

dynamic evolutionary patterns. Finally, we leverage the dynamic

evolutionary features of rumors at any time stage to detect them.

4.2. Input embeddings

The input embedding layer was created to encode the

textual information of tweets and retweets in order to

acquire initialization information for the dynamic propagation

graph. This study utilizes the pre-trained BERT (Kenton

and Toutanova, 2019b) to encode the text information of

tweets and retweets because the pre-trained studies have

demonstrated strong performance in the majority of natural

language understanding tasks. It should be noted that the

semantic information gained through BERT encoding is only

used as the node’s initialization information in the dynamic

graph, which only contains the semantic information of the node

itself and does not include context semantics in the propagation

process. During the spread of rumors, its semantic information

will change with the context. We will represent this semantic

FIGURE 2

The proposed DGTR model. The bottom part of the figure shows the dynamic diagram of news dissemination. The orange part is the input

embedding layer; the green part is the structural transformer layer; the purple part is the temporal transformer layer; and the gray part is the

rumor classification layer.
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change in the subsequent dynamic graph node modeling.

[

w1, . . . ,wj, . . .
]

← BERT
(

v
t0
i

)

, (1)

where wj is the word embedding encoded by the pre-trained

BERTmodel. We average the word embeddings in obtaining the

textual information of the tweet as node vi’s initialization.

4.3. Structure transformer

The structure transformer is employed to record the

structural information of the propagation graph at each time

snapshot. In contrast to traditional GCN models, in which

one layer can only capture information about the first-

order neighbors, the transformer can model the attentional

associations between all nodes and has a global understanding

of the field. The traditional graph readout approach simply

averages the node information to obtain a representation

of the whole graph, making it difficult to model the rich

semantic associations between local and global information. The

transformer model designs a special CLS token to represent

the global information and uses a self-attention mechanism

to model the rich semantic associations between global and

local information. We model the structural information of the

temporal snapshot subgraphs using the transformer model due

to these advantages.

However, the conventional transformer structure has trouble

representing the graph’s topological connections. To address this

issue, we develop structural position embedding spi for each

node to represent the position information of each node and

aid the model in comprehending the topological information

of the graph. Specifically, we use the corresponding row vector

from the adjacency matrix to represent the nodes’ structural

position embedding.We use the concatenation of node semantic

information and positional embedding as input to the structural

transformer.

sti =
[

vti , sp
t
i

]

, (2)

where the [�, �] operation represents vector concatenation. In

addition, we define the specific [S− CLS] token to represent the

propagation graph under this time snapshot.

stS−CLS ← structure-transformer
[

S− CLS, st1, . . . , s
t
j , . . .

]

.

(3)

As stated in Equation (3), we input the series of nodes with

[S− CLS] token into the structure transformer for encoding

and use the output stS−CLS as the global representation of the

propagation graph at this time snapshot.

4.4. Temporal transformer

The temporal transformer is used to model the temporal

association between the embeddings of the graphs under each

time snapshot. Previous dynamic graph representation learning

methods often use the RNN-based approaches to capture the

relationships between temporal evolutions. However, RNN-

based approaches have problems in capturing long-range

dependencies in sequences. The transformer techniques offer

good outcomes in capturing long-range dependencies in

sequences through a self-attentive process. Yet, the standard

transformer tends to focus on simulating the relationship

between semantics, making it difficult to capture the time

interval information. To solve this problem, we devise

temporal position embedding tpt to characterize time interval

information. Specifically, we compute the time gap between the

time of the retweet and the source tweet, and utilize the MLP to

encode the time interval as a temporal position embedding. We

concat the network information of the temporal snapshot and

the temporal position embedding as the input to the temporal

transformer.

ht =
[

stS−CLS, tp
t
]

, (4)

where the [�, �] operation represents vector concatenation, pt

indicates the timing position embedded. We design special

[T − CLS] token to represent the global information of the

dynamic graph. We use the temporal transformer to model the

complex correlation between the local information under each

temporal snapshot and the global information of the whole time

phase.

tTT−CLS ← temporal-transformer
[

T − CLS, h1, h2, . . . , hT
]

,

(5)

where the vector of time-series transformer outputs tTT−CLS
serves as a rumor representation of the entire time phase.

4.5. Rumor classification

The rumor classification layer is used to train a classifier to

classify the learned rumor features tTT−CLS and judge the rumor’s

veracity. We input the obtained rumor representations into a

fully connected neural network (MLP layer) and then a softmax

classifier for classification in order to obtain the classification

results.

ŷ = softmax
(

MLP
(

tTT−CLS

))

, (6)

where ŷ =
[

ŷ0, ŷ1
]

represents the model’s prediction result with

ŷ0 and ŷ1 indicates the predicted probability of label being 0

(non-rumor) and 1 (rumor), respectively. Because the rumor

detection task is considered as a binary classification task in
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this study, we could define the objective functions of DGTR as

follows:

L (2) = −y log
(

ŷ1
)

− (1− y) log
(

ŷ0
)

, (7)

where y ∈ {0, 1} denotes the ground-truth label and 2 is the

learned parameters of the model.

5. Experiments

In this section, we conduct experiments on two real-world

datasets to evaluate the effectiveness of the proposed model

DGTR. Specifically, we aim to answer the following evaluation

questions:

• EQ1: Is DGTR able to improve the performance of

propagation-based rumor detection?

• EQ2: How do the model’s various components, the

structural transformer and the temporal transformer,

contribute to the model’s enhancement? Is it valid to use

the CLS token to represent the global information?

• EQ3: Do the structural position embedding and temporal

position embedding we designed improve the model’s

efficiency?

• EQ4: Can the unique S− CLS token and T − CLS token of

the dynamic graph transformer effectively model the global

feature of the structural and temporal domains?

In the subsequent subsections, we first describe the

experimental datasets. Following that, we show a variety of

state-of-the-art propagation-based rumor detection methods as

baseline methods. Later, we present the model’s implementation

specifics. Then, we compare our methodology with existing

baseline methods on two public datasets and analyze the

experimental results in order to answer EQ1. Following that, we

created three different sets of ablation experiments to address

EQs 2, 3, and 4, respectively.

5.1. Datasets

In this article, we test DGTR on two widely used

public benchmarks for detecting rumor, namely Weibo and

FakeNewsNet. Weibo dataset is produced from Chinese Sina

Weibo social media network, meanwhile FakeNewsNet dataset

is constructed from Twitter social media platform. Due to the

fact that all datasets include time stamps, retweet or reply

relationships, and textual information, we can construct a

discrete dynamic news propagation network for each item of

social media news. Table 1 provides more specific statistics from

two publicly available datasets.

• Weibo: This dataset was obtained by Ma et al. (2016) from

one of the China’s most prominent online social media

TABLE 1 The statistics of two benchmark rumor detection datasets.

Statistic Weibo FakeNewsNet

Num of rumors 2,131 2,079

Num of non-rumors 2,207 2,089

Num of users 1,309,645 45,109

Avg. time length 1,577 h 1,951 h

Avg. num of tweets 378 42

Max. num of tweets 1,999 1,315

Min. num of tweets 10 3

platforms Sina Weibo1. The known rumors are collected

by the Sina community management center2, which reports

a variety of false information. Given an event, the Weibo

API can capture the original message as well as all of its

reposts and replies. Non-rumor events are collected by

crawling general threads that are not reported as rumors.

After preprocessing this dataset, we report the number of

items used in this work and other details in Table 1.

• FakeNewsNet: The FakeNewsNet dataset is originally

presented in Shu et al. (2020). The news articles are

gathered from GossipCop3 and PolitiFact4. Using the

Twitter API, the social media platform’s tweets, retweets,

and replies related to a news story are collected. Table 1

shows the number of items finally used in this work and

more details after preprocessing this dataset.

Similar to previous study (Song et al., 2022; Sun et al., 2022),

the source tweet, retweets, and replies are considered nodes. We

consider retweet or respond behaviors as edges. The timestamps

of retweets and replies are regarded as the timestamps of the

edges’ creation.

5.2. Baseline approaches

• DTC (Castillo et al., 2011): A classification approach for

rumor detection that is built on decision trees and makes

use of a variety of manually constructed features.

• SVM-RBF (Yang et al., 2012): A approach for detecting

rumors that is based on support vector machines (SVM)

and uses a radial basis function (RBF) kernel. This approach

employs a set of statistical features that are extracted from

tweets.

1 http://www.weibo.com

2 http://service.account.weibo.com

3 https://www.politifact.com/

4 https://www.gossipcop.com/
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• SVM-TS (Ma et al., 2015): A classifier built on a linear

SVM that uses time series modeling methods to capture the

temporal features.

• ML-GRU (Ma et al., 2016): An approach that uses

multilayer GRUnetworks tomodel the variable-length time

series of social network rumor propagation.

• CallAtRumor (Chen et al., 2018): An approach for

modeling sequences of rumor propagation using an

attention-based LSTM.

• StA-HiTPLAN (Khoo et al., 2020): An approach for

modeling sequences of rumor spread using a transformer.

It does not account for structural information on the

propagation of rumors. It employs the time delay of rumor

propagation as the transformer’s position embedding.

• RvNN (Ma et al., 2018): A rumor detection technique based

on tree-structured recursive neural networks combines

the text content and propagation structure information

utilizing GRU units.

• GCN (Kipf and Welling, 2017): GCN is the most frequent

graph neural network model for capturing the high-

order neighborhood information. This study views rumor

propagation as an undirected graph. We simulate rumor

propagation using GCN and classify rumors using a fully

connected layer.

• GAT (Veličković et al., 2018): Graph attention networks

(GAT) use attention to learn various weights for a node’s

neighbors. This study uses undirected graphs to describe

news propagation. And it employs GAT to simulate the

distribution network of news in social networks and input

the embedding to the fully connected layer to detect rumor.

• BIGCN (Bian et al., 2020): A rumor detection technique

based on the static graphs. It encodes rumor propagation

networks for the rumor detection using bottom-up and

top-down GCN.

• DGNF (Song et al., 2022): An approach formodeling rumor

propagation networks using dynamic graphs. It employs

GAT to represent the structural information about the

rumor propagation and a self-attentive method to simulate

temporal information. It employs a straightforward

mean pooling approach to generate a complete graph

representation as the final rumor representation.

• DDGCN w/o knowledge (Sun et al., 2022): A dynamic

graph-based rumor detection work. DDGCN simulates

both rumor propagation and knowledge evolution during

it. To be fair, we only evaluate changes in rumor

propagation, not knowledge evolution. It employs GAT

to simulate rumor structure and gated recurrent neural

networks to model time series.

5.3. Experimental setup

To simplify comparability with present work, each dataset

is separated into training and test sets, containing 80 and 20%

social media news, respectively. In addition, we conducted the

studies using five-fold cross-validation, which is consistent with

the previous study. For Weibo and FakeNewsNet datsets, we

set the time points of each snapshot as [0.0, 0.5, 1.0,1.5, 2.0,

4.0, 8.0, 16.0, 32.0, 64.0, 128.0, 256.0, 512.0, 1024.0, 2048.0, and

max] hours. Because we used the pre-trained Google BERT

embedding to represent each token in a phrase (Kenton and

Toutanova, 2019a), word vectors are d = 768. For structure

transformer component, we set the number of transformer

layers to 1. For temporal transformer component, we set the

number of transformer layers to 1. We train DGTR with a

learning rate of 1e−5. We set batchsize and epochs at 1 and 200,

respectively. Two common evaluation criteria (accuracy and

the F1 score) are adopted in rumor detection to assist readers

comprehend the performance of the models.

5.4. Results and analysis

To test the validity of the proposed model, we evaluate

DGTR using two public benchmark datasets in this subsection.

Table 2 displays the classification performance of the baseline

approach and our approach. The top models among them are

highlighted in bold font. The following conclusions may be

drawn from Table 2:

• Overall, our suggested model outperformed the other

baseline models on the two publicly available datasets,

demonstrating its validity. The DGTR model outperforms

the StA-HiTPLAN model, which is also based on the

transformer, due to the fact that the StA-HiTPLAN

model only analyzes the temporal information of rumor

propagation and disregards the structural. The DGTR

surpasses the three static graph-based algorithms GCN,

GAT, and BIGCN on the two public datasets, indicating

that dynamic graphs that consider both the structural

and temporal information during rumor propagation are

highly effective in rumor identification tasks. On both

datasets, the DGTR outperforms the dynamic graph-based

techniques DGNF and DDGCN without knowledge. This

is due to the fact that the transformer structure efficiently

captures long-range dependencies in both temporal and

structural information, while employing the CLS token in

the transformer to model the whole graph information

may describe the rich correlations between global and local

information.

• The performance of DGTR on the two datasets is different

because of the different tweet propagation patterns in

the two datasets. As seen in Table 1, the tweets in the

Weibo dataset have more retweets in a shorter time,

yet the FakeNewsNet dataset has fewer retweets in a

longer time. The Weibo dataset has more information on

Twitter propagation, which can provide richer information

on the propagation structure and temporal evolution.

The DGTR model can effectively capture the structural
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TABLE 2 Performance comparisons of di�erent methods on Weibo and FakeNewsNet datasets.

Model Weibo FakeNewsNet

ACC F1 ACC F1

DTC 0.709 0.712 0.722 0.718

SVM-RBF 0.713 0.713 0.728 0.729

SVM-TS 0.719 0.715 0.711 0.717

ML-GRU 0.833 0.829 0.811 0.808

CallAtRumor 0.842 0.843 0.813 0.811

StA-HiTPLAN 0.871 0.867 0.879 0.876

RvNN 0.863 0.861 0.828 0.829

GCN 0.866 0.865 0.876 0.872

GAT 0.867 0.867 0.878 0.877

BIGCN 0.899 0.896 0.889 0.888

DGNF 0.933 0.932 0.922 0.921

DDGCN w/o knowledge 0.923 0.921 0.916 0.919

DGTR 0.947 0.946 0.929 0.932

The highest score is highlighted in bold.

and temporal evolution information of tweets propagated

in social networks. The Weibo dataset is richer in

propagation information, so DGTR has better results on the

Weibo dataset.

• ML-GRU, CallAtRumor, and StA-HiTPLAN all represent

rumor propagation as a temporal sequence. CallAtRumor

beats ML-GRU because it considers the attentional

relationship between tweets to capture semantic

dependencies. stA-HiTPLAN outperforms ML-GRU

and CallAtRumor because it employs a transformer to

represent the propagation sequence of tweets in social

networks and captures long-range rumor dependencies

through a self-attention method.

• Dynamic graph-based approaches DGNF and DDGCN

without knowledge outperform the static graph-based

algorithms GCN, GAT, and BIGCN because the latter

neglect temporal and dynamic evolution information.

• The graph-based approaches (GCN, GAT, and BIGCN)

beat the sequence-based algorithms (ML-GRU,

CallAtRumor), which indicates that the rumor structure is

crucial. Sta-HiTPLAN beats some graph-based methods

because it use transformer to model associations among

posts. Transformer indirectly learns a semantic association

structure relation through a self-attention process, which

enhances performance.

5.5. Ablation study

In this subsection, we design three sets of ablation

experiments to test each component’s contribution to the

model effect, the influence of structural position embedding

and temporal position embedding on the model effect,

and the role of S − CLS token and T − CLS token in

modeling the rich semantic association between local and global

information, respectively.

First, we conduct experiments to determine the effect of

major DGTR components. Specifically, we compare the DGTR

to the following variations by deleting certain components from

the model:

• DGTR w/o structure transformer: In this variant, the

structural transformer is removed from the DGTR. In

addition, we directly average pool the node embedding

vectors as the graph embedding representation for this time

snapshot.

• DGTR w/ structure GCN: In this variant, we replace

the structural transformer in DGTR with two layers of

GCN, and we use a readout layer to take the mean

value of the node vector after the GCN update to create

a representation of the propagation graph under this

time snapshot.

• DGTR w/o temporal transformer: In this variant, the

temporal transformer is removed from the DGTR. We

directly use the propagation graph embedding under the

last time snapshot for rumor classification.

• DGTR w/ temporal LSTM: In this version, the temporal

transformer in DGTR is replaced by LSTM. The LSTM

output representations are used for rumor detection.

These variants’ performance is summarized in Table 3. The

following conclusions can be drawn:
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TABLE 3 Ablation study to verify the e�ectiveness of each component of the model.

Model Weibo FakeNewsNet

ACC F1 ACC F1

DGTR w/o structure transformer 0.913 0.915 0.899 0.898

DGTR w/ structure GCN 0.934 0.933 0.924 0.921

DGTR w/o temporal transformer 0.911 0.912 0.897 0.896

DGTR w/ temporal LSTM 0.926 0.924 0.926 0.922

DGTR 0.947 0.946 0.929 0.932

TABLE 4 Ablation study to verify the function of position embedding.

Model Weibo FakeNewsNet

ACC F1 ACC F1

DGTR w/o structural position embeddingr 0.901 0.899 0.902 0.903

DGTR w/o temporal position embedding 0.904 0.901 0.899 0.901

DGTR 0.947 0.946 0.929 0.932

• DGTR w/o structure transformer exhibited a considerable

drop in effect. It proves that rumor structural information

is significant for rumor detection.

• The effect of DGTR w/ structure GCN decreases compared

to DGTR, but is stronger than DGTR w/o structure

transformer. Structure transformer’s self-attention

technique can capture global dependencies between

nodes during propagation. The GCN can only combine

local neighbor information, making it difficult to capture

long-distance graph node relationships.

• DGTR w/o temporal transformer has lower performance

than DGTR. This indicates that temporal evolution

information is essential for rumor detection.

• DGTR w/ temporal LSTM performs weaker than DGTR

but better than DGTR w/o temporal transformer. This

is because temporal transformer captures long-distance

dependence between temporal snapshots and models

rumor propagation’s dynamic evolution effectively.

LSTM has difficulty in capturing long-distance temporal

dependence, hence its performance is lower.

Then, we investigate the impact of structural position

embedding and temporal position embedding on the

model’s achievement. In particular, we evaluate the effects

of DGTR and its variations with structural position

embedding and temporal position embedding removed,

respectively. The model’s variations is displayed in the

following list:

• DGTR w/o structural position embedding: In this variant,

the temporal location embedding vector is omitted and the

textual information of the tweet is directly used as the input

to the structure transformer.

• DGTR w/o temporal position embedding: In this variant,

the temporal location embedding vector is deleted and the

graph information from various time snapshots is used

directly as the input to the temporal transformer.

Table 4 illustrates the effects of various variants. The

following conclusions can be drawn from the experimental

results:

• After removing structural position embedding, DGTR

effect decreases. Removing structural position embedding

reduces DGTR effect. Structural position embedding

lets the structural transformer get node location and

degree information. And these details enable the model

comprehend the topology of the rumor propagation

network, which is crucial in comprehending the process of

rumor spread.

• DGTR’s effect reduces without temporal position

embedding. The temporal position embedding helps

the temporal transformer figure out the duration between

temporal snapshots. It lets the model understand the

dynamic temporal evolution of the rumor propagation

network, which is essential for comprehending the

spread process.

Finally, we test whether CLS token helps the model capture

complicated local–global interactions. We replace the S − CLS

token with a global representation of the structured graph

by pooling nodes with in readout layer. We replace the T −

CLS token with the graph representation under the temporal

snapshot output by the temporal transformer. We compare

the experimental results before and after the replacement. The

following variations are proposed:
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TABLE 5 Ablation experiment to verify the e�ect of CLS token.

Model Weibo FakeNewsNet

ACC F1 ACC F1

DGTR w/o S− CLS token 0.921 0.919 0.912 0.913

DGTR w/o T − CLS token 0.924 0.922 0.919 0.921

DGTR 0.947 0.946 0.929 0.932

• DGTR w/o S − CLS token: In this variant, we do not use

the S − CLS token to represent the global structure feature

under this time snapshot. We get the global structure

feature by mean-pooling all node embeddings on the

propagation graph.

• DGTR w/o T − CLS token: In this variant, we do not

use the T − CLS token to characterize global rumor

propagation. We employ the output representation under

the corresponding temporal snapshot created by the

temporal transformer as the temporal global feature.

Table 5 compares the performance of model variants to

that of DGTR. We can draw the following conclusions from

the experiment:

• After replacing the S − CLS token with mean pooling,

the model effect is reduced. Mean pooling cannot capture

tweets’ semantic relationships. The correlation between the

S− CLS token and individual tweets is generated using the

self-attention. In summary, S−CLS tokenmaymodel global

and local information relationships in terms of rumor

propagation structure.

• Themodel’s effectiveness reduces without T−CLS. Because

the output of the temporal transformer only models the

evolution of the corresponding time node, it is impossible

to describe the global dynamic evolution within that time

interval. In summary, the T − CLS token can model the

association of global and local information on the temporal

sequence.

6. Conclusion

In this article, we use dynamic graph structure to model

the rumor propagation process and thus identify rumors. We

propose a dynamic graph transformer-based rumor detection

model DGTR. We use the structure transformer to capture

the long-range dependencies between individual tweets under

time snapshots, and the temporal transformer to capture the

temporal long-range dependencies between subgraphs under

individual time snapshots. In addition, we model the rich

semantic interactions between local and global information on

structural and temporal domains by CLS token. We conduct

experiments on two public datasets, Weibo and FakeNewsNet.

The DGTR model outperforms traditional machine learning

approaches (DTC, SVM-RBF, SVM-TC), propagation sequence-

based methods (ML-GRU, CallAtRumor, StA-HiTPLAN), static

propagation graph-basedmethods (RvNN, GCN, GAT, BIGCN),

and dynamic graph-based methods (DGNF). This is because

DGTR uses deep learning techniques to efficiently extract

structural and temporal information in the rumor propagation

process. Traditional machine learning algorithms, which rely

on complicated feature engineering and lack generalization,

make it difficult to produce positive performance. While

the propagation sequence-based technique uses deep learning

models to automatically mine the sequence information in

rumor propagation, it has certain drawbacks in that it ignores

the structural information and temporal evolution information

of news propagation. Although a well-designed graph neural

network is used in the static graph-based method to mine

the structural information of rumor propagation, this method

performs less well than the dynamic graph-based method

because it ignores the information on the temporal sequence

evolution in rumor transmission. DGTR beats other graph-

based dynamic approaches. This is due to the fact that DGTR can

more effectively capture the structural and temporal evolution

information during rumor propagation due to the transformer’s

ability to capture the long-range dependence of structural

and temporal sequence. In future study, we will explore

how to model the dynamic evolution process during rumor

propagation in a more fine-grained way. We will also explore

how to perform early detection of rumors by dynamic graph

neural networks.
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