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Seasonal snowpack is a crucial water resource, making accurate Snow Water
Equivalent (SWE) estimation essential for water management and environmental
assessment. This study introduces a novel approach to Passive Microwave (PMW)
SWE estimation, leveraging the strong, unexpected correlation between SWE and
the Spatial Standard Deviation (SSD) of PMW Calibrated Enhanced-Resolution
Brightness Temperatures (CETB). By integrating spatial statistics, linear
correlation, machine learning (Linear Regression, Random Forest, GBoost, and
XGBoost), and SHapley Additive exPlanations (SHAP) analysis, this research
evaluates CETB SSD as a key feature to improve SWE estimations or other
environmental retrievals by investigating environmental drivers of CETB SSD.
Analysis at three sites—Monument Creek, AK; Mud Flat, ID; and Jones Pass,
CO—reveals site-specific SSD variability, showing correlations of 0.64, 0.82, and
0.72 with SNOTEL SWE, and 0.67, 0.89, and 0.67 with PMW-derived SWE,
respectively. Among the sites, Monument Creek exhibits the highest ML
model accuracy, with Random Forest and XGBoost achieving test R2 values of
0.89 and RMSEs ranging from 0.37 to 0.39 [K] when predicting CETB SSD. SHAP
analysis highlights SWE as the driver of CETB SSD at Monument Creek and Mud
Flat, while soil moisture plays a larger role at Jones Pass. In snow-dominated
regions with less surface heterogeneity, such as Monument Creek, SSDs can
improve SWE estimation by capturing snow spatial variability. In complex
environments like Jones Pass, SSDs aid SWE retrievals by accounting for
factors such as soil moisture that impact snowpack dynamics. PMW SSDs can
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enhance remote sensing capabilities for snow and environmental research across
diverse environments, benefiting hydrological modeling and water resource
management.
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(SHAP), soil moisture, surface variability

1 Introduction

Snow impacts a wide range of environmental and human
systems, such as water resources (Barnett et al., 2005; Li et al.,
2017), weather (Thackeray et al., 2019), ecosystems (Rixen et al.,
2022; Slatyer et al., 2022), agriculture (Qin et al., 2020; Huning and
AghaKouchak, 2020), recreation (Hoogendoorn et al., 2021),
transportation and infrastructure (Lu et al., 2020; Omatsu et al.,
2023), and hazards (Westerling, 2016; Li et al., 2019). It provides a
significant portion of the world’s freshwater through snowmelt to
about one-sixth of the global population (Huning and
AghaKouchak, 2020). The Western US is rapidly altering with
reduced snowpack and snowmelt runoff, shorter winters and
earlier spring melt (Adam et al., 2009; Cook et al., 2018).
Western communities and the US economy will face significant
consequences, including impacts on streamflow and water
availability (Barnett et al., 2005; Fazli et al., 2023). Given its
crucial role, monitoring and accurately estimating the snow water
equivalent (SWE) -the amount of water contained in the snowpack if
it were to melt (Chang et al., 1997) - is of regional and global
significance in both snow-covered regions and areas without snow.

Passive microwave (PMW) remote sensing (RS) offers a unique
potential for monitoring snow mass and SWE, as it can capture data
in clouds and darkness, along with providing an extended record
over the past 47 years (Tait, 1998; Pulliainen and Hallikainen, 2001;
Foster et al., 2005; Saberi et al., 2020), global coverage, and enhanced
resolution with the new National Aeronautics and Space
Administration (NASA) MEaSUREs Calibrated Enhanced-
Resolution Brightness Temperatures (CETB) products with a
spatial resolution ranging from 3.125 to 6.25 km (Brodzik et al.,
2016) as well as multiple observations per day. In the past, PMW
data were only available at a coarse spatial resolution (approximately
25 km or coarser), making it challenging to measure snowpack
properties in heterogeneous, high-relief regions (Johnson et al.,
2020), and gridding methods varied across different sensors.
Additionally, input swath data from the Special Sensor
Microwave Imager (SSM/I) and Special Sensor Microwave
Imager/Sounder (SSMIS) sensor series lacked cross-calibration.
To conduct reliable environmental record studies over the full
observation period, a systematically-gridded brightness
temperature product was needed. In response, (Brodzik et al.,
2016), developed the CETB data, which covers the entire PMW
record for Scanning Multi-channel Microwave Radiometer
(SMMR), Advanced Microwave Spectroradiometer for EOS
(AMSR-E), SSM/I, and SSMIS sensors and incorporates newly
available cross-calibration data for SSM/I-SSMIS (Sapiano
et al., 2012).

PMW RS can measure snow depth (SD) and SWE based on a
strong physical foundation, as it is sensitive to snow volume

scattering under dry conditions and can capture data in cloudy
and dark environments (Chang et al., 1982; Chang et al., 1987; Liang
and Wang, 2020; Saberi et al., 2020). Researchers have developed
various methods to retrieve SWE using PMW data, including
semiempirical, physical, statistical, and machine learning (ML)
techniques (Liang and Wang, 2020). Semiempirical algorithms,
such as those developed by Chang et al. (1982), Chang et al.
(1987), and Foster et al. (1997), provide practical approaches
based on empirical relationships between microwave brightness
temperatures (Tb) and snow properties. Physical models, like the
Dense Media Radiative Transfer (DMRT) model (Tsang et al., 1985)
and the Microwave Emission Model for Layered Snowpacks
(MEMLS) (Wiesmann and Mätzler, 1999), offer a theoretical
basis for understanding the interaction between microwaves and
(dry) snow. Statistical algorithms, demonstrated by (Kelly et al.,
2003; Jiang et al., 2010), use statistical relationships and
parameterizations to estimate SWE from microwave observations.
ML approaches like artificial neural networks (ANNs), support
vector machine (SVM), and random forest (RF), explored in
recent studies (Xiao et al., 2018; Yang et al., 2020; Ntokas et al.,
2021; Xiong et al., 2022; Wei et al., 2022; Tanniru and
Ramasankaran, 2023; Wei et al., 2023; Liu et al., 2024), are
emerging as powerful tools, leveraging large datasets and
complex patterns in microwave signals to improve estimation
accuracy. These techniques collectively enhance our ability to
monitor and understand snow dynamics and their impact on
hydrology and drinking water availability.

The limitations associated with PMW estimations of SWE are
well known, particularly those related to snowpack characteristics
and surface heterogeneity. Variations in snow conditions, such as
vertical dynamics in depth (e.g., grain size growth, densification),
can affect the accuracy of SWE estimations because variations in
snow density, layering, and compaction over time influence
microwave emissions (Mätzler, 1994; Vander Jagt et al., 2013).
Different snow layers and densities emit microwave signals
differently, leading to potential errors. Surface heterogeneity,
including horizontal dynamics such as vegetation, forest cover,
varied topography, and proximity to large bodies of water, causes
microwave signals to reflect or absorb differently, adding complexity
to SWE retrieval and potentially leading to inaccuracies (Figure 3)
(Mätzler, 1994; Foster et al., 2005; Vander Jagt et al., 2013; Saberi
et al., 2020). Moreover, the saturation effect, where sensitivity to
SWE diminishes beyond a certain threshold (SWE_max ≈
150–200 mm), can cause underestimation in deep snow
conditions (Cho et al., 2023). Considering these challenges, there
is a strong need to improve the accuracy of remotely-sensed SWE
estimations and better characterize snowpack dynamics to reduce
uncertainties, which is vital for hydrology, meteorology, disaster
management, and water resources management.
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In response to the above considerations, we propose and test a
novel approach to improve PMW SWE estimation accuracy,
utilizing the CETB data (Figure 1), newly available CETB spatial
statistics (calculated spatial standard deviation/“SSD”), and auxiliary
data. This approach focuses on leveraging the improved resolution
of CETB data and spatiotemporal variability information provided
by CETB SSDs. This paper introduces a new, unexplored dataset, the
CETB SSD, and demonstrates its importance in monitoring remote
regions and dynamic hydrological processes. The SSD of CETBs
could be a valuable metric for understanding the variability and
complexity of the snowpack and surface characteristics, which can
impact the accuracy of PMW SWE estimates. SSD can reveal the
spatiotemporal variability inherent in terrestrial snowscapes. We
hypothesize that the CETB SSDs can be interrelated with
spatiotemporal variations of the snowpack, a relationship that
has the potential to refine PMW SWE estimates. Fluctuations in
the snowpack’s characteristics, evidenced by changes in density,
depth, and moisture content, are anticipated to simultaneously
impact both SWE and SSD. This research proposes a novel
approach to improving SWE using PMW data by evaluating the
utility of newly available CETB pixel statistics, specifically “SSD”.

The primary goals of this study are as follows:

1. Test correlation between SWE and CETB SSD to identify
spatiotemporal patterns,

2. Assess the utility of CETB SSDs in improving the retrieval of
SWE and other environmental variables that may contribute to
spatiotemporal variability in SSD,

3. Enhance the accuracy of PMW SWE estimation for a
heterogeneous snowpack and surface conditions.

2 Materials and methods

2.1 Data collection

2.1.1 In-situ SWE data
Daily ground observations of SWE were obtained from the

Natural Resources Conservation Service (NRCS) SNOpack
TELemetry (SNOTEL) Network, available on the United States
Department of Agriculture (USDA) website (USDA, https://www.
nrcs.usda.gov/wps/portal/wcc/home/snowClimateMonitoring/, last
access: 15 September 2024) (SNOTEL, 2024). SNOTEL stations
provide automated measurements of SWE, SD, Precipitation, Air
Temperature (AirTemp), and other environmental parameters at
high-elevation sites. The network operates continuously, offering
hourly measurements, making it ideal for monitoring snowpack
changes over time. SNOTEL SWE is used for the Correlation
Analysis in Section 2.3.1. The spatial distribution of the selected
stations in the Western US is shown in Figure 2 and Table 1. The
time frame from January to December of the years
2000–2005 represents a temporal window with daily SNOTEL
and PMW observations, as well as other required data mentioned
in the following sections. This specific window was chosen
arbitrarily. Future work will extend this over a longer period of
record and over more sites.

2.1.2 PMW Calibrated Enhanced-Resolution
Brightness Temperatures (CETBs)

The Enhanced-resolution PMW data (CETB) uses the
radiometer version of the Scatterometer Image Reconstruction
(rSIR) method to generate enhanced-resolution data (Long and
Brodzik, 2015; Brodzik et al., 2016). The CETB dataset also
includes coarse resolution or GRD pixels produced using the
“drop-in-the-bucket” method at a 25 km spatial resolution, which
provides smoother data with lower noise and are most comparable
to legacy PMW datasets (also at 25 km). The rSIR pixels, which may
have greater noise, offer enhanced resolutions nested at 6.25 km
(16 times finer at 18/19 GHz) and 3.125 km (64 times finer at 36/
37 GHz) resolutions (Long and Brodzik, 2015; Brodzik and Long,
2018) (see Figure 1). There are three types of CETB spatial statistics:
1) GRD standard deviation (SDGRD), which represents the
standard deviation of measurements contributing to each pixel in
the GRD dataset, 2) rSIR standard deviation, provided with the
CETB data for each rSIR pixel, which reflects the standard deviation
of the differences between measured Tb and their forward
projections during reconstruction. This value is generally small
and consistent, except in regions with large spatial gradients,
indicating how well the reconstructed Tb field matches the
measurements, and 3) CETB SSDs, calculated from the
enhanced-resolution Tb data (64 rSIR pixels) for use in this

FIGURE 1
Low-vs. Enhanced-Resolution Concept; gridding techniques for
GRD (top) and rSIR (bottom) [Credit (Brodzik and Long, 2018)].
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paper, which represents the spatial variability within 64 rSIR pixels
corresponding to a single GRD pixel. CETB SSDs correlate strongly
with SDGRD and are sensitive to sub-pixel heterogeneity, making
them valuable indicators of spatial variability and change. This study
uses daily 37 GHz CETB version one observations from SSM/I
radiometer aboard the F13 satellite, at both 25 km and 3.125 km
spatial resolutions between 2000 and 2005.

The CETB data, including those used in this study, are freely
available for download from the National Snow and Ice Data Center
(NSIDC) at https://nsidc.org/data/nsidc-0630/versions/1. The
dataset provides enhanced-resolution Tb measurements, which
are essential for snow, ice, and environmental-related studies.

2.1.3 NASA GLDAS Noah version 2 data products
NASA’s Global Land Data Assimilation System (GLDAS) Noah

data, including SWE, Soil Moisture (SM), AirTemp, Surface
Temperature (SurfaceTempt), Albedo, Downward Short-wave

Radiation Flux (RadiationFlux), SD, Snowmelt, and Wind Speed
(WS) were utilized. These data are available at 3-h intervals, and the
daily mean values were computed across the 3-h intervals using
Google Earth Engine (GEE) to create a time series for each location.
The spatial resolution of the data is 0.25 × 0.25, approximately
equivalent to 27.75 km × 27.75 km at the equator (Rodell et al., 2004;
Beaudoing and Rodell, 2020). This resolution was downscaled to
approximately 25 km using aggregation methods in GEE, which
closely aligns with the 25 km resolution typical of legacy PMW data
and CETB GRD, facilitating direct comparisons and integrations of
datasets from different sources. The downscaling was achieved by
applying a mean reducer over each 25 km grid cell, computing the
average value of all pixels within a 25 km radius around each
SNOTEL site. Currently, the mean value of all pixels within the
25 km grid cell is computed using a simple unweighted average,
meaning each pixel contributes equally to themean, regardless of the
percentage of its area that overlaps with the 25 km grid cell. The

FIGURE 2
SNOTEL study sites and their respective landscapes, showing different environments in AK, ID, and CO. The right panel displays site landscapes: the
top shows MC, AK (Tundra/Boreal Forest Snowpack); the middle shows MF, ID (Prairie); and the bottom shows JP, CO (Boreal Forest Snowpack, Rocky
Mountain National Park) (Liston and Sturm, 2021).

TABLE 1 Site information.

Site Lat., Lon. (DD) Elev. (m) Elev. Range (m)1

Monument Creek, AK 65.08, −145.87 564 7902

Mud Flat, ID 42.60, −116.56 1746 2963

Jones Pass, CO 39.76, −105.91 3178 12403

1The elevation range is calculated within an approximate area of 5.5 km surrounding the site.
2ArcticDEM with 2 m resolution (Porter et al., 2018).
3Shuttle Radar Topography Mission (SRTM) Digital Elevation Model with 30 m resolution (Farr et al., 2007).
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inclusion of SM, AirTemp, Albedo, RadiationFlux, SD, Snowmelt,
and WS, along with SWE, is pivotal in exploring how these factors
interact with CETBs and their SSD across the terrain using ML
methods.GLDAS SWE is used for the Feature ImportanceAnalysis in
Section 3.2. Each variable provides critical information about land
surface conditions as shown in Table 2 (Rodell et al., 2004). These
variables were selected to help understand and explain the key
drivers behind CETB SSD variability and its relationship with SWE.
Each of these environmental factors can influence snowpack
dynamics, land surface conditions, and microwave emissions,
making them critical for identifying the processes that contribute
to SSD variations. The GLDAS data products, including these
variables, are available for download through NASA’s Goddard
Earth Sciences Data and Information Services Center (GES
DISC) at https://ldas.gsfc.nasa.gov/gldas (last accessed:
3 October 2024).

2.1.4 MODIS NDVI
The Normalized Difference Vegetation Index (NDVI) dataset

from the Moderate Resolution Imaging Spectroradiometer
(MODIS) sensor aboard the Terra satellite was used to analyze
vegetation trends at the three study sites (Didan, 2015). The
MODIS NDVI data is available at a native spatial resolution of
500 m, with data processed between 2000 and 2005. The GEE
platform was used to extract daily NDVI values over the study
period. To facilitate comparison with other datasets, the NDVI
data was aggregated to approximately 25 km resolution,
computing the average NDVI within a 25 km radius around
each SNOTEL site. NDVI was included in this study to assess its
potential influence on CETB SSD variability, as vegetation cover can
impact microwave signal scattering and attenuation. The MODIS
NDVI data from the Terra satellite can be accessed from NASA’s
EarthData portal at https://earthdata.nasa.gov/, and then
processed using GEE.

2.2 Study area and site selection reasoning

The Western U.S., with its crucial snowpack, presents an ideal
study area with the availability of snow field measurements. The
region’s diverse climate, topography, vegetation, and snow

properties pose challenges for accurate remotely-sensed SWE
estimations. The initial study area focuses on a suite of
watersheds in the Western US with comprehensive data
availability for the period of record, representing a variety of
environments. These areas are used to test the hypothesis and
validate its robustness across different conditions, with an initial
focus on three SNOTEL sites: Monument Creek (MC) in Alaska,
Mud Flat (MF) in Idaho, and Jones Pass (JP) in Colorado
(Table 1; Figure 2).

The selection of these initial sites, based on their environmental
complexity in relation to SWE estimation, serves as a foundation for
a broader analysis (Figure 2). JP in Colorado is the most complex
due to its complex topography and rugged mountainous terrain.
This creates diverse microclimates, leading to complex interactions
between snowpack and other environmental variables. The mid-
latitude location further experiences intense solar radiation and
significant snowpack fluctuations, making it a challenging region for
snow and SWE estimation models, as multiple variables must be
taken into account. MC, AK, although experiencing long snow
seasons, presents less complexity due to its relatively
homogeneous landscape and sparse vegetation. In MC, snowpack
and SWE dynamics can be the primary drivers of seasonal variability
in CETBs, and fewer environmental variables, like tundra
vegetation, influence snowpack dynamics. MF in Idaho,
characterized by less complex topography and lower vegetation
coverage (prairie land cover (Dewitz, 2023)), was chosen as a
simpler site to help isolate the impact of horizontal dynamics on
the ground (red arrow in Figure 3) for more accurate SSD_SWE
analysis, in contrast to the more complex Alaskan and Colorado
sites, which introduce additional variables (topography and
vegetation complexities) into the analysis (Figure 3). MF has a
shorter, more variable snow season and shallower snowpack
compared to the other sites. Figure 3 shows how surface
heterogeneity (red arrow direction) can affect microwave signals,
impacting signals of interest for snowpack estimations (blue arrow
direction). Including different sites in the analysis will ensure a
thorough understanding of the correlation between SWE and SSD in
diverse snow landscapes.

2.3 Methods

2.3.1 SWE and CETB SSD correlation analysis
PMW RS detects naturally emitted microwave radiation from

the Earth’s surface and atmosphere. These emissions, measured as
Tb, depend on the physical temperature and the emissivity of the
surface materials (Tb ≈ ϵ · Ts, ϵ: emissivity, and Ts: surface physical
temperature). PMW radiometers capture microwave radiation
emitted from snow and underlying soil and estimate SWE,
particularly effective in dry snowpack conditions (Chang et al.,
1976; Chang et al., 1987).

For a simpler region, factors such as surface roughness and
vegetation height or density are present but have minimal impact on
SWE estimation due to the relatively uniform surface and sparse
vegetation. Thus, we assume the microwave signal represented as
Equation 1:

Pmicrowave, simple � f Ts, ϵ, S( ) (1)

TABLE 2 GLDAS variables description.

Data Description Unit

SWE Snow water equivalent kg m-2

SM Soil moisture in top 10 cm kg m-2

AirTemp Air temperature near surface K

SurfaceTempt Surface skin temperature K

Albedo Surface reflectivity %

RadiationFlux Solar radiation at surface W m-2

SD Snowpack depth m

Snowmelt Snowmelt runoff kg m-2

WS Wind speed m s-1
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In contrast, for a more complex region, the microwave signal is
influenced by additional factors as shown in Equation 2:

Pmicrowave, complex � f Ts, ϵ, S, z0, h( ) (2)

Where:

• Pmicrowave, simple is the microwave signal power for the
simpler site.

• Pmicrowave, complex is the microwave signal power for the more
complex site.

• Ts is the SurfaceTempt, which includes contributions from
both the soil and the snow depending on the snowpack’s
thickness and the penetration depth of the microwave signal.

• ϵ is the surface emissivity.
• S represents the snow properties (e.g., SD, SWE,
grain size, etc.).

• z0 is the surface roughness of the snow surface or soil surface,
depending on the presence and thickness of the snowpack.

• h represents the vegetation height or density.

By isolating the impact of snow properties in a simpler area (blue
arrow in Figure 3), and assuming that temperature, emissivity,
surface roughness, and vegetation height or density remain
constant during the winter, we can express the change in
microwave signal as being primarily due to snow and its
variations as shown in Equation 3:

ΔPmicrowave � f S( ) (3)
This isolation allows us to better understand the specific impact

of snow properties on microwave signals without the additional

variables present in more complex sites. To address the large
footprint issue of legacy PMW data pertinent to SWE estimation,
CETB data provides significant improvements over legacy data in
distinguishing finer spatial patterns, which is especially useful in
heterogeneous landscapes. The CETB data, with its fine spatial
resolution and twice-daily (morning and evening overpasses)
temporal resolution, improves the accuracy of snowpack analysis
in heterogeneous landscapes (Long and Brodzik, 2015; Brodzik and
Long, 2018). Importantly, CETB allows for calculating the SSD using
multiple higher-resolution pixels (Figures 1, 4; Equation 4), which
was not previously possible with legacy PMWdata. SSD is a measure
of variability and spread of the Tb values, providing insights into the
variability of snowpack properties both over the surface and in-
depth in the observed area. We define the SSD value as follows:

SSDrSIR K( ) �
�������������������∑64

n�1 Tbn K( ) − μ K( )( )2
N

√
(4)

where μ refers to the mean of Tb, K represents the unit [Kelvin], and
N is the number of pixels containing Tb values (64 rSIR pixels with
3.125 km resolution or an 8 × 8 window corresponding to a GRD
pixel), and n represents the index of each individual rSIR pixel, with
n ranging from 1 to 64.

The experiment aims to assess how the SSD of rSIR CETBs can
enhance SWE estimation, particularly in complex mountainous
regions. The hypothesis evaluation involves comparing and
correlating (Pearson correlation) daily SNOTEL and PMW-based
SWE with morning overpasses of SSD with 3.125 km spatial
resolution within GRD pixels and Equation 4 for the sites of
interest. The comparison reveals notable patterns and
correlations, which are further explored and discussed in the

FIGURE 3
Horizontal (Red arrow) and Vertical (Blue arrow) Complexity Schematic for Snowpack RS Using PMW Sensors (Created in BioRender. Boueshagh, M.
(2025) BioRender.com/l60q566). This approximate schematic illustrates how PMW RS operates (Canada, 2015) while highlighting horizontal and vertical
complexities. Surface heterogeneity, such as vegetation, terrain, and water bodies, affects microwave signal reflection and scattering, representing
horizontal complexity. Vertical complexity arises from snowpack characteristics like depth and stratification, influencing microwave emissions. The
sun’s influence, which affects surface temperature and indirectly impacts Tb, is also depicted, contributing to the signal detected by the PMW sensor. The
black arrows represent emissions from the soil surface and volume scattering within the snowpack.
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following sections (Sections 3 and 4). By focusing on the morning
(colder) passes, this approach minimizes underestimation caused by
warmer temperatures later in the day, which may have caused melt
(Chang et al., 1987; Armstrong and Brodzik, 2002). Furthermore,
the vertical channel of CETB SSD is preferred due to:

• Sensitivity of Vertical polarization (V-pol) to Moisture: V-pol
is highly sensitive to the liquid water in both the soil and the
snowpack (Mätzler, 1994; Njoku and Kong, 1977; Kim and
Van Zyl, 2009; Temimi et al., 2014; Picard et al., 2022),
particularly to the amount of water contained within the
snowpack, known as SWE. The microwave radiation
interacts with the liquid water and ice within the snowpack,
and the V-pol signal is influenced by factors such as SD,
density, and water content. This sensitivity allows V-pol to
effectively capture variations in water content.

• Surface Inhomogeneity: V-pol is less influenced by surface
heterogeneity, such as variations in vegetation, soil type, and
surface roughness, compared to horizontal polarization

(H-pol). V-pol passes through the snow surface with
minimal reflection or scattering, allowing most of the
microwave energy to be transmitted. This efficient
transmission results in higher Tb values at V-pol, as less
energy is lost during the interaction with the snowpack
surface (Markus et al., 2005; Picard et al., 2022).
Additionally, the efficient transmission of V-pol signals is
associated with a higher saturation limit for SWE compared to
H-pol, offering an advantage in estimating deeper snowpack.
Furthermore, V-pol exhibits greater sensitivity to snow depth
than H-pol channels (Takala et al., 2011; Yang et al., 2020;
2022). By analyzing the standard deviations of V-pol Tb, the
algorithm can better capture variations in SD across different
pixels while minimizing the influence of surface features that
primarily impact H-pol.

• Combining H-pol and V-pol: By integrating the strengths of
both H-pol and V-pol, the algorithm benefits from H-pol’s
ability to detect snow structure and surface roughness, and
V-pol’s sensitivity to moisture content and reduced impact
from surface heterogeneity. This combination, along with the
analysis of V-pol Tb standard deviations, allows for a more
comprehensive characterization of SD heterogeneity.

For correlation analysis, to ensure consistent comparisons in
terms of spatial resolution with CETB SSDs, we also estimated the
PMW-derived SWE using the CETB GRD pixel with 25 km spatial
resolution and the modified Chang algorithm (Chang et al., 1987;
Armstrong and Brodzik, 2001). This algorithm estimates SWE by
multiplying SD, derived from a regression of Tb gradients, by an
assumed constant value for snow density (0.30 g/cm3) (Chang et al.,
1987). Specifically, the gradient refers to the difference between Tb at
two frequencies, typically 19 GHz and 37 GHz. This approach, based
on a linear regression between SMMR Tb gradients and SWE,
typically assumes a snow grain size of 0.3 mm and a density of
300 kg/m3 (Chang et al., 1987; Liang andWang, 2020). In this study,
we used a modified version developed by (Armstrong and Brodzik,
2001), which incorporates a bias correction to adapt the formula for
use with SSM/I data (using Tb19H instead of Tb18H) (Equation 5).

SWE mm( ) � 4.8 × Tb,19H − Tb,37H − 5( ) (5)
Following established practices, we implemented thresholds to

ensure the accuracy and physical relevance of the results.
Specifically, SD values below 2.5 cm, corresponding to PMW-
derived SWE values less than 7.5 mm, were thresholded and set
to zero. This is due to the limitations of PMW data in reliably
detecting shallow snowpacks, as the microwave signal sensitivity
diminishes at such low depths (Tanniru and Ramsankaran, 2023),
and negative values are not physically meaningful in snowpack
studies and are likely artifacts of noise or algorithm limitations.

2.3.2 Feature importance analysis using ML
New PMW CETB data could provide a valuable proxy for SWE

through statistics such as the SSD. While the calculated correlations
and observed patterns between SNOTEL or PMW-derived SWE and
CETB SSDs, discussed in Sections 3, 4 (Table 3; Figure 7), suggest a
relationship, correlation alone does not imply causation. It is
therefore essential to investigate the underlying components that
may influence SSDs. By examining these factors, we can better

FIGURE 4
CETBs for the Morning Overpass on 18 February 2003, at
Monument Creek, AK. This figure displays the spatial variability of Tbs
from the CETB dataset. The red square outlines the GRD pixel, which
serves as an envelope for the higher-resolution CETB pixels
(3.125 km). The red box and line on the color bar indicate the
corresponding GRD pixel and Tb value of the GRD pixel (in K),
respectively.
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understand whether the observed correlation is primarily driven by
snow-related variables or other environmental factors. This deeper
understanding is crucial for validating the use of SSDs as a proxy for
SWE estimation while acknowledging and addressing potential
confounding influences.

This study employs 4 ML techniques (Linear Regression (LR),
RF, Gradient Boosting (GBoost), and Extreme Gradient Boosting
(XGBoost)) to explore the key factors influencing SSDs at each site,
aiming to disentangle their contributions using a workflow that
involves data preprocessing, outlier removal, training, cross-
validation (CV), and interpretability using feature importance
and SHapley Additive exPlanations (SHAP) analysis. By
identifying the drivers of SSD, we can test and explain the
hypothesis that the correlation between SNOTEL or PMW-
derived SWE and CETB SSDs is due to snow-related variables
and/or maybe other environmental variables. To achieve the
study’s objectives, we adopted a modeling approach where SSD
serves as the target variable (dependent variable), and various
environmental factors are treated as predictor variables
(independent variables). Our goal is to evaluate whether CETB
SSD can serve as a useful proxy for SWE by identifying the key
drivers of CETB SSD variability across different geographic and
climatic regions. Setting CETB SSD as the target variable allows us to
assess how strongly SWE and other environmental factors (e.g.,
AirTemp, SM, albedo, etc.) contribute to CETB SSD observed
variability. This step is crucial in determining whether CETB
SSD contains a reliable and consistent SWE signal that could be
leveraged for future SWE estimation. Our study first aims to
establish whether CETB SSD responds to SWE variations before
integrating it into direct SWE estimation models. This analysis
serves as a diagnostic step to justify the inclusion of CETB SSD
in future SWE retrieval algorithms. The key difference between
regression (the task for feature importance analysis) and correlation
(the task for identifying associations between SSDs and SNOTEL or
PMW-derived SWE) lies in their purpose and interpretation.
Regression aims to model the relationship between a dependent
variable and one or more independent variables to understand the
influence of these variables. In contrast, correlation measures the
strength and direction of the linear relationship between two
variables but does not imply a cause-and-effect relationship or
allow for predictions. While correlation quantifies how two
variables change together, regression (the ML approach adopted
in this research) focuses on how one variable can be predicted based
on the values of another. The methodology involves the following
key steps (Figure 5).

2.3.2.1 Data preparation for feature importance analysis
The dataset comprises daily values of CETB SSDs (target

variable), and GLDAS SWE, SM, AirTemp, SurfaceTempt,

Albedo, RadiationFlux, SD, Snowmelt, and WS, as well as
MODIS NDVI (predictor variables) for 2000-2005 (Table 2).
Here, we use GLDAS SWE, instead of SNOTEL SWE or Chang
SWE, to do feature importance analysis because GLDAS SWE is
more consistent with other GLDAS variables. The purpose of this
analysis is to identify the most important drivers of CETB SSD
variability, particularly focusing on snow-related variables such as
SWE. While SNOTEL SWE offers accurate ground-based data, its
spatial resolution is limited to specific point locations, which may
not capture spatial or regional variability. Chang SWE, derived from
PMW data, is prone to biases, outliers, and inconsistencies,
especially in areas with dense vegetation, complex topography, or
wet snow conditions (Saberi et al., 2020). GLDAS SWE, by
integrating satellite and in situ data, provides a more consistent
dataset across varied landscapes.

The comparison between SNOTEL SWE and GLDAS SWE
across all three sites reveals important biases and discrepancies
that can influence the interpretation of CETB SSD variability with
respect to SWE (Figure 6). At MC, both datasets align relatively
well in capturing seasonal accumulation and melt patterns,
although GLDAS SWE tends to underestimate peak SWE values
compared to SNOTEL, particularly during 2001 and 2004. In JP,
the mismatch is more pronounced, with GLDAS SWE significantly
underestimating SWE throughout the period, capturing only
minimal snowpack variability compared to the sharp peaks in
SNOTEL. This suggests that GLDAS’s lower resolution and large
negative precipitation biases are more pronounced in regions with
complex terrain and higher elevation, where modeled SWE
struggles to capture local snowpack dynamics (Han et al.,
2020). In contrast, MF shows better agreement between the two
datasets, with GLDAS SWE closely following the accumulation
and melt trends observed in SNOTEL, possibly due to less spatial
variability at the 25 km scale. However, small discrepancies remain
during peak periods, likely reflecting differences in how GLDAS
and SNOTEL capture melt events and transient snowpack
conditions in this semi-arid region. The cross-comparison of
SNOTEL and GLDAS SWE across these three sites highlights
the strengths and limitations of each dataset in different
environmental contexts. While SNOTEL SWE provides reliable
ground-based measurements, its point-based observations may
not capture regional variability, particularly in areas like MF,
where spatial snow dynamics can vary significantly. GLDAS
SWE, on the other hand, offers better spatial coverage but
suffers from modeling biases (Han et al., 2020), as evidenced by
its consistent underestimation of SWE in JP and a tendency toward
smoother seasonal variations in SWE at MC. These limitations are
critical, as GLDAS’s underestimation of SWE may weaken the
observed relationship between SWE and SSD variability,
underrepresenting the snowpack’s role in CETB SSD signals.

TABLE 3 Pearson correlation coefficient (r) results.

Sites SNOTEL SWE vs. SSD SNOTEL SWE vs. smoothed SSD Chang SWE vs. SSD SNOTEL SWE vs. Chang SWE

MC, AK 0.64 0.68 0.67 0.79

MF, ID 0.82 0.85 0.89 0.79

JP, CO 0.72 0.74 0.67 0.69
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2.3.2.2 Data splitting, standardization, and outlier removal
• Outlier Removal: We first examined the time series of CETB
SSD in Figure 7 and identified sites with potential outliers in
the data. Outliers were then detected and removed using the
Interquartile Range (IQR) method, filtering out data points
that fell outside 1.5 times the IQR from the first and third
quartiles. For MC in AK and JP in CO, outlier removal was
applied across all models to ensure consistency and prevent
extreme values from influencing the analysis. Although the
IQR filter was also applied to MF in ID, no significant outliers
were identified at this site.

• Train-Test Split: The cleaned dataset was divided into training
and testing sets using an 80%–20% split. This split is
commonly used in ML to ensure the model has enough
data to learn from during training (80%) while still
retaining a sufficient portion (20%) for testing on unseen
data, helping to evaluate model performance and avoid
overfitting.

• Standardization: Features were standardized to have a mean of
0 and a standard deviation of 1. This process is crucial for
models like LR, which are sensitive to the scale of input data,
and helps ensure that each feature is treated equally during the
training process.

2.3.2.3 Model training and evaluation
• ML Models: The following ML models were employed to
assess their ability to predict CETB SSDs based on the selected
predictors:

• LR: LR models the relationship between the predictor
variables and the target variable by fitting a multiple
linear regression. It is sensitive to outliers. The model
minimizes the sum of squared residuals and assumes a
linear relationship between the predictors and the target. LR
provides interpretable results through its coefficients,
indicating the strength and direction of relationships
(Montgomery et al., 2021).

• RF Regressor: RF is an ensemble learning method based on
decision trees. It constructs multiple decision trees using
random subsets of the data and features. The final
prediction is the average of the individual tree outputs,
making RF robust to overfitting and outliers. To ensure the
trees were effectively pruned and the model generalized
well, hyperparameter tuning was performed using CV
mentioned in the next paragraphs of this section.
Additionally, RF provides feature importance scores by
evaluating the contribution of each feature to the
decision-making process (Breiman, 2001).

• GBoost Regressor: GBoost is an ensemble technique that
sequentially builds decision trees, with each new tree
correcting the errors of the previous ones. This iterative
process optimizes a loss function to improve predictions
over time. GBoost captures complex relationships but is
more sensitive to outliers compared to RF (Friedman, 2001).

• XGBoost Regressor: XGBoost is an optimized version of
GBoost that incorporates regularization to prevent
overfitting, making it robust and scalable. It sequentially

FIGURE 5
Methodology for feature importance evaluation and exploration of key CETB SSD drivers.
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builds trees to correct errors from the previous models and
includes advanced features like missing value handling and
parallelization for faster training (Chen and
Guestrin, 2016).

• Hyperparameter Tuning: To optimize the performance of the
tree-based models (RF, GBoost, and XGBoost),
hyperparameter tuning was performed using Grid Search
Cross-Validation (GridSearchCV). A grid search over
predefined hyperparameters was conducted for each model.
For RF, the number of estimators, maximum depth, minimum
samples per split, and minimum samples per leaf were tuned.
For GBoost and XGBoost, additional parameters such as the
learning rate, number of estimators, maximum depth, and
subsampling rate were included. GridSearchCV was used with

a 3-fold CV to identify the best set of hyperparameters for each
model and ensure that models were optimized for
performance and generalization. Once the best parameters
were identified, the models were trained using these optimal
configurations for final predictions.

• CV and Training: Each model was trained on the standardized
training data. A 5-fold CV was applied to evaluate model
performance by splitting the data into five subsets. Each subset
served as a validation set once, while the remaining subsets

FIGURE 6
Comparison of SWE (SNOTEL & GLDAS) for (A)Monument creek,
AK, (B) Mud Flat, ID, and (C) Jones pass, CO (2000-2005).

FIGURE 7
Comparison of SWE and SSD time series (2000-2005) for (A)MC,
AK, (B)MF, ID, and (C) JP, CO. The correlations betweenCETB SSD and
both SNOTEL SWE and Chang algorithm SWE (as presented in Table 3)
are illustrated, highlighting the relationship between snowpack
variability and SWE estimations at each site. At JP, discrepancies
between SNOTEL SWE and PMW-derived SWE are particularly
noticeable during peak snow periods, suggesting limitations in the
Chang algorithm’s performance in more complex snowpack
environments. In contrast, at MF, the simpler snowpack characteristics
result in a stronger and more consistent association across the entire
time series, demonstrating a reliable relationship between SSDs and
SWE in less complex terrains.
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were used for training. This provided a more reliable measure
of model performance and reduced overfitting.

• Prediction and Evaluation: The models made predictions on
the testing set, and performance was evaluated using the
following metrics:
• R-squared (R2): Also known as the coefficient of
determination, measures the proportion of variance in
the target variable that is explained by the model. Higher
R2 values indicate better model performance.

• Root Mean Squared Error (RMSE): Measures the square
root of the average squared differences between the
predicted and actual values. RMSE provides an
indication of the model’s prediction error in the same
unit as the original data ([K]). Lower RMSE values
indicate more accurate predictions.

2.3.2.4 Feature importance and SHAP analysis
• For Tree-Based Models (RF, GBoost, XGBoost): Feature
importance scores were extracted from the tree-based
models to quantify each feature’s contribution to the
prediction of CETB SSDs and provide insights into the
relationships between predictors and CETB SSDs. Feature
importance quantifies the increase in model error when a
specific feature is removed or its values are randomized,
helping to highlight which variables significantly influence
SSDs and validate the role of snow-related factors in the
observed correlation with SWE. Additionally, SHAP
analysis was employed to provide a more detailed
interpretation of each feature’s impact. SHAP values
explain how much each feature contributes to increasing or
decreasing the predicted value of SSDs for each individual
prediction. The SHAP analysis offers global insights into
feature importance across the dataset and local explanations
for individual predictions (Lundberg, 2017; Li, 2022; Aydin
and Iban, 2023). SHAP values are especially helpful in
understanding the complex interactions in models like
XGBoost and RF, which may not be as interpretable
through traditional feature importance alone. By assigning
Shapley values, SHAP ensures that the contribution of each
feature is fairly allocated, making it clear how snow-related
factors like SWE drive the variability in CETB SSDs
(Lundberg, 2017; Li, 2022; Aydin and Iban, 2023). Using a
pre-trained ML model and a set of input variables, SHAP
utilizes an explanation model to determine the individual
contribution of each variable to the behavior of the model
(Liu et al., 2022). In this study, we used the Python SHAP
library to assess the importance of features.

In SHAP summary plots (Section 3.2), each element provides
insight into how features contribute to model predictions. The dots
represent individual data points, and their position along the x-axis
shows the SHAP value, indicating how much a feature pushes the
prediction higher (positive SHAP value) or lower (negative SHAP
value). The color of the dots corresponds to feature values, with red
representing higher values and blue indicating lower values. This
color gradient helps reveal how feature values influence predictions.
Dots are vertically aligned for each feature, and features are ordered
by their mean absolute SHAP value, with the most important

features at the top. A wider vertical spread of dots means that
the feature’s impact on predictions varies more across data points.
Dense clusters of dots indicate many data points with similar SHAP
values. The range of SHAP values along the x-axis shows the degree
to which each feature can affect predictions.

• For LR: In LR, feature importance is assessed through the
magnitude of the model’s coefficients. Features with larger
absolute coefficients have a stronger influence on the
prediction, while the sign of the coefficient indicates
whether the feature has a positive or negative relationship
with SSDs. This provides a straightforward way to interpret
the linear relationships between the predictors and the target.
While the coefficients from LR give insights into linear
relationships, SHAP analysis for tree-based models provides
complementary non-linear insights, offering a comprehensive
understanding of the factors influencing CETB SSDs.

3 Results

3.1 Hypothesis analysis and
correlation results

To test the hypothesis, linear correlations (Pearson correlation/
“r”) between SWE and CETB SSDs were computed. The correlations
(as presented in Table 3), along with the robust associations
observed across different periods and sites (as shown in
Figure 7), reveal strong relationships. These findings suggest that
CETB SSDs could serve as a valuable proxy for enhancing PMW
SWE estimations, particularly in capturing the temporal and spatial
heterogeneity of snowpack. The analysis implies that examining the
variability in Tb across multiple pixels can effectively capture the
spatial heterogeneity of SD and terrain, leading to more accurate
SWE estimates. The robustness of these results across sites and
periods underscores their reliability. This insight indicates that
integrating CETB SSDs into existing PMW-based SWE retrieval
algorithms could improve their performance by addressing both the
temporal and spatial variability inherent in snowpack
characteristics. Table 3 summarizes the Pearson correlation
coefficients (r) between SWE values from SNOTEL data and the
Chang algorithm, and SSDs at each of the three study sites. The
correlation analysis quantifies the strength of the relationship
between these variables, showing how SSDs can enhance the
interpretation of snowpack conditions.

Noise and outliers in PMW time series can impact forecasting.
To address this, we smoothed the SSD time series using a median
filter, which enhanced correlation, particularly in low or no-SWE
conditions, while preserving critical details (see Table 3; Figure 7).
After careful trial and error, considering noise levels, feature
preservation, data resolution, and computational efficiency, a
uniform window size of 13 days was chosen across the sites,
which also corresponds to the temporal scale of synoptic events
(Salas et al., 2022). The median filter was applied over a 13-day
sliding window to the SSD values. This window size effectively
reduces noise and highlights meaningful snowpack patterns without
oversimplifying the data. This approach ensured that fine-scale
details were retained, allowing for the detection of SSD variations
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in minimal snow conditions while considering gaps in PMW data at
lower latitudes. As shown in Figure 7, we compared unsmoothed
and smoothed data, which confirmed that the key relationships
between CETB SSDs and SWE remained consistent. This
demonstrates that the observed correlations are not solely
artifacts of the smoothing process. We recognize, however, that
smoothing can sometimes introduce artificially high correlations.

Figure 7 illustrates the comparison of the SWE time series
derived from the SNOTEL and the Chang algorithm, along with
CETB SSDs across the tested sites. The time series analysis reveals
distinct correlations between SSDs and SWE at each site,
highlighting the relationship between SSD and snowpack
variability. While SNOTEL SWE serves as the ground truth,
Chang SWE provides satellite-based estimates, and SSDs reflect
spatial variability in Tb across the sites. Notable differences in SWE
values occur at each site, demonstrating how CETB SSDs
complement both SNOTEL and PMW-derived SWE in capturing
snowpack dynamics. The associations between smoothed SSDs and
SNOTEL SWE further indicate the importance of noise reduction in
improving the robustness of SWE estimations.

1. MC, AK: The moderate correlations between SNOTEL SWE
and SSDs (r � 0.64) suggest that SSDs capture key aspects of
snowpack heterogeneity affecting SWE estimations (see
Figure 7A; Table 3). Smoothing the SSD time series
increases the correlation (r � 0.68), underlining the value of
noise reduction. The slightly stronger correlation between
Chang SWE and SSDs (r � 0.67) further confirms the
potential of SSDs to improve PMW-based SWE estimates.
The high agreement between SNOTEL SWE and Chang SWE
(r � 0.79) reflects a good alignment between ground-based
and satellite-derived estimates, though further refinement is
necessary for more complex snowpack features, such as ice
layers or varying snow density. MC has a long-lasting
snowpack with terrain that is less complex than JP but
more complex than MF. The snowpack at MC may be more
homogeneous in terms of snow properties (e.g., SD and
density), leading to less variability in the microwave signal
and, thus, lower SSD values.

2. MF, ID: In this region, strong correlations are observed
between SNOTEL SWE and SSDs (r � 0.82), suggesting
that SSDs effectively capture snowpack variability in what is
generally considered a simpler terrain (see Figure 7B; Table 3).
The correlation improves further when smoothing SSDs
(r � 0.85), reinforcing the importance of filtering noise for
SWE estimation accuracy. The high correlation between Chang
SWE and SSDs (r � 0.89) highlights the ability of SSDs to
reliably estimate SWE, likely due to a strong alignment between
the snowpack characteristics at MF and the assumptions of the
Chang algorithm. The correlation between SNOTEL SWE and
Chang SWE (r � 0.79) also confirms the reliability of satellite-
derived SWE estimates in this region. Despite the simplicity of
the terrain, variability in snowpack conditions may arise due to
solar radiation, wind redistribution, and subtle topographical
influences, which could lead to higher values of SSDs as
snowpack varies across the site.

3. JP, CO: Moderately strong correlations between SNOTEL SWE
and SSDs (r � 0.72) reflect snowpack variability at JP (see

Figure 7C; Table 3). Smoothing SSDs improves the alignment
with SNOTEL SWE (r � 0.74), indicating the benefit of noise
reduction. The time series shows good agreement between
SNOTEL SWE and SSDs, though discrepancies between
SNOTEL and Chang SWE occur during peak SWE periods.
The correlation between Chang SWE and SSDs (r � 0.67)
suggests SSDs can complement PMW-derived SWE estimates,
particularly in complex environments like JP, where vegetation
coverage and algorithm assumptions may lead to under- or
overestimation during peak SWE.

Despite the complex terrain, SSD values at JP are slightly lower
than those at MC and significantly lower than those atMF. Although
JP has the largest SWE values, the snowpack may be thicker and
more uniform, leading to less spatial variability in the microwave
signal. Forest coverage at JP may also provide shade, reducing the
snowpack’s exposure to solar radiation and wind redistribution,
which would otherwise introduce variability. The dense forest and
vegetation cover likely attenuate the microwave signal, making it less
sensitive to snowpack variability. This attenuation may explain the
lower SSD values, as the microwave sensor struggles to detect subtle
changes in snow properties. The steep and rugged terrain at JP
causes shadowing effects and localized variations in the snowpack,
complicating the interpretation of microwave signals. These factors
contribute to the lower SSD values. Finally, due to orbital limitations,
PMW data at lower latitudes, such as those near JP, may have spatial
or temporal gaps, with the frequency of missed observations
increasing with proximity to the equator. These gaps may reduce
the number of CETB observations per day over the surface and limit
the ability to detect snowpack variability effectively within a GRD
pixel (an envelope of 64 rSIR pixels), contributing to the lower SSD
values at JP.

To assess the statistical significance of the observed correlation
between SNOTEL SWE and CETB SSD, we utilized Monte Carlo
simulations alongside bootstrap resampling methods. The results
confirm that the correlations are statistically significant and are
detailed in the Supplementary Materials. Based on observations
from Figure 7, an increasing SSD trend may indicate a spatially
variable snowpack and terrain, characterized by heterogeneity in SD,
density, grain size, or structure across the observed area. This
variability often results from factors such as uneven snowfall,
wind redistribution, or partial melting. Such conditions
necessitate careful consideration in SWE retrieval due to
increased uncertainty in interpreting microwave signals.
Conversely, a decrease in the SSD trend may suggest reduced
snow variability or the diminishing presence of snow. Seasonal
variations in SSD reflect the dynamic nature of the snowpack:
SSD may be lower during the early accumulation phase, increase
as the snowpack becomes more heterogeneous during peak SWE,
and then decline as SWE decreases later in the season when the snow
cover becomes sparse or disappears entirely. The analysis of
correlations and associations between SWE from SNOTEL,
Chang algorithm SWE, and CETB SSDs across three sites
highlights the strength of the relationship of SSDs in capturing
snowpack variability and its impact on SWE estimates. It should be
noted that in regions with deep snowpack, such as those observed
near the peak accumulation periods in Figure 7, the PMW signal can
experience saturation. This occurs because the emitted microwave
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signal becomes insensitive to additional increases in SD or density
beyond a certain threshold (SWE_max ≈ 150–200 mm), causing an
underestimation of SWE (Cho et al., 2023).

3.2 Feature importance results

The primary objective of this feature importance analysis using
ML techniques is to identify the key drivers influencing the CETB
SSDs and to understand their impact on the observed correlation
between SSDs and SWE, and assess whether SSDs can improve
PMW SWE estimates. To achieve this, we employed several ML
models, including LR, RF, GBoost, and XGBoost. Each model
provided insights into the importance of various environmental
variables, including SWE, SM, AirTemp, NDVI, SurfaceTempt,
Albedo, RadiationFlux, SD, Snowmelt, and WS. These models
helped to elucidate how these factors contribute to the variability
in CETB SSDs and their subsequent relationship with SWE.

The model performance comparison across the three sites-MC,
MF, and JP-reveals that MC in AK consistently shows the highest
predictive accuracy across all models, with RF and XGBoost
achieving the best results, each with an R2 of 0.89 and low RMSE
values around 0.37 to 0.39 on test data (Table 4). In contrast, MF in
ID demonstrates moderate performance, with XGBoost and RF
yielding R2 values between 0.73 and 0.74, but with higher RMSEs
(0.97–0.98) on test data. JP, CO shows the weakest performance,
with LR yielding the lowest R2 of 0.44 and the highest MSE (0.51) on
test data, while tree-based models perform slightly better but still
struggle with predictive accuracy, with XGBoost achieving the
highest R2 of 0.63 and RMSE of 0.58 on test data. In general, the
models predict CETB SSD variability most accurately at MC, AK,
moderately at MF, ID, and least effectively at JP, CO, highlighting
site-specific challenges in capturing variability. The ML model
performance for predicting CETB SSD variability at the MC, AK
site shows that tree-based models (RF, GBoost, and XGBoost)
consistently outperform LR in both CV and test data (Table 4).
LR, with an average R2 of 0.72 and a test R2 of 0.75, captures some

relationships between predictors and the target but struggles with
complex interactions. In contrast, RF, GBoost, and XGBoost
achieved significantly better test R2 values of 0.89, 0.88, and 0.89,
respectively, and lower RMSE values, indicating their superior
ability to capture non-linear relationships. Among these, RF
showed the highest performance, closely followed by XGBoost.
These results underscore the suitability of tree-based models for
predicting CETB SSD variability.

Feature importance and SHAP analysis provide further insights
into variable contributions at MC, AK (Figures 8A, B). SWE
emerged as the most influential predictor across all models, with
significant importance in LR (1.08), RF (0.69), GBoost (0.69), and
XGBoost (0.53). High SWE values were linked to higher SSD
predictions, illustrating a strong relationship between SWE and
SSD variability. Other variables, such as AirTemp, SM, and
Albedo, also contributed notably, with SHAP analysis
emphasizing their impact. Specifically, SM and AirTemp could
influence depth hoar formation under cold, shallow snowpack,
where large temperature gradients develop between the snow
surface (affected by AirTemp) and the ground (influenced by
SM), such as at MC. This increases microwave scattering and
affects SSD, which can lead to overestimations of SD by
algorithms like Chang, making the snowpack appear deeper
(larger SWE values) than it actually is (see Figure 7). Energy
exchange variables, such as Albedo and RadiationFlux, also
played a role, though to a lesser extent.

At theMF site, RF emerged as the best-performing model, with a
test R2 of 0.74 and the lowest RMSE (0.97) on test data, closely
followed by XGBoost (R2 = 0.73, RMSE = 0.98). GBoost, while
slightly less accurate, still performed reasonably well (R2 = 0.71,
RMSE = 1.02). LR, despite decent CV results (R2 = 0.76),
underperformed on the test set (R2 = 0.66, RMSE = 1.1)
(Table 4). Feature importance for MF, ID confirmed SWE as the
most significant variable, with high values driving SSD predictions
upward (Figures 9A, B). In LR, SWE and SD were the most critical
predictors, while SurfaceTempt and Albedo also played roles in
snowmelt processes. For tree-based models, SWE, SM, and

TABLE 4 Model performance on test data and CV for each site.

Site Model R2 (test) RMSE [K] (test) R2 (CV) RMSE [K] (CV)

MC, AK LR 0.75 0.57 0.72 0.57

RF 0.89 0.37 0.85 0.4

GBoost 0.88 0.39 0.84 0.41

XGBoost 0.89 0.39 0.84 0.42

MF, ID LR 0.66 1.1 0.76 1.21

RF 0.74 0.97 0.79 1.13

GBoost 0.71 1.02 0.77 1.16

XGBoost 0.73 0.98 0.79 1.11

JP, CO LR 0.44 0.71 0.41 0.75

RF 0.61 0.6 0.54 0.66

GBoost 0.58 0.62 0.51 0.69

XGBoost 0.63 0.58 0.54 0.67
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FIGURE 8
(A) Feature importance, and (B) SHAP summary results for Monument Creek, AK. The dots in (B) represent individual data points, and their position
along the x-axis shows the SHAP value, indicating howmuch a feature pushes the prediction higher (positive SHAP value) or lower (negative SHAP value).
The color of the dots corresponds to feature values, with red representing higher values and blue indicating lower values. Dots are vertically aligned for
each feature, and features are ordered by their mean absolute SHAP value, with the most important features at the top.
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RadiationFlux were key, reflecting their ability to capture
interactions between moisture, energy fluxes, and SSD variability.
SM was influential in RF and XGBoost models, pushing SSD
predictions higher when SM values were elevated.

At JP, CO, tree-based models again outperformed LR (Table 4).
LR, with a CV R2 of 0.41 and a test R2 of 0.44, struggled to model the
data complexity, reflected in a high test RMSE of 0.71. XGBoost,
with a test R2 of 0.63 and the lowest RMSE (0.58), better captured

FIGURE 9
(A) Feature importance, and (B) SHAP summary results for Mud Flat, ID. Explanation of elements are mentioned in the caption of Figure 8.
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non-linear interactions, while RF achieved the test R2 of 0.61 and a
competitive RMSE (0.6). GBoost performed reasonably well but
lagged behind RF and XGBoost (test R2 = 0.58, RMSE = 0.62). Both
XGBoost and RF proved highly effective at JP in CO, with XGBoost

excelling in R2 and better in minimizing error. Feature importance
and SHAP analysis at JP, CO highlight SM as the dominant factor,
especially in tree-based models (Figures 10A, B). At JP for LRmodel,
SurfaceTempt, RadiationFlux, and AirTemp (in addition to SD)

FIGURE 10
(A) Feature importance, and (B) SHAP summary results for Jones Pass, CO. Explanation of elements are mentioned in the caption of Figure 8.
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were the most important features, emphasizing the role of energy
balance variables. RF, GBoost, and XGBoost underscored the
importance of SM, RadiationFlux, and SWE, with subsurface
moisture and energy dynamics playing crucial roles. Across
models, high SM and RadiationFlux values drove SSD variability,
reinforcing the significance of moisture and energy factors,
particularly SM, in predicting SSDs at JP.

In this study, we also conducted separate analyses for snow and
no-snow seasons to better understand the impact of snow-related
variables on CETB SSD variability. The snow season was defined as
periods when both SWE and SD were greater than zero, indicating
snow presence on the ground, while the no-snow season was defined
as periods with zero SWE and SD, reflecting snow-free conditions.
For each season, an RF model (the best-performing model) was
trained and tested to evaluate the relationship between the predictor
variables and the target variable, CETB SSDs (Table 5). By analyzing
these two seasons separately, we aimed to isolate the influence of
snow-related variables during periods of snow cover and compare
them to periods without snow. This seasonal distinction provides
deeper insights into the temporal dynamics of snow’s impact on
microwave sensor measurements and allows us to assess whether
snow-related factors are more significant drivers of SSD variability
during snow-covered periods.

The feature importance and SHAP analysis for MC, AK
highlight key differences in the drivers of CETB SSD variability
between snow and no-snow seasons (Figures 11A, 12A). During the
snow season, RF performed well, with SWE emerging as the most
significant predictor, driving higher SSD values. Other influential
variables included SM, AirTemp, and SD, demonstrating the
combined effects of snowpack dynamics and energy balance.
High SM and warmer temperatures were associated with
increased SSDs, while lower values corresponded to decreases. In
contrast, the model struggled during the no-snow season, reflected
in much lower R2 values. During this period, NDVI, Albedo, SM,
WS, SurfaceTempt, and RadiationFlux emerged as the dominant
factors. Since SWE and SD were defined as zero during the no-snow
season, their lack of influence reflects the absence of snow rather
than a change in feature importance. Vegetation cover, reflected by
higher NDVI, pushed SSD predictions upward, as expected, with
surface and vegetation dynamics taking over in the absence of snow.
Higher Albedo and SM also drove SSD predictions upward, but the
model’s poor performance suggests that these factors alone do not
fully capture SSD variability during the no-snow season. This
seasonal shift underscores the changing dominance of snowpack
processes during the snow season and surface and vegetation factors
during the no-snow period.

At MF, the model revealed clear seasonal differences in CETB
SSD drivers (Figures 11B, 12B). During the snow season, SWE was

the most critical factor, consistently pushing SSD predictions higher.
Other key variables included RadiationFlux, SM, Albedo, and SD,
highlighting the influence of snowpack and energy fluxes. High
values of SWE and SM push SSDs upward. In the no-snow season,
RadiationFlux (having the greatest influence), AirTemp, and SM
became the dominant variables. Despite the shift in dominant
factors, the model’s poor performance in the no-snow season
suggests these variables alone cannot explain SSD variability in
the absence of snow. This seasonal transition emphasizes the higher
relevance of surface energy and vegetation factors during the no-
snow period.

For JP, the feature importance and SHAP analysis also revealed
distinct seasonal shifts in SSD drivers (Figures 11C, 12C). In the
snow season, SM was the most influential factor, with higher values
driving SSD predictions upward. Other important contributors
included RadiationFlux, SWE, and Albedo, showing the
combined influence of subsurface moisture, snowpack, and
energy balance. SurfaceTempt, NDVI, and SD played moderate
roles, though less pronounced. In the no-snow season,
SurfaceTempt, SM, and NDVI taking precedence. SM remained a
key factor, though less dominant than during the snow season. The
model’s lower performance during the no-snow season suggests that
surface and energy factors alone cannot fully account for SSD
variability when snow is absent, highlighting the shift from
snowpack-driven processes to surface and energy dynamics.

4 Discussion

4.1 Key findings and implications

This study is the first to demonstrate the utility of site-specific
CETB SSD variability for improving SWE estimations, addressing
long-standing challenges in RS of snowpack in heterogeneous
environments. The linear correlation results across all sites
demonstrate that SSDs, particularly when smoothed, can be
effective proxies for capturing a large part of the snowpack
variability and could potentially enhance SWE estimations using
PMW data in future studies. The correlations and time series
analysis suggest that integrating SSDs into existing SWE retrieval
algorithms, such as the Chang algorithm or ML techniques, can help
mitigate discrepancies in SWE estimation, particularly during peak
accumulation periods and when PMW signals become saturated.

The incorporation of site characteristics into snow depth
retrieval models, as demonstrated by (Liu et al., 2024; Singh
et al., 2024), underscores the importance of integrating auxiliary
variables to account for spatial and environmental heterogeneity,
particularly in complex terrains. Similarly, the potential of CETB

TABLE 5 Performance on test data and CV in snow and no-snow seasons.

Site Snow on Snow off

R2 (Test)/RMSE [K] (Test)/R2 (CV)/RMSE (CV) R2 (Test)/RMSE [K] (Test)/R2 (CV)/RMSE (CV)

MC, AK 0.83/0.49/0.83/0.48 0.07/0.14/−0.08/0.14

MF, ID 0.82/1.22/0.75/1.37 −0.10/0.26/0.01/0.24

JP, CO 0.45/0.66/0.52/0.69 0.12/0.17/0.06/0.17
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SSDs in this study highlights their ability to capture the
spatiotemporal variability of surface, snowpack, and atmospheric
conditions, suggesting that leveraging SSDs alongside auxiliary
factors could significantly improve the accuracy of SWE

estimations in diverse and dynamic environments. Unlike
traditional SWE retrieval methods that rely on static calculations
and fixed empirical coefficients (e.g., the Chang algorithm), which
fail to account for the spatial and temporal variability of snow

FIGURE 11
Feature importance results in snow and no-snow season across the three sites: (A)Monument Creek, AK, (B) Mud Flat, ID, and (C) Jones Pass, CO.
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characteristics and lead to errors in SD estimation (Yang et al.,
2019), our dynamic, site-specific approach leverages CETB SSD to
better capture snowpack variability, particularly in complex terrain

such as JP in Colorado. This novel approach extends the
applicability of SSDs to improve the accuracy and robustness of
satellite-derived SWE estimates across diverse geographical regions.

FIGURE 12
SHAP Summary results in snow and no-snow season across the three sites: (A) Monument Creek, AK, (B) Mud Flat, ID, and (C) Jones Pass, CO.
Explanation of elements are mentioned in the caption of Figure 8.
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By addressing variability in snowpack characteristics, this approach
advances snowmonitoring capabilities, offering significant potential
for hydrological modeling and environmental impact assessments.

4.2 Site-specific model performance

The feature importance analysis reveals notable differences in
model performance across the three study sites. MC in AK
consistently shows the highest model accuracy, with RF and
XGBoost achieving test R2 values of 0.89 and minimal RMSEs
ranging from 0.37 to 0.39 (Table 4). In comparison, MF in ID
exhibits moderate performance with R2 values between 0.73 and
0.74 but higher RMSEs (0.97-0.98). JP in CO exhibits the weakest
performance, with LR producing the lowest R2 (0.44) and highest
RMSE (0.71). However, XGBoost performs comparatively better at
JP, achieving the best R2 (0.63) and lower RMSE (0.58). These results
emphasize that CETB SSD variability is most accurately predicted at
MC, with moderate accuracy at MF and the least accuracy at JP,
highlighting the challenges posed by site-specific factors and the
need for tailored models that address local variability drivers
at each site.

4.3 Performance under snow-on and snow-
off conditions

A comparative analysis of snow-on and snow-off conditions
reveals further insights into model performance and environmental
drivers of SSD variability. (Table 5). At MC, models achieve high
predictive accuracy during snow-on periods (R2 = 0.83), but
performance declines sharply during snow-off periods (R2 =
0.07). Similarly, MF achieves strong snow-on performance (R2 =
0.82) but struggles during snow-off conditions (R2 = −0.10). In
contrast, JP shows moderate snow-on performance (R2 = 0.45) and
comparatively better snow-off performance (R2 = 0.12). These
results indicate that the models perform more accurately during
snow-on periods, driven by snowpack variables, but struggle to
capture variability during snow-off periods. JP performs better in the
no-snow season compared to other sites due to the persistent
influence of SM, which remains a key driver year-round due to
the site’s characteristics. This persistent variability in SM, along with
energy balance factors such as RadiationFlux and SurfaceTempt,
allows the model to effectively capture SSD variability even when
snowpack variables are absent. In contrast, the models at MC in AK
and MF in ID rely heavily on snowpack-related variables, which
leads to poorer performance during the no-snow season. These
findings underscore the importance of site-specific environmental
drivers in determining SSD variability and highlight the need for
tailored models that integrate additional non-snowpack variables in
snow-off periods.

4.4 Environmental drivers of SSD variability

The feature importance and SHAP analyses reveal that
environmental and snowpack conditions, as well as site-specific
characteristics such as latitude and elevation, significantly shape

CETB SSD variability. AtMC, AK (65°N), SWE consistently emerges
as the dominant factor across all models, especially in RF and
XGBoost, reflecting the prolonged snow cover and substantial
accumulation characteristic of high-latitude regions. SHAP values
confirm the strong influence of SWE, with secondary contributions
from SM, AirTemp, and RadiationFlux. Due to limited sunlight in
winter, RadiationFlux becomes a more influential factor during
spring and summer snowmelt. In contrast, vegetation (measured
by NDVI) plays a minimal role at MC in Alaska, consistent with the
region’s sparse vegetation.

At MF in ID (42°N), SWE remains the primary driver,
particularly in tree-based models. However, factors such as
RadiationFlux, SM, and NDVI also play significant roles. The
semi-arid, mid-latitude environment of MF, ID, leads to a
shorter snow season and increased solar radiation, making energy
balance variables like RadiationFlux critical during snowmelt. SM
also plays a key role in subsurface moisture dynamics, while denser
vegetation compared to MC increases NDVI’s relevance. At JP, CO
(39°N), SM emerges as the most influential factor across all models,
driven by the short snow season and mountainous terrain. Although
snow-related variables like SWE and SD contribute to SSD
variability, SM, along with RadiationFlux and SurfaceTempt, has
a greater impact. The complex terrain and dense vegetation at JP,
CO, create spatial variability in SM-steep slopes facilitate rapid
drainage, while valleys retain moisture. This variability
significantly affects microwave emissions, making SM a critical
driver of SSD variability. Additionally, the dense forest cover
reduces snowpack exposure to sunlight and wind, stabilizing
snow conditions and making SM a more critical factor in
determining SSD variability. The relatively uniform snowpack at
JP, CO, reduces the influence of SWE, shifting the focus toward
subsurface moisture and energy balance factors. In contrast, the
simpler terrain and sparse vegetation at MC and MF allow SWE to
dominate SSD variability due to the microwave signal’s direct
sensitivity to snowpack properties. The site comparisons
highlight how latitude and elevation influence key drivers, with
SWE dominating in high-latitude snow-heavy environments like
MC in Alaska, and SM taking precedence in high-elevation, mid-
latitude regions like JP in Colorado. At MF in Idaho, the interplay
between SWE, RadiationFlux, and vegetation reflects the semi-arid,
mid-latitude environment.

The comparisons across the three sites emphasize the influence
of latitude, elevation, and terrain complexity in determining the
primary drivers of SSD variability. At high-latitude sites such as MC,
AK, SWE dominates due to prolonged snow cover and relatively
simple terrain. In contrast, mid-latitude, high-elevation locations
like JP, CO, rely more heavily on SM and energy balance variables,
given the shorter snow season and complex terrain. Meanwhile, at
MF, ID, the interplay between SWE, RadiationFlux, and vegetation
reflects the semi-arid, mid-latitude environment, where both
snowpack and energy balance factors contribute significantly to
SSD variability. These findings highlight the need for site-specific
adjustments in PMW-based SWE retrieval models to account for the
varying environmental drivers across different regions. For example,
in high-latitude regions like MC, AK, models should prioritize SWE,
whereas in high-elevation sites like JP, CO, more weight should be
given to SM and other energy balance variables. Additionally, these
results also highlight the potential impact of biases in GLDAS SWE
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(a common negative bias in precipitation at higher altitudes and its
impact on modeled SWE output). This could inflate correlations
with other environmental variables, such as SurfaceTempt or SM,
shifting the model’s interpretation of which features are most
important in high-elevation, complex regions such as JP.
Recognizing and addressing such biases is essential for accurately
interpreting feature importance results, especially when analyzing
the role of SWE and other snowpack variables across diverse
landscapes.

4.5 Broader context and implications

Accurate SWE estimations derived from CETB SSD have
significant potential to enhance hydrological models, supporting
improved water resource management in snow-fed basins. By
providing more reliable predictions of seasonal runoff, this
approach is critical for flood mitigation and drought
preparedness. Beyond snow research, the insights gained from
CETB SSD can inform models of other environmental variables
in snow-dominated regions, including vegetation dynamics, soil
moisture variability, permafrost conditions, and snowmelt
processes. These applications could contribute to more accurate
environmental predictions and strengthen the effectiveness of water
resource management strategies, particularly in regions where
snowpack plays a vital role in the hydrological cycle.

4.6 Limitations and future directions

While this study highlights the transformative potential of CETB
SSDs for improving SWE estimations, several limitations must be
acknowledged. First, the reliance on GLDAS data introduces biases,
particularly in high-altitude regions, which may affect model
performance and the interpretation of feature importance.
Addressing these biases is crucial to enhance the robustness of
future analyses. Second, the study’s focus on three sites limits the
generalizability of the findings. Expanding the analysis to include
diverse terrains and climatic conditions, such as polar or tropical
montane regions, could broaden the applicability of the approach.
Third, the models demonstrate strong performance during snow-on
periods but experience reduced accuracy during snow-off conditions.
This highlights the need to better integrate non-snowpack variables
such as soil moisture, vegetation, and energy fluxes.

Future research will explore ways to incorporate CETB SSDs
directly into SWE retrieval algorithms under both wet and dry snow
conditions, as microwave signals interact differently based on liquid
water content (Kang et al., 2013). An interesting approach could
involve leveraging adaptive computational models to account for
site-specific variability in pixels or regions. These integrations could
enhance the precision of PMW-based SWE estimation methods.
Future research should incorporate a sensitivity analysis to refine
feature selection for SWE estimation, ensuring that only the most
relevant variables are included. While this study focuses on
analyzing CETB SSD variability rather than directly predicting
SWE, our next study will apply weighted ranking methods and
feature selection techniques to improve ML model performance by
prioritizing key predictors such as CETB SSDs, NDSI, fractional

snow cover, and PMW channels. Incorporating high-resolution
ancillary datasets will further improve model adaptability and
performance across seasons. Testing this methodology in glacial
or tropical snowpack regions could validate its applicability in
diverse climatic settings. Additionally, leveraging advanced ML
techniques and ensemble approaches could enhance predictive
accuracy and mitigate model biases. Exploring the integration of
physical snow models, such as the Snow Microwave Radiative
Transfer (SMRT) model, would provide deeper insights into the
relationship between CETB SSDs and snowpack dynamics, further
refining SWE estimation techniques. The retrieval of SD and SWE
using PMW RS faces significant uncertainties due to factors such as
signal saturation in deep snowpacks, the presence of liquid water
within the snowpack, and the spatial and temporal variability of
snow properties, particularly grain size (Dai et al., 2023). Extending
the analysis to other RS datasets and frequencies could enhance the
robustness of CETB SSD applications. For instance, testing
additional frequencies might better account for varying snow
conditions, such as deep or shallow snowpacks. Dynamic models
that adapt to seasonal shifts in snowpack and environmental drivers
could further improve predictive accuracy for both snow-covered
and snow-free landscapes. These efforts will support the
development of more accurate SWE estimations, which is critical
for water resource management, hazard mitigation, and
environmental modeling.

5 Conclusion

This study provides a detailed analysis of CETB SSD variability
and its environmental drivers across three geographically and
climatically distinct sites: Monument Creek, AK; Mud Flat, ID;
and Jones Pass, CO. Using machine learning-based feature
importance analysis, SWE consistently emerged as the dominant
driver at high-latitude sites like MC and MF, while soil moisture
played amore critical role at JP due to its high elevation and complex
terrain. Seasonal comparisons revealed distinct shifts in SSD drivers,
with SWE, RadiationFlux, and SM dominating during snow-on
periods, while SurfaceTempt, SM, and vegetation variables like
NDVI gained prominence during snow-off periods. These shifts
emphasize the versatility of CETB SSDs in capturing seasonal
changes in snowpack, soil moisture, and vegetation. The findings
demonstrate the potential of CETB SSDs to improve SWE
estimations and provide valuable insights into other
environmental variables such as SM, energy fluxes, and
vegetation cover. By monitoring SSD changes in relation to
observed, ground-based seasonal SWE variations, we can enhance
the potential for more accurate SWE estimation across different
stages of the snow season. Leveraging the potential of SSD not only
improves RS methodologies but also deepens the interpretive
accuracy of satellite-derived cryospheric datasets, leading to a
more nuanced understanding and modeling of snowpack
dynamics and their hydrological implications. By addressing site-
specific variability and adapting to diverse snowpack and
environmental conditions, this approach advances RS capabilities
for hydrological and environmental modeling. Future efforts to
expand this research into different regions, integrate dynamic
models, and refine physical snow models will further enhance the
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applicability of CETB SSD-based techniques. As snowpack
dynamics worldwide continues changing, these advancements will
play a crucial role in managing water resources, ecosystems, and
agriculture in snow-affected regions, as well as mitigating natural
hazards and improving environmental predictions. This study offers
a robust framework for improving SWE estimations and contributes
to advancing RS techniques for monitoring snow-affected regions
under changing environmental conditions.
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Glossary
AMSR-E Advanced Microwave Spectroradiometer for EOS

AirTemp Air Temperature

ANNs Artificial Neural Networks

(Tb) Brightness Temperatures

CETB Calibrated Enhanced-Resolution Brightness Temperatures

CV Cross-Validation

DMRT Dense Media Radiative Transfer

RadiationFlux Downward Short-wave Radiation Flux

XGBoost Extreme Gradient Boosting

GLDAS Global Land Data Assimilation System

GES DISC Goddard Earth Sciences Data and Information Services Center

GEE Google Earth Engine

GBoost Gradient Boosting

SDGRD GRD standard deviation

GridSearchCV Grid Search Cross-Validation

H-pol Horizontal Polarization

IQR Interquartile Range

JP Jones Pass

K Kelvin

LR Linear Regression

ML Machine Learning

RMSE Root Mean Squared Error

MEMLS Microwave Emission Model for Layered Snowpacks

MODIS Moderate Resolution Imaging Spectroradiometer

MC Monument Creek

MF Mud Flat

NASA National Aeronautics and Space Administration

NSIDC National Snow and Ice Data Center

NRCS Natural Resources Conservation Service

NDVI Normalized Difference Vegetation Index

PMW Passive Microwave

RF Random Forest

RS Remote Sensing

rSIR Scatterometer Image Reconstruction

SMMR Scanning Multi-channel Microwave Radiometer

SHAP SHapley Additive exPlanations

SD Snow Depth

SWE Snow Water Equivalent

SNOTEL SNOpack TELemetry

SM Soil Moisture

SSD Spatial Standard Deviation

SSM/I Special Sensor Microwave Imager

SSMIS Special Sensor Microwave Imager/Sounder

SVM Support Vector Machine

SurfaceTempt Surface Temperature

USDA United States Department of Agriculture

V-pol Vertical Polarization

WS Wind Speed
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