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Endometriosis is a common but poorly understood disease. Symptoms can begin

early in adolescence, with menarche, and can be debilitating. Despite this, people

often suffer several years before being correctly diagnosed and adequately treated.

Endometriosis involves the inappropriate growth of endometrial-like tissue (including

epithelial cells, stromal fibroblasts, vascular cells, and immune cells) outside of the uterus.

Computational models can aid in understanding the mechanisms by which immune,

hormone, and vascular disruptions manifest in endometriosis and complicate treatment.

In this review, we illustrate how three computational modeling approaches (regression,

pharmacokinetics/pharmacodynamics, and quantitative systems pharmacology) have

been used to improve the diagnosis and treatment of endometriosis. As we explore

these approaches and their differing detail of biological mechanisms, we consider how

each approach can answer different questions about endometriosis. We summarize the

mathematics involved, and we use published examples of each approach to compare

how researchers: (1) shape the scope of each model, (2) incorporate experimental and

clinical data, and (3) generate clinically useful predictions and insight. Lastly, we discuss

the benefits and limitations of each modeling approach and how we can combine these

approaches to further understand, diagnose, and treat endometriosis.

Keywords: endometriosis, hormone therapy, computational, machine learning, systems biology, mechanism,

biomarker, pharmacokinetics

INTRODUCTION

Endometriosis: A Complex Disease
Although observations of endometrial-like cells growing outside of the uterus were made as
early as the nineteenth century (1), endometriosis remains a significant and understudied public
health challenge. Endometriosis is estimated to afflict 10% of menstruators and 20–25% of
women undergoing surgery due to infertility or pelvic pain (2, 3). One challenge to estimating
this prevalence is the variability in endometriosis presentation—with some only discovering
endometriosis incidentally during surgery and others living with a wide range of debilitating
symptoms (4). People with symptomatic endometriosis suffer an average of 7 years before
diagnosis, a delay exacerbated by the lack of a non-surgical diagnostic for the disease (5). There
is no cure for endometriosis. Rather, those with suspected or diagnosed endometriosis must decide
how to combine interventions that primarily address symptoms (e.g., hormonal contraceptives
and hysterectomy) and those that target endometriosis lesions specifically (e.g., ablation or
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excision surgeries). Unfortunately, all of these interventions
affect a patient’s ability to conceive and have 5 year symptom
recurrence rates ranging from 10 to 62% (6).

Endometriosis patients are typically staged by the visual
appearance of lesions and adhesions according to the American
Society for Reproductive Medicine’s revised system. However,
this staging does not correlate with patient symptoms or
treatment outcomes (7). Looking beyond visual characteristics,
clinical and experimental studies suggest that the growth and
survival of lesions is enabled by a combination of immune
dysfunction, hormone dysregulation, and aberrant blood vessel
development (8–10). Specifically, endometriosis patients have
been observed to have differences in progesterone receptor
expression and functioning (11, 12), in peritoneal cytokine
profiles, and in immune cell functioning (13, 14)—which all have
the potential to interfere with the efficacy of pharmacological and
surgical interventions.

To understand how such complex systems can contribute
to patient symptoms and treatment outcomes, we need to
integrate quantitative and computational approaches with
clinical and experimental techniques. Researchers have created
mathematical models to predict patient diagnoses and treatment
outcomes based on symptoms, measurements, and medical
history. However, as the success (and failure) of therapies is
increasingly recognized as dependent on system-wide biological
differences, computational models will need to expand in order
to understand the mechanisms connecting these differences to
clinical presentations and treatment outcomes.

In this review, we will first summarize how mathematical
models have been used and modified over the years to study,
diagnose, and treat endometriosis (in section “Systems Biology
and Computational Models of Endometriosis”). We will
then explore three mathematical modeling approaches to
endometriosis that each take advantage of increasing detail
in biological mechanisms. For each modeling approach,
we will investigate their design, use of experimental and
clinical data, and the insight they provide. Lastly, we
will discuss current limitations in mathematical modeling
of endometriosis and possible future directions in the
conclusion section.

Systems Biology and Computational
Models of Endometriosis
Systems biology is an integrative approach to investigating how
genetic, cellular, and tissue level differences can influence an
organism’s physiology. This could include using quantitative
measurements, ranging from in vitro cell culture experiments
to various clinical observations, to extensively characterize a
biological system. These experimental and clinical data can then
be analyzed using mathematical and computational modeling
approaches to make predictions about how the biological system
behaves under various conditions (Supplementary Table 1). But
how do we represent this system complexity meaningfully
in a model? There are several ways, with different levels of
mechanistic detail.

Regression and Machine Learning
Early computational models of endometriosis to have impact
on the clinic were regression models that helped develop
non-surgical screening tools for endometriosis in symptomatic
women [reviewed in (15)]. Regression is a form of machine

learning and is primarily data-driven, basing predictions (e.g.,
the probability of a patient having endometriosis) on measurable
characteristics (e.g., differences in age, weight, pain qualities,
subfertility, etc.) without including any causal relationships.
More advanced forms of regression modeling, such as mixed-
effects modeling, have been used to identify symptom-based
subtypes of endometriosis patients using electronic heath records
(16) and patient self-reporting (16, 17). The findings of these
models have aided in diagnosing endometriosis (discussed in
section “Diagnosing Endometriosis—RegressionModeling”) and
evaluating endometriosis treatment strategies (section “Gaps in
Modeling Endometriosis and Opportunities for Future Models”).

With the advent of techniques to collect and analyze patient
samples, researchers have identified possible biomarkers for
endometriosis using measurements from the peritoneal fluid,
blood, urine, eutopic endometrium, and more [reviewed in
(18)]. Regression modeling has been used here to identify
associations between endometriosis and gene expression
regulators (19), cytokines, angiogenic factors, and growth factors
(20). Additionally, other machine learning techniques have
been used to identify and explore the significance of molecular
abnormalities found in endometriosis (14, 21–23).

Mechanism-Based Modeling
In contrast to data-driven models, which base predictions on
how biological components (e.g., patient features, protein levels,
etc.) may be associated with a phenomenon (e.g., diagnosis or
therapy response), mechanism-based models incorporate and
attempt to understand the “how” in these associations. In other
words, mechanism-based models use equations that reflect how
components interact in space and time within a specific context
(e.g., drug or antigen exposure) to affect said phenomenon (24)
(Table 1). In applying a mechanism-based approach, systems
biologists can synthesize experimental data from independent
studies as they simulate experiments done in cell culture, animal
experiments, and clinical trials. This has enabled the prediction of
drug interactions, establishing the fields of quantitative systems
pharmacology (28) and systems toxicology (29).

Early mechanism-based modeling relevant to endometriosis
predicted ovarian follicle maturation in response to hormone
cycling (30). Since then, several papers have expanded
these models to predict the effects of exogenous hormones
in people with normal menstrual cycles and in people
with polycystic ovary syndrome [reviewed in (31)]. More
recently, models with increasing levels of mechanistic
detail have been developed to optimize hormonal therapies
for treating endometriosis and other estrogen-associated
conditions while minimizing adverse events [discussed in
sections “Treating Endometriosis—Pharmacokinetic and
Pharmacodynamic (PK-PD) Modeling” and “Modulating
the Menstrual Cycle—Quantitative Systems Pharmacology
(QSP) Models”].
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TABLE 1 | Overview of mechanism-based modeling and discussion in this review.

Defining feature of

“mechanism”

Presence in regression modeling

to diagnose endometriosis (25)

Presence in PK-PD modeling

in treating endometriosis (26)

Presence in QSP modeling

of menstrual cycle modulators (27)

Phenomenon Endometriosis diagnosis Therapy delivery and effect on ovarian cyst

formation

Therapy delivery and effect on ovulation

Context Patients seeing clinicians for pain

and/or infertility, without previous

diagnosis

Patients receiving therapy

(Intravaginal ring containing anastrozole and

levonorgestrel)

Patients receiving therapy

(Gonadotropin-releasing hormone analogs)

Components Patient attributes (e.g., symptoms,

characteristics, medical history) that

may contribute to diagnosis

Patient attributes, drug, and endogenous

molecules that affect response to therapy

Drug, cells, and endogenous molecules (e.g.,

hormones and receptors), that affect response to

therapy

Spatial arrangement

&

Temporal relationships

(Not modeled) Drug transport from intravaginal ring to

non-specific body compartments

Synthesis, transport, and interactions between

components throughout the hypothalamus,

pituitary, and ovaries

A biological mechanism includes all five features in the first column of this table [defined in (24)].

FIGURE 1 | Structure of logistic regression models for diagnosing endometriosis. Logistic regressions calculate the odds and probability of a binary outcome (e.g.,

positive endometriosis diagnosis) using measurements taken across several predictor variables (e.g., patient observations). The model parameters, the β coefficients,

are identified by applying the logistic regression model to a many-patient data set for whom the outcomes are known, and these coefficients can then be used with

new patient data to predict the likelihood of endometriosis in that patient.

Comparing Modeling Approaches (Scope, Data,

Impact)
For all models, careful selection of scope is key—in other words,
modelers choose which variables and parameters are included
and which are not. What’s included in the model will in turn
affect how clinical and experimental data are used to create and
validate the model. As a result, these modeling approaches will
differ in the insight they can provide to clinical decisions and the
impact this may have on patients. In this review, we compare how
three computational studies design their model scope, use data,
and impact clinical decisions.

DIAGNOSING
ENDOMETRIOSIS—REGRESSION
MODELING

Motivation for Logistic Regression
Modeling
The current “gold standard” for diagnosing endometriosis
is laparoscopic surgery followed by histology to identify
endometrial-like growths in the abdomen (5), but this surgery has
several limitations that have led to it being commonly postponed

or avoided. These include: its high cost, potential complications,
and the need for a highly skilled endometriosis surgeon (32).
Instead, blood tests, pelvic examinations, and ultrasound imaging
are done to rule out other disorders. Of these methods,
only ultrasound imaging can detect endometriosis; however,
it is limited to only detecting one form of disease (ovarian
endometriotic cysts) (20). As a result, researchers have turned to
logistic regression to answer the question: Can a combination of
clinical observations reliably predict endometriosis?

Use of Logistic Regression Modeling to
Guide Diagnosis
A logistic regression model estimates the probability of a binary
outcome, such as having or not having endometriosis, using a set
of independent observations about a patient as predictors (33).
Regressionmodels include components (Figure 1), in the form of
these predictor variables, but they are not modeled as having any
spatial or temporal relationships with one another; hence, these
models are not considered mechanism-based (Table 1).

In medicine, logistic regression modeling is commonly
applied to establish clinical scales, to identify risk factors for
a disease, and to develop recommendations for treatment. For
endometriosis, findings from logistic regression and related
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FIGURE 2 | Overview of model development and validation by Nnoaham et al. (25). (A) The authors created their models using a set of 771 patients. (B) They then

evaluated the performance of this model using a ROC curve to identify probability thresholds for classification that produce a specificity and sensitivity within the

optimal range. (C) They further validated the model by first updating it with new predictor variable values for a separate set of 625 patients (leaving the β coefficients

as they were) and then creating a new ROC curve.

modeling have been cited as evidence for diagnosis guidelines
[e.g., guidelines in (5) reference modeling in (34, 35)].
Specifically, researchers have used regression modeling to predict
endometriosis from symptoms and medical history alone, blood
tests alone, imaging alone, and a combination of these data
sources (15).

Logistic regression does not require extensive prior knowledge
of the mechanistic underpinnings of the disease, which can be
difficult to ascertain. Instead, these models are entirely data-
driven, using patient data that includes their known outcomes
(e.g., diagnosis result) to predict the likely outcomes for other
patients. Given sufficient data, logistic regression can identify the
key elements that are predictive of endometriosis.

In this section, we will outline key points in creating a logistic
regression model, using modeling by Nnoaham et al. (25) to
illustrate these points. We discuss this study because it is one
of the largest efforts so far to develop a non-surgical diagnosis
for endometriosis, including more than 1,000 patients from 19
hospitals in 13 countries. The considerations detailed here will
serve as a comparison point in later sections, where models are
increasingly mechanism-based.

Example: Logistic Regression Modeling to
Identify Predictors of Endometriosis
As part of the Women’s Health Symptom Survey study in
2012, Nnoaham et al. (25) developed and validated symptom-
based predictive models to predict the probability of a patient
having endometriosis prior to any diagnostic surgery (Figure 2).
The patients in their study all suffered from pelvic pain
and/or infertility and answered over 200 questions, detailing
their demographics, medical history, and symptoms. The
effect of including any preoperative ultrasound data was also
explored (25).

The authors used logistic regression to calculate the
probability that a patient would visually be diagnosed with
endometriosis at laparoscopy based on a combination of the
patient observations. The authors also calculated the probability
of finding “moderate” to “severe” endometriosis, according
to the revised American Society for Reproductive Medicine
classification system (r-ASRM stages III-IV) (25).

Model Scope
For logistic regression models, researchers identify and include
only the strongest predictor variables. Although models with
many predictor variables may appear more accurate in fitting
the training data, they can struggle to predict outcomes for new
patients. To avoid this overfitting, researchers narrow the number
of predictor variables included in their model, ideally having at
least 10 patients for each predictor variable included (33).

Nnoaham et al. (25) identified which of the 200+ patient
characteristics to include as predictor variables in their model
by first grouping clinically-related predictors and then iteratively
removing the predictor(s) in each group with the least significant
association with endometriosis. Each of these reduced predictor
groups were then combined, and the process was continued
until each of their models included 18–25 predictor variables
(i.e., one predictor variable for every 30–43 patients in their first
patient set) (Figure 2A). These predictor variables had differing
influence on the model’s odds prediction, both in terms of sign
and magnitude, which was reflected by their estimated regression
coefficients (β). This approach to selecting model variables
allowed the authors to minimize redundancy in predictor
variables while maximizing how well the reduced model fit
the data. Importantly, this process of forming model equations
was primarily data-driven; meaning, mechanistic knowledge of
how variables interact or contribute to disease was not used in
selecting model variables or parameters (regression coefficients).
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Data Usage
Logistic regression models are typically created using data from
one study. If multiple studies are modeled, these studies must
measure the model predictor variables and outcomes in a
similar manner.

In constructing these models, Nnoaham et al. (25) used data
from the Women’s Health Symptom Survey study. As part of
model development, all 1,396 patients in this study completed
the same survey prior to their diagnostic surgery. This survey
could capture a wide range of the patients’ experiences, including
predictor variables that were linear (e.g., age, average cycle length,
menstrual flow) and categorical (e.g., ethnicity). Importantly, it
was necessary for patients across the 19 hospitals to undergo the
same assessment for the modelers to form a single estimate of the
model parameters (the regression coefficients) that could predict
the outcome (the diagnosis result) for all patients.

Clinical Impact
Through creating logistic regression models, researchers can
identify a combination of characteristics that are highly
predictive of a disease or treatment outcome. Clinicians can then
use these findings to motivate further actions for patients with
these characteristics. Hence, regression modeling aims to aid
in the development of a less invasive diagnostic that correctly
predicts endometriosis in those that have it (i.e. has a “high
sensitivity”). Correctly identifying non-endometriosis patients
(“specificity”) is also important—although less so if using this
diagnostic to prioritize patients with subfertility for laparoscopic
surgery, since laparoscopy can also identify other factors affecting
fertility (36).

By constructing their model on one patient population, and
evaluating it on a second, Nnoaham et al. (25) could assess how
well their models would perform if applied to new patients.
To evaluate their models, Nnoaham et al. (25) generated ROC
curves (Figures 2B,C, Box 1) and found that their best model
for diagnosing r-ASRM stage III-IV endometriosis achieved a
sensitivity of 82.3% and specificity of 75.8% for their second
set of patients. This sensitivity and specificity are sufficient if
this predictive model is applied to develop recommendations for

performing surgery to diagnose and treat endometriosis earlier—
which is the usage that Nnoaham et al. (25) advocates for. This
sensitivity would be insufficient if these model predictions were
to be considered as exclusion criteria for diagnostic surgery or
treatment, as∼18% of endometriosis patients would be missed.

Summary
As shown here, regression models serve as valuable tools
for identifying patient characteristics that can predict disease
or treatment outcomes. Importantly, this modeling does not
explain the “how” in this association, as in: “how do these
patient characteristics contribute to endometriosis and treatment
outcomes?” To answer this question, researchers must model
the mechanisms by which components within the system affect
each other.

TREATING
ENDOMETRIOSIS—PHARMACOKINETIC
AND PHARMACODYNAMIC (PK-PD)
MODELING

Motivation for PK-PD Modeling
Medicinal approaches for treating endometriosis primarily aim
to manage symptoms but have limited efficacy, with symptoms
often recurring once a patient stops treatment (38). As a first-
line therapy, many patients presenting with a combination
of chronic pelvic pain or pain during menstruation, sex, or
urination will take medications such as NSAIDS and hormonal
contraceptives (38). For those with persistent pain and confirmed
endometriosis, therapeutic options can include gonadotropin-
releasing hormone (GnRH) analogs and aromatase inhibitors (5).
These second- and third-line therapies are effective in treating
chronic pelvic pain through suppressing estrogen, thereby
inhibiting the growth and survival of endometriosis lesions (8,
39). However, GnRH analogs and aromatase inhibitors can be
associated with severe hypoestrogenic effects, such as decreases in
bone mineral density (38). Emerging clinical trials aim to identify
novel therapeutic strategies for treating endometriosis with
increased safety through applying an array of pharmacokinetic
(PK) and pharmacodynamic (PD) modeling approaches. Here,

BOX 1 | Sensitivity, Speci�city, and ROC.

A model is assessed by creating a receiver operating characteristics (ROC) curve. The ROC curve shows the values for the true positive rate (“sensitivity”) vs. the

false positive rate (1-“specificity”) at every possible probability threshold for classification (37).
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PK modeling is applied to answer the question: How much
drug will a patient be exposed to over time? PD modeling then
considers: As drug exposure varies, how much of a physiological
response can be expected?

Use of PK-PD Modeling to Treat
Endometriosis
Although treatments for endometriosis are monitored in
circulating blood (“centrally”) many drugs are delivered to or
act throughout peripheral sites. To predict drug exposure or
efficacy, we need a way to connect these sites. Pharmacokinetic
modeling connects these central and peripheral sites through
equations that predict the concentration of a drug as it is
absorbed, distributed throughout the body, and eliminated
via metabolism or excretion. Pharmacodynamic modeling
uses these estimated and monitored drug levels to predict
the onset, duration, and intensity of response to that drug
(40). Population PK-PD models incorporate variability in
select model parameters based on differences between patients
(e.g., body mass, age, and genetic background), allowing for
simulations of larger virtual populations to better inform
recommendations (Figure 3).

The commonly applied two-compartment (central and
peripheral) pharmacokinetic model incorporates all five elements
of mechanism (Table 1)—modeling how a component (drug)
moves through space and time in the context of drug dosing in
order to predict phenomena, such as drug efficacy or toxic effects.
Unlike regression modeling (Figure 1), pharmacokinetic models
are composed of differential equations, where the variables are
the concentration (or amount) of each component and the
parameters are the rate constants representing how fast reactions
and transitions between components and compartments occur
(Figure 4).

FIGURE 3 | Relationship between pharmacokinetic (PK), pharmacodynamic

(PD), and population PK-PD modeling. These three modeling modalities can

be used to make predictions about treatment from drug dosing to resulting

effects, on an individual and population scale.

Because of this structure and level of mechanistic detail,
pharmacological models are ideal for simulating and comparing
different dose amounts, regimens, and delivery sites for
endometriosis therapies under development. By developing PK-
PD models with additional mechanistic detail, researchers have
been able to identify endometriosis patients with a genetic
favorability for a GnRH antagonist (41), predict changes in bone
mineral density following long-term GnRH antagonist treatment
of endometriosis (42), and interrogate the role of chosen delivery
method in the efficacy of combination progestin therapies (43).

As we discuss the unique considerations in population PK-PD
models, we will use (26) as an example. This study by Reinecke
et al. applied PK-PD modeling to select doses to be used in phase
2 of a clinical trial for an endometriosis therapy. In addition to
modeling the distribution of the therapy throughout the body,
this model predicted the influence of endogenous proteins on
drug efficacy and adverse events in patients. This study is also
of interest because of its application of multiscale data—ranging
from in vitro experiments to animal experiments and previous
phase 1 studies—to select the equations and parameters for
this model.

Example: PK-PD Modeling to Design
Clinical Trials
In 2017, Reinecke et al. (26) used population PK-PD modeling
to guide the development of an intravaginal ring (IVR),
delivering the aromatase inhibitor anastrozole (ATZ) and
the progestin levonorgestrel (LNG) for long-term, localized
treatment of endometriosis and associated pain (26). This new
approach to treating endometriosis targets estrogen production
in endometriotic lesions through local inhibition of aromatase,
therebyminimizing systemic hypoestrogenic effects. This therapy
also includes a progestin to provide contraception because ATZ
is a teratogen (44).

Population PK-PD modeling was used to identify doses
that would achieve therapeutic levels of ATZ and LNG while
minimizing the risk of ovarian cysts in a phase 2 clinical trial
(EudraCT 2013-005090-53; NCT02203331) (26). These PK-PD
models use ordinary differential equations (ODEs) to predict the
levels of drugs in the body over time and the associated risk of
developing ovarian cysts.

Each drug was modeled using a two-compartment model
as a basis (Figure 4). Using data from in vitro and animal
studies alongside their mechanistic understanding of the system,
Reinecke et al. (26) amended the ATZ and LNG base models to
more closely match the outcomes of a phase 1 clinical study in
humans (EudraCT 2011-005620-18). As a result, these models
included delivery via an intravaginal ring. In addition, since LNG
predominantly binds to and influences the production of sex
hormone binding globulin (SHBG) in serum, the LNGmodel also
included the influence of LNG on SHBG (and vice versa) and
the additional influence of circulating estradiol (E2) on SHBG
(Figure 5).

Model Scope
In contrast to regression models, where deciding the scope
was fully data-driven, the equations in pharmacological models
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FIGURE 4 | Structure of basic two-compartment pharmacokinetic model. (A) Schematic of continuous processes represented in a two-compartment model. (B) The

two ordinary differential equations (ODEs) used here describe the rate of change in concentration of the drug in the central and peripheral compartments over time as

a result of these processes occurring. PK models can be more or less complex, with different compartments and processes included as needed to fully describe the

drug being investigated in the simplest reasonable form.

FIGURE 5 | Structure of Reinecke et al.’s (26) population pharmacokinetic

models for an intravaginal ring that delivers anastrozole (ATZ) and

levonorgestrel (LNG). These models include the influence of estradiol (E2 ) and

LNG on sex hormone binding globulin (SHBG), and vice versa. Solid lines

represent a mass flow; dashed lines represent an indirect influence – as

described in Reinecke et al. (26).

can be developed in both a mechanism-based and data-
driven manner. In constructing a pharmacokinetic model,
researchers can consider the biology of a drug and its interactions

within the body to better understand and improve upon
the therapy.

For example, Reinecke et al. (26) chose to include sex hormone
binding globulin (SHBG), a circulating protein that binds the
delivered LNG and endogenous estradiol (E2). LNG and E2
were both modeled as indirect influences on the rate that SHBG
is produced (Box 2). Inclusion of these molecules allowed the
researchers to explore the role of SHBG in contraceptive efficacy
and ovarian cyst formation. As a result, the simulations were able
to capture fluctuations that appeared in clinical measurements.
By including E2 and SHBG in their model, Reinecke et al. (26)
could also explore the influence of observed inter-individual
variability, such as variability in SHBG and E2 baseline levels, as
they made population-level predictions.

Data Usage
Pharmacological models are created using data that characterize
the mechanisms contributing to drug delivery and response.
Unlike regression modeling, this data can come from multiple
independent studies that assess different aspects of the
biological system. Hence, processes affecting a drug can be
evaluated in isolation prior to being incorporated into a
pharmacokinetic model.

Reinecke et al. (26) used data from in vitro experiments
measuring daily release from an intravaginal ring to create and
parametrize equations describing delivery via the intravaginal
ring, specifically. In using this data, they assumed that a ring
under their bench-top conditions releases drug in a similar
manner to a ring within a vagina, which they support using
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BOX 2 | Differential equation for SHBG from Reinecke et al. (26) model.

The model for SHBG in the blood over time [SHBG (t)] includes terms

that affect its production and loss, which have rate constants kin and kout,

respectively. The production term is influenced by delayed inhibition by LNG

and induction by E2, which scale rate constant kin by a factor of −ri and

+rs, respectively. The loss term is linearly proportional to the level of SHBG in

the blood.

d

dt
SHBG (t) = +kin ∗

(

1− ri ∗ LNGdelay (t) + rs ∗ E2
)

− kout ∗ SHBG (t)

evidence from a preclinical study conducted in cynomolgus
monkeys. This in vitro data was used in combination with phase
1 clinical data, which included plasma drug concentrations and
drug remaining in the ring at the end of treatment, to create
and parametrize their model. As a result, this model can predict
multiple patient outcomes over time, including: the level of drug
in the intravaginal ring, serum concentrations of the delivered
drugs (LNG and ATZ), as well as the levels of influencing
molecules (E2 and SHBG).

Clinical Impact
Clinical researchers use pharmacokinetic modeling to explore
drug dosing in populations or treatment groups. In addition,
by integrating these PK models with pharmacodynamic (PD)
models, clinical researchers can predict drug effects and identify
predictors for adverse events.

Once Reinecke et al. (26) confirmed their simulations
matched the phase 1 (EudraCT 2011-005620-18) results for three
intravaginal ring formulations, they used their models to simulate
additional doses of ATZ and LNG. These researchers were then
able to identify three additional ATZ doses for a phase 2 trial.
They used modeling to identify doses that could achieve the
minimum effective concentration for all patients, while having
minimal overlap between treatment groups, thereby maximizing
the potential insight gained. Remarkably, the predictions from
Reinecke et al. (26) closely matched results from a subsequent
phase 2 study in endometriosis patients (45) (Figure 6).

Furthermore, Reinecke et al. (26) created a PK-PD model
in order to predict the effect of LNG and ATZ exposure on
ovarian cyst formation. They compared the predicted probability
of developing ovarian follicles ≥ 30mm between several PD
models, which varied in the relative influence of ATZ and
LNG exposure. They selected the best model by comparing the
predicted probabilities to the observed fraction of patients with
enlarged follicles found during ultrasound. In the end, they found
that increasing unbound LNG levels are more predictive of large
follicle formation than increasing ATZ levels. This model could
be used to predict the risk of developing ovarian cysts for the
doses they were selecting for phase 2 of their clinical trial.

Summary
As shown through the Reinecke et al. (26) example, population
PK-PD modeling can be useful in deciding study treatments,

FIGURE 6 | Agreement between pharmacokinetic simulation predictions and

subsequent clinical trial results. X-axis: Simulation predictions for mean plasma

ATZ concentrations 28 days following ring placement (C29) in low-dose (290

µg/day), medium-dose (630 µg/day), and high-dose (1,080 µg/day) treatment

groups. Horizontal error bars represent the 5th and 95th percentiles. Adapted

from Reinecke et al. (26). Y-axis: Observed median plasma ATZ concentration

as average of measurements taken 28, 56, and 84 days following first ring

placement (Css) in low-dose (300 µg/day), medium-dose (600 µg/day), and

high-dose (1,050 µg/day) treatment groups from a phase 2b clinical trial.

Vertical error bars represent the 10th to 90th percentile. Adapted from Nave

et al. (45).

simulating population heterogeneity, and predicting treatment
response using information from in vitro, animal, and human
studies. These insights inform the design of clinical trials and,
ultimately, how a drug is used to treat disease. Differing from
the logistic regression model, PK models predict changes in
component concentrations over time, painting a dynamic picture
of the system. Although the base two-compartment model is
quick to create and often resembles typical drug exposure, this
approach limits the questions researchers can address through
modeling. As such, modelers often choose to include more
mechanistic detail in their PK model and incorporate population
variability in parameter values, as Reinecke et al. (26) has done.

MODULATING THE MENSTRUAL
CYCLE—QUANTITATIVE SYSTEMS
PHARMACOLOGY (QSP) MODELS

Motivation for QSP Modeling
Endometriosis treatment is complicated by the systemic effects
of estrogens, gonadotropins, and related hormones throughout
the menstrual cycle. Therefore, there is significant interest in
understanding and predicting the effects of therapies that perturb
the cycle, such as gonadotropin-releasing hormone (GnRH)
analogs, aromatase inhibitors, and progestins, on endometriosis
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and subfertility. To do so, mechanism-based systems biology
models have been created using differential equations to describe
systemic hormone fluctuations that occur during the menstrual
cycle (31). Quantitative systems pharmacology (QSP) connects
pharmacokinetic (PK) models of hormone-modulating therapies
with models of those hormones and of endogenous protein
signaling in order to further study the effect of these drugs on
the body. In contrast to pharmacodynamic (PD)modeling, which
predicts the change in magnitude of a physiologic response,
QSP modeling allows us to consider: What are the underlying
mechanisms contributing to a physiological response and how
can they be best therapeutically targeted?

Use of QSP Modeling to Develop
Treatments for Endometriosis
Quantitative systems pharmacology (QSP) integrates systems
biology approaches with both data-driven and mechanism-based
computational techniques to understand and optimize therapies
(28). Upon first glance, the structure of QSP models resembles
that of PK-PD models, using differential equations to represent
changes in proteins in the system over time (Figure 4). But
while PK-PD models tend to be drug-centric (predicting the
distribution and effects of exogenous compounds), QSP models
also focus on processes endogenous to the body. QSPmodels thus
allow us to answer questions that are more mechanism-focused
than typical PK-PD models, because they model the influence
of molecules from the sub-cellular to multi-organ levels, thereby
including more components interacting over more spatial and
temporal scales (Table 1).

QSP models have been created to explore the effects of
therapies on protein signaling that impacts endometriosis. For
example, Riggs et al. (46) expanded upon a mechanism-based
model of bone remodeling (47) to study the effects of therapeutic
estrogen-suppression to treat endometriosis (46). Importantly,
Riggs et al. (46) combined their QSP model with a logistic
regressionmodel to assess howwell patients’ estrogen levels could
predict their endometriosis-related pain severity—illustrating
how the models discussed in this review can be used in harmony
(46). In addition, QSP models have been used to predict in
vivo treatment outcomes from in vitro systems, such as novel
microphysiological systems that include the endometrium (48).

Röblitz et al. (27) created a QSP model of hormone cycling to
aid in the development of GnRH analog therapies. GnRH analogs
are critical in treating several conditions, including: cancers,
uterine fibroids, and infertility (27). Although this study was
not focused on endometriosis, we are discussing it because they
model the GnRH antagonist, cetrorelix, which is used to treat
endometriosis (38). Here, we will explore how these researchers
integrated a highly mechanistic model of the menstrual cycle
with pharmacokinetic models of GnRH analogs in order to
compare treatments.

Example: QSP Modeling to Guide
Menstrual Cycle Modulation
Röblitz et al. (27) modeled key hormones that travel and signal
between the brain, ovaries, and the blood (Figure 7A). In the

body, and specifically included in the model, GnRH is formed
in the hypothalamus and transported to the pituitary gland
where it stimulates the release of the gonadotropins, luteinizing
hormone (LH) and follicle stimulating hormone (FSH), into
the bloodstream. LH and FSH exert their effects on processes
in the ovaries, which include follicular development, ovulation,
and the development of the corpus luteum. Through these
processes, the production and release of progesterone (P4),
estradiol (E2), and inhibins A and B (IhA, IhB) are regulated.
These circulating hormones signal back to the hypothalamus
and pituitary, affecting the formation and release of GnRH, LH,
and FSH.

Röblitz et al. (27) also created pharmacokinetic models of
GnRH analog delivery to connect to these highly mechanistic
models of the menstrual cycle. The delivery of GnRH agonist
and antagonist are modeled using a one- and two- compartment
PK model, respectively—similar to those previously described
(Figure 4). Röblitz et al. (27) incorporated the pharmacokinetic
model of the GnRH agonist, nafarelin, by modeling the drug
in the central compartment (circulating blood) as being able to
bind to and activate GnRH receptors, as natural GnRH does. In
contrast, the GnRH antagonist, cetrorelix, is modeled as being
able to bind to but not activate GnRH receptors (Figure 7B). In
this way, the administered drugs either act alongside or compete
with GnRH, thereby affecting the level of GnRH receptors
available to activate downstream signaling.

Model Scope
Howmuch physiological detail to include in a mechanistic model
is often a balance of the questions being explored and the
computational resources and data available.

This delicate balance is illustrated in comparing Röblitz et al.
(27) to Reinecke et al. (26). As discussed in the previous section,
Reinecke et al. (26) was primarily interested in predicting drug
exposure over time and how that affected the odds of ovarian cyst
development. As such, drug-protein interactions were primarily
modeled as indirect influences, either increasing or decreasing
the level of free drug in central circulation (Figure 5). In contrast,
since Röblitz et al. (27) sought to predict both drug exposure
and the effects on signaling throughout the menstrual cycle, these
researchers more directly modeled the physiologic processes that
together impact the delivery and effect of GnRH analogs. This
included hormone-receptor interactions in the brain and ovaries,
as well as ovarian follicle maturation (Figure 7). In contrast to
how Reinecke et al. (26) models the effects of E2 and LNG on the
level of SHBG (Box 2), Röblitz et al. (27) uses mass action kinetics
to represent each interaction and process that alters the level of
GnRH receptor on the cell surface (Box 3). By creating similar
equations for the processes affecting GnRH, other hormones, and
their receptors, Röblitz et al. (27) could accurately predict the
timing of ovulation under various treatment scenarios.

Although Röblitz et al. (27) models major hormonal and
physiological components of the menstrual cycle in significant
detail, they do limit theirmodel scope tominimize computational
load. For example, as Röblitz et al. (27) created equations to
model GnRH signaling, they avoided operating on the small time
scales (minutes) that had been previously used to model GnRH
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FIGURE 7 | Overview of Röblitz et al.’s (27) quantitative systems pharmacology model of the menstrual cycle and gonadotropin-releasing hormone (GnRH) therapies.

(A) This schematic shows where molecules are produced and whether they stimulate (green line/arrow head), inhibit (red line/flat head), or have a mixed effect (orange

line/both) on the production of other molecules in this model. The dotted circles labeled “Cellular Model(s)” represent processes affecting pituitary GnRH receptors and

ovarian LH/FSH receptors that have been modeled in detail. The delivery of GnRH agonist and antagonist are modeled using PK models that feed into the pituitary

cellular model. (B) The pituitary cellular model is summarized here. Each reaction has a unique reaction rate constant (k) that can depend on the receptor state (e.g.,

whether it’s internalized or the specific molecule it’s bound to). For simplicity, reactions involving an active complex have just been shown once; however, the rates of

these processes do depend on the receptors’ states, as described in Röblitz et al. (27).

pulsations. Röblitz et al. (27) acknowledges that not including a
more detailed GnRH pulsingmodel may be limiting their model’s
accuracy. However, this reduction in model parameters may
also be allowing for a more robust model—sacrificing a model’s
ability to perfectly predict one component (or scenario) often
produces a model that is better able to predict many components
(and scenarios).

Data Usage
Similar to PK-PD models, QSP models are created using data
from independent studies to characterize drug delivery and

effects. However, these researchers must use additional data to
model biological mechanisms on multiple scales, even more-so
than typical PK-PD models.

Like pharmacokinetic approaches, Röblitz et al. (27) created
and parametrized their model of hormone cycling (without
GnRH treatment) using daily hormone measurements taken
from 12 people with normal menstrual cycles. However, Röblitz
et al. (27) connected these models to cellular models of LH and
FSH in the ovaries, as well as GnRH in gonadotropic cells of
the pituitary (Figure 7B). At the cellular level, the rate of GnRH
receptor binding and trafficking were estimated using data from
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BOX 3 | Structure of differential equation for GnRH receptor from Röblitz

et al. (27).

This sub-model uses mass action kinetics to predict cumulative effect of

each process on the level of free (unbound) GnRH receptor on the surface

of pituitary cells over time [RG,a (t)]. These processes include (listed in order

they appear in this equation): binding and unbinding to endogenous GnRH,

receptor internalization and recycling—from and to the cell surface, and

receptor binding and unbinding to GnRH agonist (“Ago”) and antagonist

(“Ant”). The rate constant for each reversible reaction is represented by each

“k” term below, which are also shown in Figure 7B. Refer to Röblitz et al. (27)

for full details and equations.

d

dt
RG,a (t) = − kGon ∗ G (t) ∗ RG,a (t) + kGoff ∗ GR (t)

− k
RG
inter ∗ RG,a (t)+ k

RG
recy ∗ RG,i (t)

− k
Ago
on ∗ SFAgo ∗ Agoc (t) ∗ RG,a (t)+ k

Ago
off ∗ AgoR (t)

− kAnton ∗ SFAnt ∗ Antc (t) ∗ RG,a (t)+ kAntoff ∗ AntR (t)

an earlier model by Blum et al. (49)—this model estimated these
reaction rates using experimental measurements of gonadotropes
in culture. Through applying both clinical and in vitro data,
Röblitz et al. (27) was able to not only track the levels of cycling
hormones (e.g., LH, FSH, E2, P4, etc.) over time, but they could
also predict the concentrations of proteins that aren’t currently
measured in patients (e.g., LH-receptor and GnRH-receptor
complexes). This allows for a multi-scale understanding of how
treatments are affecting patients and can be further analyzed to
identify alternative therapeutic approaches.

Clinical Impact
QSP models include more biological components, such as
endogenous protein or hormone networks, than a typical PK-PD
model. Because of this, clinical researchers often use QSP models
to compare multiple therapeutic strategies and diseases.

The Röblitz et al. (27) model was successful in simulating not
only the levels of each drug over time, but also the resulting
fluctuations in patients’ hormone levels. This produced a versatile
model that could be used by clinical researchers to compare the
effects of dosing GnRH agonists and antagonists on hormone
cycling and the resulting effects on ovulation. As one example
of this utility: Through modeling, Röblitz et al. (27) found that
the GnRH antagonist, cetrorelix, delays ovulation in a manner
that is highly dependent on each patient’s drug clearance rate.
This suggests that if a patient’s plasma drug concentrations are
monitored in the first day of dosing, then a clinician may be able
to more accurately predict when ovulation will occur and when
subsequent doses may be necessary.

Furthermore, because the Röblitz et al. (27) model includes
both the direct targets of GnRH analogs (e.g., bound receptors)
and the indirect targets (e.g., developing follicles, circulating
hormones), this model can make predictions about system
behavior when anything in the model is perturbed. For example,
endometriosis is characterized as a hyper-estrogenic state.
Because estradiol is included in the model, this model could be

used to examine how elevated estradiol affects ovulation and
signaling within the menstrual cycle. In addition, exogenous
molecules that affect the hormones and receptors already present
could be explored with minimal adjustments or additions to
the model.

Summary
The Röblitz et al. (27) model combines approaches from
traditional PK-PD models with a highly mechanistic, QSP model
to compare the effects of GnRH agonists and antagonists on
people with normal menstrual cycles. This allows their model
to efficiently predict clinical measures while supplying more
insight into the biological processes affected by perturbations
caused by disease or treatment than a PK-PD model alone could.
Importantly, QSP models can be adapted to study different
disease or treatment cases. This may involve applying the model
to a new set of patients and/or adapting the model to include
additional disease-related biological processes, such as in Riggs
et al. (46). Ultimately, these highly mechanistic, systems biology
models aim to expand (in both number and complexity) the
biological questions researchers can explore.

CONCLUSION

Benefits and Limitations of Each
Computational Modeling Approach
In this review, we’ve explored three mathematical
modeling techniques that have been applied to improve
endometriosis diagnosis and treatment: regression, pharmaco-
kinetics/dynamics (PK-PD), and quantitative systems
pharmacology (QSP). Below, we’ll summarize the benefits and
challenges of each modeling approach and outline opportunities
for future modeling of endometriosis.

Regression models represent a data-driven approach;
meaning, they can be created without needing to start with a
detailed mechanistic understanding of the system. As a result,
regression models excel in identifying associations in data (e.g.,
which measured variables or combinations of variables are
strong predictors of endometriosis or of clinical outcomes)
without requiring advance knowledge of how these associations
contribute to disease. However, these models are limited in their
ability to explore the “how” in these associations.

PK±PD and QSP models both represent mechanism-based
approaches that can be used to predict how biological factors
will influence patient treatment. PK models are especially useful
for deciding drug dosing in clinical studies. Although base
compartmental PK models only predict the distribution of a
drug throughout the body, researchers can add details about
drug interactions within the body to the model (if that data
is available). This leads to the creation of a more mechanistic
PK-PD model. However, to better understand the role that
endogenous pathways play on any disease and treatment, a QSP
model is used.

QSP models closely resemble PK-PD models; however,
QSP models add more focus on the biological mechanisms
endogenous to the system. This leads to the inclusion of a wider
range of experimental data to parametrize a QSP model (e.g.,
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from molecular and cellular to tissue and multi-organ levels). As
a result, QSP models can simulate changes within a biological
system without any drug introduced—this is something PK
models do not do. QSP models thereby become increasingly
useful in interrogating the mechanisms underlying a drug
response and contributing to disease. QSP models are also well-
suited for comparing multiple disease and treatment scenarios.
However, these models can be more time- and knowledge-
intensive to create.

Gaps in Modeling Endometriosis and
Opportunities for Future Models
There are still many opportunities for the development
and improvement of computational models to diagnose and
treat endometriosis. Regression models need a large (many-
patient) dataset across multiple clinical centers [such as in
(25)] in order to have findings that can be generalized
to other endometriosis patients. As discussed in previous
reviews (15, 18), many studies on diagnostic indicators of
endometriosis either have too few patients to be generalized
or have yet to be validated with an independent patient
population. Additionally, regressionmodels predicting treatment
outcomes are less common, so have not been discussed here.
However, recent studies have used regression modeling to
predict the efficacy of assisted reproductive technology and
surgery on the fertility outcomes for endometriosis patients
(50, 51).

The limitations of PK-PD studies often relate to the availability
of sufficient data. How much data, and which data, is needed
to model a therapy’s delivery and effects will depend on the
properties of that specific therapy. Models can be augmented
with pre-clinical data and data from previous trials, as in
Reinecke et al. (26). Additionally, there has been increased use
of more mechanistic PK models, such as physiologically-based
PK models, for investigating drug-drug interactions of therapies
for endometriosis (42, 52). This could be due to the expanded
tools for establishing, analyzing, and submitting these models for
regulatory review (53, 54).

QSP models in general are a more recent approach.
Several QSP models have been created to investigate the
effects of hormone-modulating therapies on cell signaling
in people with normal menstrual cycles and in people with
polycystic ovary syndrome. So far, few of these models
have directly modeled the effects of these therapies in
endometriosis—with Riggs et al. (46) being one of the few.
These researchers created a mechanism-based model to predict
the effects of therapies on endometriosis symptoms and
bone mineral density (46). As endometriosis is known to
involve dysregulation in hormone, vascular, and immune
signaling networks, there are several opportunities to
use highly mechanistic computational modeling, such as
QSP, to further our ability to understand, diagnose, and
treat endometriosis.

For instance, the mechanism-based models of hormone
signaling outlined in this review could be adapted to study

the effects of hormones on endometrial tissue. One recent
study has connected a hormone signaling model to a newly
developed mechanistic model of endometrial changes during the
menstrual cycle, including terms to represent growth, shedding,
and blood vessel development (55). This and future studies can be
used to explore the effects of endometriosis-associated hormone
dysregulation on the endometrium.

Focusing on vascular and immune influences, researchers can
adapt mechanism-based models of protein-signaling in blood
vessel development (56) to study the impact of endometriosis
lesions producing pro-angiogenic cytokines [e.g., VEGF, IL-1β ,
IL-6, IL-8, etc. (9)]. Additionally, mechanism-based, systems
biology models can help us interrogate the interactions
between endometrial and immune cells in endometriosis. Since
endometriosis lesions and cancerous tumors share some immune
and vascular abnormalities, cancer models may serve as a
basis for this. For instance, macrophages are known to affect
endometriosis lesions as they differentiate, secrete cytokines, and
promote angiogenesis (13)—Mahlbacher et al. (57) have modeled
these macrophage behaviors within cancerous tumors. Lastly,
agent-based models (another mechanism-based approach) have
been created to study signaling and development of epithelial
tissues (58), such models can be adapted in order to investigate
the functioning of healthy and endometriotic epithelia within
organoid cultures.

Since each modeling approach yields distinct insight, data-
driven and mechanism-based modeling can and have been
used in concert to identify associations in biological data and
interrogate the underlying mechanisms of disease, respectively.
The harmony of these approaches was demonstrated as we
discussed previous QSP models (27, 47). By using a multitude of
computational modeling approaches, researchers can synthesize
multiscale experimental and clinical data to identify predictors
of endometriosis and design therapies. Furthermore, there are
exciting opportunities for developing mechanism-based models
to discern how disruptions in cell signaling affect immune,
vascular, and hormone systems, and ultimately, contribute
to endometriosis.
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