AUTHOR=Cheng Lu , Foster Jacob G. , Lee Harlin TITLE=A Simple, interpretable method to identify surprising topic shifts in scientific fields JOURNAL=Frontiers in Research Metrics and Analytics VOLUME=7 YEAR=2022 URL=https://www.frontiersin.org/journals/research-metrics-and-analytics/articles/10.3389/frma.2022.1001754 DOI=10.3389/frma.2022.1001754 ISSN=2504-0537 ABSTRACT=

This paper proposes a text-mining framework to systematically identify vanishing or newly formed topics in highly interdisciplinary and diverse fields like cognitive science. We apply topic modeling via non-negative matrix factorization to cognitive science publications before and after 2012; this allows us to study how the field has changed since the revival of neural networks in the neighboring field of AI/ML. Our proposed method represents the two distinct sets of topics in an interpretable, common vector space, and uses an entropy-based measure to quantify topical shifts. Case studies on vanishing (e.g., connectionist/symbolic AI debate) and newly emerged (e.g., art and technology) topics are presented. Our framework can be applied to any field or any historical event considered to mark a major shift in thought. Such findings can help lead to more efficient and impactful scientific discoveries.