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Purpose of review: Women in Africa bear the burden of the HIV epidemic, which
has been associated with the high prevalence of bacterial vaginosis (BV) in the
region. However, little progress has been made in finding an effective cure for
BV. Drawing on advances in microbiome-directed therapies for gastrointestinal
disorders, similar live-biotherapeutic based approaches for BV treatment are
being evaluated. Here, we summarize current knowledge regarding vaginal
microbiota in BV, explore geographical differences in vaginal microbiota, and
argue that novel BV therapeutics should be tailored specifically to meet the
needs of African women.
Recent findings: Cervicovaginal microbiota dominated by Lactobacillus crispatus
are optimal, although these are uncommon in African women. Besides socio-
behavioural and environmental influences on the vaginal microbiota, host and
microbial genetic traits should be considered, particularly those relating to
glycogen metabolism. Novel microbiome-directed approaches being developed
to treat BV should employ transfers of multiple microbial strains to ensure
sustained colonization and BV cure.
Summary: Improving the efficacy and durability of BV treatment withmicrobiome-
directed therapies by appropriately accounting for host and microbial genetic
factors, could potentially reduce the risk of HIV infection in African women.
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Introduction

Women living in Africa arguably represent the highest degrees

of diversity in genetics, culture, environment, diet and access to

resources, yet reproductive health barriers encountered by African

women remain a low priority on the global health agenda. Despite

wide access to HIV testing and treatment (1), African women

continue to bear the burden of the ongoing HIV epidemic (2).

While risks of HIV acquisition outcomes are determined by an

array of socio-behavioural, economic and biomedical factors, the

attributable risk associated with each differ regionally (3). One of

these risk factors is bacterial vaginosis (BV), a common dysbiosis

of vaginal microorganisms in reproductive-aged women (4).

The microbiome has emerged as a crucial factor in human

health, impacting susceptibility to pathogens (5), poor reproductive

outcomes, cancer, metabolic diseases, allergies, autism, and obesity

(6). Recognising the transformative potential of microbiome-

targeted therapeutics, funding agencies in the global north

developed strategic plans for investing in microbiome research

(7, 8), yielding large volumes of publicly available data pertaining

to wealthy industrialised nations (9). Relatively little progress has

been made in understanding the relationships between microbial

variability and health in other parts of the world. The context and

locations of these “missing microbiomes” have major implications

for disease management in African populations and the global

community (10). Put simply, answering critical questions relating

to the roles that geography, diet, socioeconomic status, and

antibiotic use play in shaping the reproductive microbiomes of

African women requires microbiome data from Africa.

The purpose of this review is to summarize what is known

about the vaginal microbiome in relation to BV, to evaluate

whether geographical differences exist in the composition of

vaginal microbiota and host interactions with components of the

microbiota, and to consider the importance of geography in

developing novel BV-treatment modalities that address the

unmet needs of African women.
Shifting from simplicity to complexity
is bad in the vaginal niche

Resilience in ecosystems frequently correlates with diversity (11).

In the reproductive tract, however, low diversity colonization with

Lactobacillus species (L. crispatus, L. jensenii, L. gasseri, L. mucosae,

and L. vaginalis) is considered optimal, with high diversity being

associated with BV (12). Protective mechanisms used by vaginal

Lactobacillus spp. to prevent colonization by other commensals and

pathogens include competitive exclusion, production of lactic acid,

bacteriocins, and biosurfactants (13). Lactic acid lowers vaginal pH,

and enhances the structural integrity of the mucosal barrier (14).

While low pH excludes competitors, Lactobacillus spp. are not

acidophiles: they are simply less susceptible to acid than other

bacterial species in the vagina (15). Lactobacillus spp. differ in their

abilities to lower pH and inhibit other strains (16–18). Unlike other

Lactobacillus spp., L. iners, is found in both optimal and dysbiotic
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microbial states, harbors a cytolysin (inerolysin) and does not

produce D-lactic acid (12). In this ecosystem, estrogen gives

Lactobacillus spp. an advantage (19).

Ecosystems frequently shift in composition in response to changes

in the environment, and should be studied holistically, considering

interactions between all the ecosystem’s components (20); including

those components present at low relative abundance. The finding

that a “key” group of species - Lactobacillus spp. - dominate most

healthy vaginal microbiomes suggests an important functional role

in the ecosystem (20). It is commonly assumed that other non-key

species are “passengers” that do not significantly alter the dynamics

or function of the ecosystem, with the key species “driving”

ecosystem processes such as the maintenance of species diversity

and/or stability (9). However, Greenbaum et al. (20) argued that

“rarer” microbial taxa occurring during optimal vaginal ecological

states may influence the dynamics of the vaginal ecosystem, being

“seed banks” poised for proliferation and outgrowth once

environmental conditions change (menses, pregnancy, menopause).

In the absence of Lactobacillus spp. dominance, the vaginal

microbiota shift to a high-diversity state, comprising a diverse

assortment of strict and facultative anaerobic bacteria, including

Gardnerella spp., Prevotella spp., and Fannyhessea vaginae (13, 21).

These diverse anaerobes can form complex biofilms, likely

comprising G. vaginalis as an “anchor species”, synergistically

fostering the outgrowth of other BV-associated anaerobes (22–24).

Both Prevotella and Gardnerella species produce sialidases that

degrade cervicovaginal mucus, allowing better contact between the

vaginal microbiota and the epithelial barrier (25, 26). BV-associated

anaerobes produce a complex array of biogenic amines (such as

cadaverine, putrescine, and tyramine), which slows the growth of

most vaginal Lactobacillus spp. and reduces the production of lactic

acid by vaginal Lactobacillus spp (27). G. vaginalis also produces

cytotoxic compounds such as vaginolysin, which trigger epithelial

immune responses and NF-κB activation (26). G. vaginalis may also

differ geographically in terms of prevalence, genetic diversity,

antimicrobial resistance profiles, and strain distribution (28, 29), that

need to be considered when developing treatment protocols for BV.
Factors influencing the vaginal
microbiome and BV risk

Many socio-behavioural and biomedical risk factors have been

defined for BV, including menses, menstrual practices, antibiotics,

sexual behaviours, contraceptives, hygiene practices, and partner

characteristics [reviewed elsewhere (30)]. Vaginal practices are

complex and vary regionally, based on the social and cultural

norms, sometimes including intravaginal insertion of commercial

products, chemicals, and/or natural products (31–34). In some

regions, lubricated sex is preferred, while in others dry sex is

preferred (35). Some studies have associated having new or

multiple sexual partners and frequent condomless intercourse with

a higher risk of BV (36, 37). Condomless intercourse and recent

exposure to semen have been associated with reduced Lactobacillus

spp. prevalence, increased P. bivia and G. vaginalis prevalence, and

increased BV recurrence (38–41). Furthermore, condomless sex
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with an uncircumcised male partner may further exacerbate risk for

BV (42). Female vaginal microbiota often resembles her partners’ and

uncircumcised males generally have penile microbiota dominated by

anaerobes such as Finegoldia, Prevotella, Dialister, and Peptoniphilus

(43). Thus, male circumcision practices in various geographies and

cultures may influence risk for BV.
Is BV the same globally?

While a cervicovaginal microbiota dominated by L. crispatus is

considered optimal, African women appear to have more diverse

bacterial communities, including those dominated by L. iners (4, 21,
TABLE 1 Chromosomes with highest density of SNPs influencing lactobacillia

Chromosome #
SNPs

Gene Product

1 7 FPGT Fucose-1-phosphate guanylyltransferase

GALE UDP-galactose-4-epimerase

MAN1A2 Mannosyl-oligosaccharide 1,2-alpha-
mannosidase IB

SLC2A1 Glucose transporter 1

SPRR1A Cornifin-A

SPRR1B Cornifin-B

2 15 GFPT1 Glutamine-fructose-6-phosphate
transaminase 1

GCKR Glucokinase regulator

LEPQTL1 Leptin, serum levels of

COL3A1 Collagen, type III, alpha 1

COL4A3 Collagen, type IV, alpha 3

COL4A4 Collagen, type IV, alpha 4

COL5A2 Collagen, type V, alpha 2

MGAT5 Mannosyl (alpha-1,6-)-glycoprotein beta-
1,6-N-acetyl-glucosaminyltransferase

HADHA Part of an enzyme complex called
mitochondrial trifunctional protein

ABCG5/8 ABC transporter proteins (sterolin-1 and -

3 14 COL7A1 Collagen, type VII, alpha 1

GMPPB GDP-mannose pyrophosphorylase B

ADIPOQ Adiponectin

GYG1 Glycogenin-1

BTD Amidohydrolase biotinidase

SI Sucrase-isomaltase

CACT Carnitine-acylcarnitine translocase

11 10 ACAT1 Acetyl-Coenzyme A acetyltransferase 1
(acetoacetyl Coenzyme A thiolase)

APOA4 Apolipoprotein A-IV

BGNT1 N-acetyl-lactosaminide beta-1,3-N-acetyl-
glucosaminyl transferase

INS Insulin gene

CPT1A Carnitine palmitoyltransferase 1A
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42, 44, 45). These associations appear to persist when controlling

for sociodemographic factors and sexual practices (46, 47),

suggesting that host genetics may influence vaginal microbiome

composition (48). Studies of gut microbiota have shown that the

composition and function of the gut microbiome are heritable and

transferable (49–53). Bubier et al. (54) summarized SNPs in >100

host genes associated with bacterial abundance in twins or from

GWAS data. Of those affecting Lactobacillus spp. abundance, >50%

of the SNPs were located on chromosomes 1–3 and 11, with many

of the genes located on these chromosomes involved in sugar

and/or lipid metabolism (Table 1).

Evidence that the vaginal microbiomes of monozygotic twins are

more similar to each other than to their mothers or sisters (55, 56),
ceae colonization.

Process

Fructose and mannose metabolism

Galactose metabolism

Glucose transport (blood-brain barrier)

Squamous differentiation

Squamous differentiation

Enzyme participating in glutamate and amino sugars metabolism

Sugar isomerase: regulatory protein that inhibits glucokinase in liver and
pancreatic islet cells

Regulate long-term energy balance; correlate with the amount of energy reserves
(triglycerides) stored in adipose tissue

Provide structural support to the extracellular space of connective tissues

Major structural component of basement membranes

Major structural component of basement membranes

Fibrillar collagens

Involved in the synthesis of protein-bound and lipid-bound oligosaccharides

Mitochondrial trifunctional protein required to metabolize long-chain fatty acids

2) Regulates sterol absorption and excretion

Functions as an anchoring fibril between the dermal-epidermal junction in
basement membrane

Enzyme catalyzes conversion of mannose-1-phosphate and GTP to GDP-
mannose, involved in N-linked oligosaccharides production

Protein hormone involved in regulating glucose levels and fatty acid breakdown

Involved in the biosynthesis of glycogen

Propionic acidemia

Bifunctional glucosidase

Enzyme responsible for passive transport of carnitine and carnitine-fatty acid
complexes and across the inner mitochondrial membrane as part of the carnitine
shuttle system

Converts intracellular free cholesterol into cholesteryl esters for storage in lipid
droplets

Major protein of high-density lipoproteins; implicated in regulating lipid
absorption and metabolism, food intake, and glucose metabolism

Key enzyme for core-2 O-glycans biosynthesis; belongs to the family of
glycosyltransferases; participates in 4 metabolic pathways: keratan sulfate
biosynthesis, glycosphingolipid biosynthesis - neo-lactoseries, glycan structures -
biosynthesis 1, and glycan structures - biosynthesis 2

Produces insulin

Mitochondrial enzyme responsible for the formation of acyl carnitines by
catalyzing transfer of acyl group of a long-chain fatty acyl-CoA from coenzyme A
to l-carnitine
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argues for a role of host genetics in determining microbiome

structure. However, it is difficult to disentangle the relative

contributions of genetic and environmental factors to overall

microbiome structure. For example, a meta-analysis that included

2,748 twins concluded that 31% of reproductive traits were heritable

(57), while also highlighting the fact that reproductive traits

were one of the trait types most influenced by the environment

Nevertheless, if L. crispatus heritability is indeed influenced in part

by host genetics, this may have implications for probiotic

effectiveness in improving vaginal health in diverse populations (42).
Missing African vaginal strain genomic
data in global databases

Recently, Bloom et al. (58) published an associated vaginal

genome catalogue, comprising ∼1,200 Lactobacillus spp. genomes

and metagenome-assembled genomes from >300 women across

four continents, including Africa. Despite this useful resource,

the NCBI RefSeq assembly database currently contains only

3,084 Lactobacillaceae and 185 BV-associated whole genome

sequences (we focused just on Prevotella, Gardnerella and

Fannyhessea only for this review; Figure 1; Supplementary

Table S1). Of these, most (81% and 91% for Lactobacillaceae and

BV-associated bacteria, respectively) were from samples collected

in the global north and few were derived from vaginal samples.

Better understanding these elusive missing African vaginal

genomic data is and will be important moving forward. An

example of this is demonstrated in a study by Lithgow et al. (59),

where Lactobacillus-dominant African women were 3-fold more

likely to be colonized by L. crispatus isolates lacking the gene

involved in glycogen degradation, pulA, than European or North

America women (60, 61). Glycogen is a key host-provided

nutrient that supports vaginal lactobacilli and their fermentative

lactic acid production (60). The findings of Lithgow et al. (59)

may be critical for our understanding of BV in Africa, suggesting

that pulA gene loss explains reductions in L. crispatus

abundance, pullulanase activity and D-lactic acid levels.
Progress in improving BV treatment

BV is still diagnosed clinically based on symptoms [presence of

clue cells [shed epithelial cells coated with BV-associated microbes,

evident by Gram stain], vaginal pH >4.5, discharge and a “fishy”

odor - known as Amsel criteria (62)] or Nugent scoring (63).

However, BV is frequently asymptomatic (64), particularly in

Africa (65, 66). Defining the complex ecology of BV using more

sensitive molecular approaches (molecular-BV) has proved

invaluable in understanding the dysbiosis and identifying new

targets for therapy (21).

Symptomatic BV is treated with metronidazole or

clindamycin, with treatment focusing on selectively halting the

proliferation of BV-associated microorganisms to restore

“optimal” vaginal microbes (67). Following treatment, vaginal

microbiota shift to L. iners rather than L. crispatus dominance,
Frontiers in Reproductive Health 04
primarily driven by a massive reduction in BV-associated

bacterial abundance (68, 69). BV treatment outcomes following

antibiotics appear to be better in women from the US than

those living in Africa (70). The vaginal microbiota composition

and structure prior to BV treatment is known to influence

treatment outcome, such that women with more vaginal

bacterial diversity pre-treatment are more likely to experience

treatment failure (71). G. vaginalis resistant to metronidazole

may be a factor underlying different treatment outcomes (72),

particularly within biofilms (73, 74), although this has not been

systematically compared geographically.

BV recurrence is frequent, with >50% women who clear BV

relapsing within six months (75, 76). Some studies have shown

that G. vaginalis (77) and F. vaginae (78) strains that recolonize

after initial BV treatment have an increased resistance to

subsequent courses of antibiotic treatment. Bannatyne et al. (79)

showed that metronidazole susceptibility in G. vaginalis strains

declined sequentially, with almost all isolates being sensitive after

the first course of treatment, and sensitivity reducing by

20%–30% for each subsequent metronidazole treatment (79). In

another cross-sectional study, 40% of P. bivia isolates, 14% of

P. amnii and 58% of P. timonensis isolates were resistant to

clindamycin (80). The extent to which African strains possess

antibiotic resistance is yet to be determined.

Several promising novel treatment approaches are currently

being investigated for BV treatment. For example, to address

post-treatment re-colonization with L. iners, Zhu et al. recently

showed that oleic acid and other unsaturated long-chain fatty

acids, enhance metronidazole-mediated cure rates; by selectively

inhibiting L. iners, while enhancing L. crispatus growth (81).

Other combinatorial approaches to enhance metronidazole

efficacy have been developed, such as a vaginally inserted ring

product that sustainably releases either metronidazole alone (82),

or with dapivirine (for HIV prevention) (83). Endolysins,

enzymes produced by bacteriophages to degrade bacterial cell

walls and disrupt biofilms, are being tested to treat BV,

specifically targeting G. vaginalis (84). While these approaches

are currently in preclinical and in vitro study phases, and their

efficacies are yet to be tested in humans, they do represent

promising avenues for further research to enhance current BV

treatment strategies.
Vaginal microbiome transplants and
lessons from the gut

Studies using faecal microbiome transplantation have shown

that some donor microbiome-associated phenotypes can be

transferred to recipients. Microbiome transplant between obese

and lean mice (85), and between lean and obese human donors

into mice (86) have demonstrated these phenomena. Faecal

microbiome transplant from healthy donors to individuals with

autism spectrum disorder (87) and multiple sclerosis (89) have

been shown to reduce disease severity, and is now standard-of-

care for patients with recurrent Clostridioides difficile infections

(88). From these studies, it is evident that the clinical benefits of
frontiersin.org
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FIGURE 1

Proportion of publicly available whole genome sequences of Lactobacillaceae (n = 3084) and BV-associated organisms (BV; n = 185), according to (A)
region: North America (dark red), Europe (bright red), Asia (deep orange), Oceania (light orange), South America (yellow), and Africa (green). BV-
associated organisms included Prevotella spp., Gardnerella spp., and Fannyhessea spp. only. (B) Within Africa, the numbers of Lactobacillaceae
genomes (black numbers) and BV-associated organism genomes (red numbers) from different countries are shown.
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treatment are only sustained if there is successful stable

colonization of donor microbiota within the new host (89, 90).

Host genetic factors are thought to prevent successful

engraftment in recipients who experience only transient

colonization, suggesting these ecologically sensitive approaches
Frontiers in Reproductive Health 05
should factor in a complex set of phenotypes for donor-recipient

pairs to ensure successful and sustained colonization (91).

Vaginal microbiome transplantation similarly involves transfer

of vaginal fluid from healthy donors with well characterized

optimal vaginal microbiota to recipient women with BV (92).
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The feasibility of transplanting the vaginal microbiome between

women to protect against BV has been implied by evidence from

women who have sex with women, where both female partners

have low risk of BV and relatively stable concordant vaginal

microbiota (93). Vaginal microbiome transplantation was first

trialled in a small cohort of women with BV in Israel in 2019

(94) with four out of five recipients of the vaginal microbiome

transplant showing promising results. In this first-in-human

study, donors and recipients shared similar genetic backgrounds,

as well as similar socio-behavioural characteristics so the impact

of genetic and cultural diversity cannot be extrapolated. Although

Mitchell et al. (95) discusses the potential risks of vaginal

microbiome transplantation, which necessitate strict safety

precautions, a clear benefit is that the “whole” vaginal

environment is transferred between donor and recipient,

including exact mixtures of vaginal microbes and molecules

produced by both hosts and microbes that were associated with

health in the donor. This likely assists in the colonization of

beneficial bacteria while working against BV-associated bacteria.

Understanding the main functional components that need to be

transferred to ensure the success of this approach is critical in

developing new vaginal microbiome-targeted therapies.
Simplifying transplantation using
probiotics/live-biotherapeutics

Probiotics were defined by the WHO as “live microorganisms

that, when administered in adequate amounts, confer a health

benefit to the host” while the US FDA introduced the term “live

biotherapeutic product”, defined as “a biological product that

contains live organisms; is applicable to the prevention,

treatment or cure of a disease or condition of humans; and is

not a vaccine.” Moving from complex transplantation of entire

vaginal microbial communities, the effectiveness of simple single

or multi-strain live biopharmaceutical products/probiotics have

been tested for treating BV: either with or without pre-treatment

(“weeding”) with antibiotics (96). Evidence synthesized from >30

clinical trials that tested different probiotics for treating BV

suggests that Lactobacillus strain, its origin, route of

administration and pre-treatment status of participants are

important determinants of treatment outcomes (96). Many trials

tested single Lactobacillus strain-containing probiotics, frequently

not vaginal in origin, raising questions about whether one strain

would fit all the possible genetic and immunological

permutations of all potential recipients (97), regardless of

geography and genetics (98).

Two clinical trials have tested vaginally-delivered L. crispatus

CTV-05 (LACTIN-V), after metronidazole treatment (99, 100).

Both trials showed that the product was generally safe and

acceptable to women, significantly decreased recurrence of BV

and increased L. crispatus colonization among recipients. Short-

term cure rates of 100%, and long-term cure rates of 70% were

achieved, with BV by Amsel’s criteria being the endpoint.

However, efficacy of LACTIN-V appeared to depend on the

extent to which metronidazole “cured” BV (101), particularly the
Frontiers in Reproductive Health 06
extent of G. vaginalis clearance (102). Other factors that

influenced efficacy of LACTIN-V included condomless sex or

having menses, suggesting that semen and menstrual blood

affected CTV-05 colonization (100). While these products are

promising, the lack of microbiota data from Africa (in its

diversity) limits evidence-based live therapeutic product

formulation and subsequent clinical trials. No clinical studies

have yet evaluated the effect of live biotherapeutics for BV

treatment on reducing HIV infections.
Conclusion

The importance of a healthy vaginal microbiome and the

potential benefits of specifically tailored probiotics that contain

beneficial Lactobacillus strains is clear. The new approaches

being developed aim to maintain a healthy vaginal

environment following BV treatment, that may reduce HIV

risk in women. It is critical to focus on Africa to reveal and

harness our “missing microbes”, as these will provide the

foundations upon which microbiome-centred reproductive

health solutions will be built. If appropriately focused on

regionally-responsive microbes, these new approaches will have

the greatest probability of being sustainable and efficacious for

all Africa’s women.
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