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Satellite imagery has enabled widespread monitoring of algae in larger water
bodies, however until recently, the spatial resolution of available sensors has not
been sufficient to apply this to smaller lakes. Therefore, this study investigated a
new dataset of high-resolution metre-scale imagery for monitoring
phytoplankton at spatial and temporal scales previously impossible with
satellite data. Specifically, the Planet SuperDoves constellation was used to
monitor a small (0.069 km2), eutrophic lake from 2021 to 2024. Several
chlorophyll-a (Chl-a) algorithms were tested on both SuperDoves and
Sentinel-2 data against in situ measurements. Additionally, the suitability of
citizen science data as a validation tool for widespread algal bloom
monitoring was investigated by comparing reports of algal blooms in five
small water bodies in central Scotland with corresponding SuperDoves Chl-a
images. Chl-a was successfully retrieved using the Ocean Colour 3 algorithm (R2

= 0.64, root mean squared error (RMSE) = 0.93 g L−1), which outperformed the
best performing Sentinel-2 Chl-a algorithm (R2 = 0.61, RMSE = 1.01 g L−1).
Furthermore, both Sentinel-2 and SuperDoves data were equally effective for
algal bloom detection, each having F1-scores of 0.89 at a Chl-a bloom threshold
of 40 g L−1. This demonstrates that metre-scale satellite monitoring of algae is
possible even in challenging and optically complex environments such as small,
shallow water bodies. This leads towards a potential step-change in the number
of remotely monitorable inland water bodies, which would be a significant
advancement for global lake science, environmental management and public
health protection efforts.
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1 Introduction

Water quality in lakes is a critical issue. The ecosystem services provided by lakes are
innumerable, ranging from provision of drinking water, food supply, recreation,
preservation of cultural heritage, and even healthcare (Alejandre et al., 2024; Heino
et al., 2021; Inácio et al., 2022). However, water quality in many lakes across the globe
is poor, and this is exacerbated by climate change and unsustainable industrialisation
(Naderian et al., 2024). In this context, the United Nations Sustainable Development Goal
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6 is focused on ensuring availability and sustainable management of
water and sanitation across the globe by 2030, but unfortunately this
is still out of reach for billions of people (Evaristo et al., 2023). To
meet this ambitious and incredibly important goal, a massive
acceleration of progress in effective and sustainable water
resource management is needed, and there is therefore a need to
improve the way in which we manage, monitor and understand lake
ecosystems across the world (Rajapakse et al., 2023). Globally, the
vast majority of lakes are very small in size (~99% < 1 km2) (Cael and
Seekell, 2016). Despite this, until recently, smaller water bodies have
generally been considered of lower scientific importance than their
larger counterparts, and so are somewhat less-well understood
(Downing, 2010; Shen et al., 2025). Now, there is a growing
recognition that smaller water bodies are critically important for
biodiversity, water quality, human use, and as early indicators of
environmental changes (Biggs et al., 2017). In these water bodies the
aquatic primary producers, the phytoplankton, provision a large
number of ecosystem services including oxygen production, nutrient
cycling, climate regulation, and food supply (Naselli-Flores and
Padisák, 2023). However, large accumulations of phytoplankton
known as algal blooms can present severe ecological and public
health risks and are thought to be increasing globally, likely due to
eutrophication and climate change (Huisman et al., 2018).
Therefore, there is a clear need to further our understanding of,
and ability to monitor, phytoplankton dynamics, particularly in
smaller lakes which have been historically less well-studied.

In recent years, satellite remote sensing has emerged as a
powerful method for monitoring water quality indicators such as
chlorophyll-a (chl-a), a well-established proxy for algal biomass
(Zahir et al., 2024). Typically, algae monitoring with remote sensing
is carried out on relatively large bodies of water such as the Great
Lakes in North America (Beaulne and Fotopoulos, 2024).
Historically this has been due to both the spatial limitations of
satellite sensors, and the significant impact these water bodies have
on regional ecosystems and economies (Sterner et al., 2020).
However, the ability to monitor smaller water bodies with
satellite remote sensing would provide many benefits. Firstly, this
would provide valuable data which could enable widescale
monitoring of algal blooms and therefore enable better
management and provision of the critical services which are
threatened by harmful algae (Liu et al., 2022). Additionally, there
is a potentially huge benefit to the scientific community, as such data
could enable global lake water quality monitoring studies of an
unprecedented scale (Kutser and Soomets, 2024).

Various satellite sensors, such as Sentinel-2Multispectral imager
(MSI) (10–60 m spatial resolution, 5-day repeat cycle) and the
Landsat 8/9 constellation (30 m spatial resolution, 8-day repeat
cycle) have already started to further our understanding of
phytoplankton dynamics and algal blooms in smaller water
bodies (Zabaleta et al., 2023). SuperDoves satellite constellation,
which were launched sequentially between 2019 and 2023 b y Planet
Labs Public Benefit Company (PBC) offer daily 3 m imagery with
eight spectral bands in the visible and near infra-red (NIR) portion
of the light spectrum (Planet Labs PBC, 2018). This presents a
considerable spatio-temporal advantage over the existing satellite
sensors which have been used for studying phytoplankton.
Previously, four-band Planet imagery has been used for chl-a
estimation in a large (128 km2) lake (Niroumand-Jadidi and

Bovolo, 2021), and to monitor chl-a in a number of medium to
large sized (approx. 5 km2–200 km2) reservoirs (Mansaray et al.,
2021). More recently, Vanhellemont (2023) evaluated the
capabilities of eight-band SuperDove imagery for aquatic
applications, demonstrating its potential for monitoring chl-a
concentrations in a coastal environment. At present, there is one
other study that has compared SuperDoves with imagery from
another satellite sensor for monitoring chl-a in an inland water
body. Wasehun et al. (2025) compared Sentinel-2 and SuperDoves
for monitoring chl-a in a large (~60 km2) reservoir, and found that
SuperDoves generally outperformed Sentinel-2. Specifically, it was
found that the higher spatial resolution of SuperDoves was beneficial
for resolving narrow geometries where larger areas of the Sentinel-2
imagery displayed errors due to edge-effects. Evidently, the
SuperDoves show promise for monitoring algae in inland waters,
but at present there are no studies which have specifically evaluated
eight-band SuperDove imagery for monitoring algae in smaller
water bodies (<1 km2). Additionally, whilst the higher spatial
resolution of SuperDoves may be advantageous for
phytoplankton monitoring, Niroumand-Jadidi et al. (2022) found
that down-sampling SuperDoves data to 15 m resolution improved
the performance of river bathymetry retrieval by increasing the
signal to noise ratio. This has not been investigated for chl-a
monitoring, and so it is uncertain whether the higher spatial
resolution of the SuperDoves is truly beneficial. Furthermore, as
the SuperDoves generally cover a narrower spectral region than
Landsat or Sentinel-2, they potentially lack bands which are useful
for atmospheric correction (AC), such as those in the short
wavelength infrared region (SWIR), which can be used for glint
correction over water (Steinmetz and Ramon, 2018). Dogliotti et al.
(2024) found that SuperDoves tended to have higher AC errors than
Landsat and Sentinel-2 when using default “land-based” AC
approaches for water reflectance retrieval. However, as there are
several AC algorithms that have been developed for inland waters
(e.g., Soriano-González et al., 2022; Steinmetz and Ramon, 2018;
Vanhellemont and Ruddick, 2018), it would be beneficial to
understand to what extent the wider range of AC algorithms
available for a more well-established sensor such as Sentinel-2
MSI provide an advantage over those presently available for the
SuperDoves.

Generally, very few small water bodies are routinely monitored,
highlighting the need for remote sensing approaches. However, this
presents a challenge, as limited ground truth data are available for
validation. A potential solution is to use data collected in a
regulatory monitoring context alongside citizen science data.
Therefore, this study focuses on two external sources of
validation data: data collected by the Scottish Environment
Protection Agency (SEPA), and citizen science data recorded
through the mobile phone application Bloomin’ Algae. The use of
citizen science data can foster environmental stewardship and can
increase public understanding of environmental issues (Pocock
et al., 2023). Alongside this, it has potential to provide wide
coverage, and so can be used both to validate and complement
satellite data for water quality monitoring applications (Putman
et al., 2023).

Therefore, the focus of this study is to understand if SuperDoves
imagery and the currently available associated algorithms are
suitable for monitoring algae and algal blooms in small inland
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water bodies. Specifically, the key hypothesis being tested is: given
that SuperDoves have a similar band configuration to Sentinel-2, it is
expected that with appropriate algorithm selection they may have
similar performance for algae monitoring in small water bodies. This
is significant given that the spatial resolution of SuperDoves data
potentially enables water quality monitoring in a vast number of
lakes which previously would have been considered too small for
satellite monitoring. To ascertain if this is possible, we first make a
comparison of SuperDoves with Sentinel-2 and associated
algorithms. This comparison enables answering the following
questions for a small inland water body: (1) do the presently
available atmospheric correction algorithms for SuperDoves
perform similarly to the best performing algorithms for Sentinel-
2? (2) using the best working algorithms, can chl-a be retrieved from
SuperDoves imagery with similar or better performance to Sentinel-
2? (3) using citizen science and environment agency data for
validation, do Sentinel-2 and SuperDoves perform similarly for
algal bloom detection? (4) Does the higher spatial resolution
offered by SuperDoves resolve features in the chl-a distribution
more clearly than it would at lower resolution? Finally, to test the
wider applicability of the SuperDoves, we investigate whether citizen
science algal bloom records in five other small water bodies in
central Scotland match the corresponding SuperDoves imagery.

2 Material and methods

2.1 Study site

With an area of 0.069 km2, Airthrey Loch is a small, eutrophic
lake in central Scotland (United Kingdom) with a maximum depth
of less than 4.5 m. The water body is artificial, was constructed in
1788, and is now part of the University of Stirling campus (Kelly and
Smith, 1996). During the spring and summer cyanobacterial blooms
regularly occur which frequently result in closures to the recreational
activities which the lake supports such as fishing and water sports.
Whilst there is no routine water quality monitoring of Airthrey
Loch, SEPA carry out phytoplankton counts a handful of times each
year to assess the safety of the water for recreation upon request of
the University. Airthrey Loch is large enough that most of its area is
resolvable with Sentinel-2 imagery, however, it also features narrow
sections which may require the higher resolution of SuperDoves to
be properly resolved (Figure 1).

2.2 In situ data collection

2.2.1 Reflectance measurements
An automated hyperspectral above water reflectance

measurement platform (In situ Marine Optics Dynamic Above-
water Radiance and Irradiance Collector (DALEC-SN0005)) was
deployed for 19 days in 2022 from 28th July – 15th August, and
85 days in 2023 from 8th July – 30th September. Data were only
collected over 96 days due to instrument maintenance and power
supply outages. The DALEC was configured to continuously
measure for 4 h each day, from 10:00–14:00 UTC to include
both the SuperDoves overpass between 10:30–11:30 UTC, and
Sentinel-2A/B overpass between 11:30–11:50 UTC. The DALEC

automatically tracks the angle of the sun with a relative azimuth
angle of 135°, and was mounted on a steel pole 1 m above the water
surface at a location approximately 25 m from the shore on the
western side of the lake (latitude: 56.14701°, longitude: −3.92347° -
see Figure 1). It has three sensors (Figure 2) which independently
measure Lu, the upwelling radiance, Lsky, the sky radiance, and Ed,
the downwelling irradiance at approximately 3 nm intervals in the
spectral range 380–1,020 nm. Using these measurements, remote
sensing reflectances (Rrs) values from the DALEC data were
calculated using Equation 1 (Mobley, 1999):

Rrs(λ) � Luλ − ρLsky λ( )
Ed λ( ) (1)

where λ is the wavelength and ρ the skylight reflectance, which for all
measurements, was assumed to be the standard value for low wind
speeds (<5m s−1) of 0.028. Following the initial calculation of Rrs, the
procedure established by Jiang et al. (2020) was used to remove
residual skylight reflectance. Thirteen spectra with negative values,
or extremely large reflectance values (Rrs (580) > 0.04 sr−1) were
excluded from the data as they were assumed to be spurious
measurements. The Rrs data from the DALEC sensor were then
convolved using the spectral response functions of Planet
SuperDoves and Sentinel-2A/B to allow for validation of the
AC procedure.

2.2.2 Chlorophyll-a measurements
In total, 25 water samples were taken from the study site over

two periods: July–October 2022, and April–October 2023. Samples
were taken at approximately fortnightly intervals to capture different
stages of bloom development throughout the phytoplankton
growing season. Where possible, clear, cloud free days were
chosen for sampling to maximise the chances of suitable satellite
match-up images. Samples were always collected between 10:00 and
13:00 UTC to match satellite overpass times. Sampling was done
from the Southern edge of a jetty on theWest bank of the loch which
extends approximately 20 m away from the shore and is located
close (~30 m) to the DALEC sensor (see Figure 1). Whilst the

FIGURE 1
Aerial photograph of Airthrey Loch provided by Digimap

®
, ©

Getmapping Ltd. The orange triangle indicates the approximate
location of the DALEC hyperspectral sensor, the orange circle the
water sampling location, and the red square the 30× 30m area of
interest (AOI) used for analysis.
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sampling location was approximately 30 m away from the AOI, any
errors arising from this would affect both SuperDoves and Sentinel-
2 match-ups, meaning that the resulting performance comparison is
still meaningful. On the day of sampling, samples were filtered onto
25 mmGF/F glass microfiber filters with 0.7 μm pore size and stored
at −80°C for a maximum of 4 months. Subsequently, analysis for chl-
a was carried out using a High-Performance Liquid
Chromatography (HPLC) method based on the approach
described by Hooker et al. (2009). The generated chl-a data were
checked for consistency and spurious values by examining the time
series to ensure that the seasonal pattern expected for eutrophic
water bodies in Scotland was present. Table 1 gives details on the
number of chl-a match-ups obtained for each sensor.

2.3 Satellite imagery

2.3.1 Collation and pre-processing
European Space Agency (ESA) Sentinel-2 (Level 1C) and Planet

SuperDoves (8-band top of atmosphere reflectance) imagery
covering the full spatial extent of Airthrey Loch from January
2021 through to April 2024 was downloaded from the Planet and
Copernicus Dataspace repositories. A 30 × 30 m area of interest
(AOI) centred 10 m east of the DALEC sensor location was selected
for comparison with the DALEC measurements (Figure 1). This
corresponds to 10 × 10 pixels for the 3 m SuperDoves data, and 3 ×
3 pixels for the 10 m Sentinel-2 data. The choice to offset the centre
of the AOI 10 m from the location of the DALEC was done to
minimise adjacency effects, whilst still including several pixels in the
direct vicinity of the DALEC.

For the SuperDoves data, the Planet useable data mask (UDM)
was used to identify images with clouds over the AOI. Such images
were not used for further analysis. For the Sentinel-2 data, the IdePix

(Identification of pixel properties) masking tool was used (Wevers
et al., 2021). Sentinel-2 images with pixels in the AOI which were
flagged as invalid, cloud, cloud shadow, snow/ice, bright, white,
cirrus or bright white were not used for analysis.

2.3.2 Atmospheric correction
Several AC procedures for the generation of Level 2 surface

reflectance products were tested. For SuperDoves data there are
presently only two available AC procedures, and both were used for
testing: the default Planet surface reflectance (SR) product, and
Atmospheric Correction for Operational Land Imager (OLI) “lite”
(ACOLITE), which is designed specifically for aquatic applications
(Vanhellemont, 2023). ACOLITE works by automatically selecting
bands that are minimally influenced by surface reflectance and uses
these for “dark spectrum fitting” to correct for atmospheric
scattering and absorption effects (Vanhellemont and Ruddick,
2018). For Sentinel-2, three AC approaches were tested:
ACOLITE; Polymer, which uses a spectral matching approach to
separate and correct atmospheric and sun glint signals from water
leaving reflectance using polynomial and bio-optical modelling
(Steinmetz and Ramon, 2018); and Case 2 Regional Coast Colour
(C2RCC) which is a deep learning approach trained on a large
database of simulated water leaving reflectances and corresponding
top of atmosphere radiances (Soriano-González et al., 2022). C2RCC
and Polymer were selected as these have been shown to consistently
outperform other Sentinel-2 atmospheric methods over inland
waters (Warren et al., 2019). ACOLITE was selected for
comparison as it is the only procedure available for both
SuperDoves and Sentinel-2. For C2RCC, three different neural
network configurations were tested: case-2 waters in general
(C2RCC_nets), extreme case-2 waters (C2X_nets), and complex
extreme case-2 waters (C2X_COMPLEX_nets). All AC models were
tested using the default settings, asides from the salinity parameters
which were set to 0.3 ppt, a typical value for freshwaters in proximity
to urban developments (Dugan et al., 2017).

For both satellite imagery datasets, the median Rrs value over the
AOI was calculated for each image and matched with the
corresponding DALEC data. A matching window of ±1 day was
used to accommodate days with DALEC outages or those
immediately before or after DALEC recording started. Matching
windows of this size have been previously shown to be effective in
obtaining a larger number of inland water match-ups without
introducing significant error (Schröder et al., 2024). Table 1 gives
details on the number of match-ups obtained for each sensor. To

FIGURE 2
Photograph showing the DALEC sensor deployed on Airthrey
Loch. The DALEC captures downwelling irradiance (Ed), indicated by
multiple arrows pointing downwards; upwelling radiance (Lu),
indicated by a single angled arrow (approximately 40° off nadir)
pointing up from the water to the sensor; and sky radiance (Lsky),
indicated by a single angled arrow (approximately 40° off zenith)
pointing down at the sensor.

TABLE 1 Number of match-ups obtained for reflectance measurements
(DALEC), and chl-a samples for both sensors.

SuperDoves Sentinel-2

DALEC Same day 24 10

1 day difference 1 2

Total 25 (15 separate days) 12

chl-a samples Same day 7 5

1 day difference 9 9

Total 16 14
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evaluate the performance of the AC, the corrected satellite data were
linearly regressed against the convolved DALEC reflectances. Slope,
coefficient of determination (R2), root mean squared error (RMSE),
median absolute percentage difference (MAPD), and mean average
difference (MAD), were used as performance indicators. All
algorithms were ranked according to each of these metrics and a
combined total rank computed for each algorithm. The highest-
ranking AC algorithms for both SuperDoves and Sentinel-2 data
were identified and used for subsequent analyses.

2.3.3 Chlorophyll-a estimation
All of the algorithms in Neil et al. (2019) and Vanhellemont

(2023) which use bands available in both the Planet SuperDoves
and Sentinel-2 data were chosen for testing. In Neil et al. (2019),
several algorithms make use of the near infrared ratio in linear,
quadratic and power functions. Preliminary tests found that the
linear versions of these algorithms performed best and so only
these were considered for the formal analysis. This resulted in six
separate algorithms (Equations 2-9) which were used for
formal testing:

1. Near infrared ratio (Gitelson, 1992):

ChlaNIR � a ×
Rrs 708( )
Rrs 665( ) + b (2)

2. Normalised difference chlorophyll index (NDCI) (Mishra and
Mishra, 2012):

ChlaNDCI � a + b ×
Rrs 708( ) − Rrs 665( )
Rrs 708( ) + Rrs 665( )( )

+ c ×
Rrs 708( ) − Rrs 665( )
Rrs 708( ) + Rrs 665( )( )

2

(3)

3. NASA Ocean Colour 3 band algorithm (OC3) (O’Reilly
et al., 1998):

ChlaOC3 � 10 a+bX+cX2+dX3+eX4( ) (4)
where

X � log 10
Rrs 443( )> Rrs 490( )

Rrs 560( )( ) (5)

4. NASA Ocean Colour 2 band algorithm (OC2) (O’Reilly
et al., 1998):

ChlaOC2 � 10 a+bX+cX2+dX3+eX4( ) (6)
where

X � log 10
Rrs 490( )
Rrs 560( )( ) (7)

5. Red band difference (RBD) (Freitas and Dierssen, 2019):

ChlaRBD � a × Rrs 707( ) − Rrs 666( )( ) + b (8)

6. Adapted version of the red band ratio (RBR3)
(Vanhellemont, 2023):

ChlaRBR3 � a × Rrs 866( ) × 1
Rrs 666( ) −

1
Rrs 708( )( ) + b (9)

where a, b, c, d, and e are the tuneable coefficients associated
with each algorithm, and Rrs(λ) is the remote sensing reflectance at
the wavelength λ.

All in situ chl-a match-ups were used for tuning the
coefficients. Tuning was done using least squares regression in
log-space as log-transformed chl-a is generally normally
distributed, and therefore more suitable for regression (Seegers
et al., 2018). Preliminary investigation found that after fitting, the
two-fourth order polynomial ocean colour algorithms often
produced extremely large or negative chl-a values when applied
to new imagery, suggesting overfitting (Lever et al., 2016).
Therefore, simplified linear versions (c, d, e = 0) of OC2 and
OC3 were used to avoid this. As with the AC evaluation, the
median Rrs values from the same 30 × 30 m grid were used.
Algorithm performance was evaluated using root mean squared
error (RMSE), median absolute percentage difference (MAPD),
bias (mean average difference, MAD), slope and R2. All metrics
were first calculated in log-space and then converted back to linear
space as recommended by Seegers et al. (2018).

2.4 Bloom detection

To test the capability of the algorithms to detect algal blooms,
records were compiled from data recorded by SEPA and the citizen
science application Bloomin’ Algae. Both sources included binary
‘bloom’/‘no bloom’ data. Specifically, SEPA record algal cell
counts, where they define blooms to be cyanobacterial
concentrations of more than 105 cells mL-1. On request of the
University of Stirling, SEPA generally do this analysis on samples
taken in the aftermath of a large bloom, to check if recreational
activities can be restarted. Therefore, the majority of the SEPA
records were in the “no bloom” category. Bloomin’ Algae is a
mobile phone application developed by the United Kingdom
Centre for Ecology & Hydrology (UKCEH) which enables
members of the public to report sightings of algal blooms.
Blooms are reported by uploading photos with some brief
contextual notes to an online database. All bloom reports are
regularly reviewed by experts at UKCEH, and categorised as either
‘confirmed’, ‘plausible’, or ‘incorrect’. For this study, only reports
of blooms categorised as ‘confirmed’ were used. Together, these
bloom reports allowed for testing of the ability of the SuperDoves
and Sentinel-2 sensors to detect blooms in Airthrey Loch.
Specifically, each of the bloom records was matched with the
nearest satellite image, allowing ±1 day for match-ups. The chl-
a values were calculated for each of these images using the best
performing chl-a algorithms previously identified for Sentinel-2
MSI and SuperDoves. The median value from the Western basin of
the lake was used as all the bloom records used for this study were
located at that side of the lake, as well as this being the in situ
sampling location. This chl-a data was classified as either “bloom”

or ‘no bloom’ based on a threshold. For Airthrey Loch, there has
been no work which defines an algal bloom threshold based on chl-
a levels, and so the threshold was varied from 0 to 55 μg L−1. For
each of these thresholds, the F1 score, a standard measure of
classification performance, was calculated. Class imbalances were
accounted for through weighting (Christen et al., 2023).
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2.5 Spatial resolution analysis

To directly investigate the effect of spatial resolution on the
retrieval of chl-a across the water body we followed a similar
procedure to Li et al. (2024). This consisted of a comparison
between the 3 m resolution SuperDoves chl-a image from the
29th of May 2023 with down-sampled images of 10 m and 20 m
resolution generated using the same data. Histograms were used to
compare the overall distribution of chl-a values in each scenario.

2.6 Bloom detection in other small
water bodies

To investigate the capability of SuperDoves to detect algal
blooms in other small water bodies, five small water bodies in
central Scotland within a 35 km radius of Airthrey Loch were
selected for additional analysis (Table 2). All water bodies
selected were less than 1 km2, and had at least one confirmed
Bloomin’ Algae bloom record. For each water body, the closest
available SuperDoves image to a bloom report from either 2023 or
2024 was compared with an image from the end of January 2023.
Algal blooms very rarely occur in Scottish water bodies at this time
of year, and so these images act as a low-chl-a baseline (May et al.,
2022). For each image, the OC3 algorithm with the coefficients
derived earlier in the study was used to visualise the chl-a
distribution over each water body, and lake-median chl-a values
calculated. Qualitative comparisons were made between the baseline
and bloom images to examine the correspondence between
Bloomin’ Algae records and high chl-a concentrations measured
using SuperDoves.

3 Results

3.1 Atmospheric correction

Most ACmodels performed better for the bands located between
490 and 666 nm for both MSI and SuperDoves sensors (Figure 3). In
the majority of SuperDoves bands, ACOLITE products showed
consistently higher slopes and biases than those derived from the
Planet SR product, whereas the Planet SR product generally had
lower RMSE and MAD (Figures 3, 4). On average, these two AC
algorithms ranked equally and so both were considered for
subsequent analyses.

For the Sentinel-2 data, on average across all wavebands the
highest-ranking algorithm was C2X_COMPLEX_nets, the C2RCC
algorithm designed for complex waters. Whilst Polymer did
outperform this algorithm at certain wavebands, C2X_
COMPLEX_nets performed more consistently across all
wavebands, and had very few outliers (Figures 3, 5).

3.2 Chlorophyll-a algorithm evaluation

For the Sentinel-2 data, all algorithms had statistically significant
fits (p ≤ 0.01) when regressed to the in situ data (Figure 6). In
contrast, none of the chl-a algorithms evaluated with the Planet
surface reflectance product had statistically significant fits (p > 0.05).
For this reason, only the SuperDoves data corrected with ACOLITE
was considered subsequently. Tuning to in situ data gave statistically
significant fits (p ≤ 0.01) and moderately high R2 values (>0.5) for all
algorithms with Sentinel-2 data, whereas the only statistically
significant tuned SuperDoves algorithms were OC3 (p ≤ 0.001)
and RBR3 (p ≤ 0.05) (Figure 6). Out of these, only OC3 had R2 > 0.5.
The best performing algorithm overall was the SuperDoves OC3,
which had the lowest RMSE and MAPD of 0.93 μg L−1 and 17.99%,
highest R2 of 0.64, and slope of 0.64. The best performing Sentinel-2
algorithm was NDCI, which had the second highest R2 of 0.61, slope
of 0.61, and second lowest RMSE of 1.01 μg L-1 overall.

3.3 Bloom detection

The algal bloom history of Airthrey Loch since 2021 was
visualised using the full timeseries of SuperDoves OC3 and
Sentinel-2 NDCI chl-a data (Figure 7). As expected of the higher
temporal imagery, SuperDoves had more cloud free images during
the study period than Sentinel-2. Between January 2021 and May
2024 there were a total of 191 cloud free SuperDoves images of the
loch which equates to, on average, 56 per year. For Sentinel-2 there
were 87 cloud free images, equating to approximately 25 per year. In
2021 there was some discrepancy between Sentinel-2 and
SuperDoves, which is particularly obvious in July. However, from
2022 onwards both sensors show similar trends. The combined
Bloomin’ Algae and SEPA bloom records consisted of 10 reports on
separate dates, six of which were labelled as blooms. All six of these
dates correspond to peaks in the chl-a time series generated from
SuperDoves and Sentinel-2 data (Figure 7). Likewise, all the ‘no
bloom’ records corresponded with lower chl-a values.

TABLE 2 Location, area and mean depth of water bodies used for additional analysis (Hughes et al., 2004).

Water body Latitude (°) Longitude (°) Area (km2) Mean depth (m)

Linlithgow loch 55.98 −3.60 0.41 2.3

Beecraigs loch 55.95 −3.58 0.074 4.2

Loch fitty 56.11 −3.42 0.62 2.3

Gartmorn dam 56.13 −3.74 0.57 3.3

Castlehill reservoir 56.21 −3.62 0.21 5.0
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FIGURE 3
Atmospheric correction performancemetrics: R2, slope, RMSE, MAPD, andMAD plotted against wavelength for both SuperDoves (right column) and
Sentinel-2 (left column) match-up data. For clarity, only the best performing of the C2RCC algorithms (C2X Complex Nets) is shown. Blue lines indicate
errors associated with ACOLITE, orange lines C2X Complex Nets, green lines Polymer, and red lines the planet surface reflectance product. (a) S2. (b) SD.
(c) S2. (d) SD. (e) S2. (f) SD. (g) S2. (h) SD. (i) S2. (j) SD.
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The clear separation in chl-a values between “bloom” and “no
bloom” events is reflected in the F1 scores (Figure 8). For
SuperDoves, a perfect score of 1.0 was obtained with the bloom
threshold set between 20–30 μg L−1, and for Sentinel-2 this was
obtained in the 10–30 μg L−1 range. Performance is still very strong

with F1 score >0.85 if the threshold is set between 10–45 μg L−1. This
indicates that both sensors, with their associated best-performing
atmospheric correction and chl-a algorithms, could detect the
presence and absence of algal blooms reported by SEPA and
citizen scientists in the Western basin of the lake.

FIGURE 4
SuperDoves remote sensing reflectance plotted against in situ remote sensing reflectancemeasurements for the two tested atmospheric correction
algorithms. Each marker represents a separate acquisition. Blue circles represent ACOLITE corrected data and orange crosses the Planet surface
reflectance data. The solid coloured lines plotted were generated from ordinary least squares linear regression, and the black dashed line is the 1:1 line. (a)
444 nm. (b) 492 nm. (c) 533 nm. (d) 566 nm. (e) 612 nm. (f) 666 nm. (g) 707 nm. (h) 866 nm.

FIGURE 5
Sentinel-2 remote sensing reflectance plotted against in situ remote sensing reflectance measurements for the tested atmospheric correction
algorithms. Each marker represents a separate acquisition. Blue circles represent ACOLITE corrected data, orange squares C2X Complex Nets corrected
data, and green crosses are data corrected with Polymer. The solid coloured lines plotted were generated from ordinary least squares linear regression,
and the black dashed line is the 1:1 line. For clarity, only the best performing of the C2RCC algorithms (C2X_COMPLEX_NETS) is shown. (a) 443 nm.
(b) 492 nm. (c) 560 nm. (d) 665 nm. (e) 704 nm. (f) 865 nm.
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3.4 Spatial analyses

The difference between low and high chl-a states is evident when
comparing images from mid-May to early June (Figure 9). All
sensors clearly depict this variation, with the early June images
showing higher chl-a concentrations. There is a noticeable
correlation in the spatial pattern of the bloom observed in early
June, where the highest concentrations, excluding shorelines, tend to

be in the northwest part of the lake. However, estimates from
Sentinel-2 NDCI imagery using the C2X_COMPLEX_nets
algorithm are significantly lower compared to those from the
SuperDoves OC3 imagery. In the images from the 4th June, the
chl-a distribution in the narrow section of the Eastern side of the lake
is very different in all three of the chl-a maps. The Sentinel-2 NDCI
image corrected with C2X_COMPLEX_nets shows extremely low
chl-a values, whereas the Sentinel-2 OC3 ACOLITE-corrected

FIGURE 6
Satellite chl-a plotted against in situmeasurements. Satellite chl-a was generated with the following algorithms: (a)OC3, (b)OC2, (c)NIR, (d)NDCI,
(e) RBD, and (f) RBR3. Sentinel-2 data are indicated by orange crosses and SuperDoves by blue circles. Black dashed lines are the 1:1 lines, and the solid
lines are the lines of best fit generated from log-log least squares regression. RMSE, MAPD and R2 values from log-space linear regression are displayed for
each sensor, alongside an indication of the statistical significance level (ns) - p > 0.05; * - p ≤ 0.05; ** - p ≤ 0.01; *** - p ≤ 0.001.

FIGURE 7
Median chl-a time series fromWestern basin of Airthrey loch generated with SuperDoves OC3 (solid blue line) and Sentinel-2 NDCI (dashed orange
line). Purple triangles (SEPA records) and green circles (Bloomin’ Algae data) indicate bloom presence if placed in the upper section of the plot, and bloom
absence if placed in the lower section.
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image is dominated by very high chl-a in this part of the water body.
In contrast, the corresponding SuperDoves image shows a more
discernible pattern: higher chl-a concentrations largely accumulated
on the Western banks of the narrow section of the loch, with lower
chl-a on the opposite bank. Notably, at the narrowest points, this
section of the lake is approximately only 30 m wide, which
corresponds to ten SuperDoves pixels, but only three 10 m
Sentinel-2 pixels. Furthermore, the Sentinel-2,443 nm and
705 nm bands have lower resolutions of 60 and 20 m
respectively. This has the consequence that parts of this narrow
section are likely not properly resolvable with Sentinel-2 using
NDCI and OC3 as the lower resolution bands are used for chl-a
retrieval. In addition to the apparent issues with the narrow section
of the loch, the Sentinel-2 NDCI image corrected with C2X_
COMPLEX_nets from the 4th of June has a distinctive adjacency-
effect in the Western basin. The perimeter of the basin has a narrow
ring of very high chl-a values which are encircled by a ring of very
low chl-a values around the perimeter of the basin.

Analysis of the SuperDoves image from 2023 to 05-29 showed
clear differences between the distribution of chl-a values when the
image was down-sampled from 3 m to 10 m and 20 m spatial
resolutions (Figure 10). Notably, at 10 m resolution there are clear
peaks at approximately 15 and 20 μg L-1, whereas in the 3 m
resolution image, the distribution in this region is more even.
Similarly, the high values of chl-a at 20 m resolution are
exclusively located at approximately 40 and 60 μg L−1, whereas
high values in the 3 m image are distributed throughout this region.

3.5 Bloom detection in other small
water bodies

For all five water bodies there was a clear distinction between the
baseline images from January 2023 and those acquired either shortly

before or after confirmed Bloomin’Algae bloom records (Figure 11).
Castlehill Reservoir and Linlithgow Loch showed the largest median
chl-a differences of 25 and 27 μgL−1 between the bloom and no-
bloom images. In contrast, the differences between bloom and no-
bloom images in Loch Fitty and Gartmorn Dam were lowest - both
12 μgL−1. Nonetheless, all bloom images show localised chl-a
features of above 30 μgL−1, which are not present the
baseline images.

4 Discussion

4.1 Atmospheric correction

At present, algorithms for AC over water and retrieval of
water quality parameters such as chl-a have not been widely
tested for eight-band SuperDoves imagery. At the time of writing,
this has only been done in the present study and by Vanhellemont
(2023) for a coastal environment. There are currently only two
available AC algorithms for SuperDoves, and of these, only
ACOLITE is intended for aquatic applications. Thus, there
were notable differences in the performance of AC algorithms
available for Sentinel-2 and SuperDoves. Notably, where
ACOLITE suffered from elevated errors at higher wavebands
above 700 nm, the C2X Complex Nets algorithm generally
performed more consistently across the spectrum (Figure 3).
This discrepancy in error across wavelengths provides a plausible
explanation as to why the NIR, RBD and NDCI algorithms (that
use the ratio or difference between the 666 and 707 nm bands)
were not sensitive to changes in chl-a. The finding that the
ACOLITE-corrected Sentinel-2 data also showed a similar
error pattern across wavebands suggests that this issue may be
partly due to AC limitations. However, it is likely that this error
may have other sources such as the relatively low signal-to-noise
ratio of SuperDoves (Valenzuela et al., 2024). This is a general
issue for microsatellite constellations given their small size and
limited power (Siddique, 2024). Furthermore, the
correspondence between in situ and satellite Rrs in the 443/
444 nm band was poor, with negative correlations in both
SuperDoves and Sentinel-2 data. This is not unusual - it is
very common for AC procedures to perform poorly over
coastal and inland waters at the blue-end of the visible
spectrum (Lv et al., 2024). Typically this is due to difficulties
in estimating the contribution of strongly absorbing aerosols at
these wavelengths (Kahn et al., 2016). In comparison,
Vanhellemont (2023) found that the ACOLITE correction was
effective across all eight wavebands. Notably, the errors in the
444 nm, 707 nm and 866 nm bands were significantly lower than
those found in the present study. This discrepancy could be due
to dissimilarities between the study sites (coastal compared with
inland water), and possibly differences in the atmospheric
conditions associated with each of these (Pahlevan et al.,
2021). However, for another coastal environment, Dogliotti
et al. (2024) also found issues with AC of SuperDoves in the
444 and 866 nm bands. A likely source of this error is sun glint,
which can be corrected using SWIR (900–1700 nm) bands which
SuperDoves lacks (Lavigne et al., 2023). Whilst NIR bands have
been used successfully for glint correction of SuperDoves imagery

FIGURE 8
F1 Scores from bloom detection task for SuperDoves OC3 (blue
solid line) and Sentinel-2 NDCI (orange dashed line) across a range of
chlorophyll-a bloom thresholds.
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over clear waters, further developments are required to improve
this capability for turbid waters (Vanhellemont, 2023).

4.2 Chlorophyll-a retrieval and algal
bloom detection

Despite challenges associated with AC, with the best algorithms,
the SuperDoves chl-a retrieval error was generally lower than that of
Sentinel-2, indicating the suitability of this data for phytoplankton
monitoring in small water bodies such as Airthrey Loch. Retrieval of

chl-a in this study was inevitably affected by errors arising from
various sources. Firstly, there was a consistent discrepancy between
the location of in situ sampling and the satellite pixels that this was
compared with. Furthermore, the timing of sampling did not
consistently match with satellite acquisition times–many chl-a
samples were taken approximately 24 h before or after the
corresponding satellite acquisition. Whilst this is an important
error source, both sensors had similar numbers of same-day and
1-day difference match-ups (Table 1). Therefore, whilst this has the
consequence of a chl-a retrieval uncertainty comparable, if not
greater, in magnitude to that of the average variation in ±24 h,

FIGURE 9
Satellite chl-a maps generated with SuperDoves ACOLITE corrected OC3 (top row), Sentinel-2 C2X_COMPLEX_nets corrected NDCI (second row
from top), Sentinel-2 ACOLITE corrected OC3 (second row from bottom). The bottom row shows the difference images between the first two rows.
Image median (M) values are given for each of the chl-a plots and RMSE values are given for the difference images.
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the sensor comparison is nonetheless valid. Furthermore, using this
approach, we were able to use both sensors to detect algal blooms
recorded by SEPA and Bloomin’ algae in a reliable way across a
range of chl-a thresholds. An obvious issue with defining algal
blooms using a simple metric such as a chl-a threshold is that
this does not necessarily correlate well with qualitative records such
as the Bloomin’ Algae records which are verified using user-
uploaded photos of cyanobacterial scums. Given that these scums
can sometimes be relatively small in area, it is possible for reports of
blooms to correspond with images with a relatively low median chl-
a. Whilst this did not appear to be an issue for the Airthrey Loch data
that was analysed, this was apparent for some of the images of other
water bodies. Specifically, Loch Fitty and Gartmorn Dam both had
relatively low median chl-a measurements close to dates
corresponding to Bloomin’ Algae bloom reports (Figure 11).
Reliably detecting smaller scums near to water body edges using
satellite imagery is challenging, because emergent vegetation are
commonly found in marginal areas, and can contribute to the chl-a
signal detected by a satellite sensor (Jiang et al., 2023; Qing et al.,
2020). For cyanobacteria monitoring applications, it can be

beneficial to make use of the phycocyanin absorption peak at ~
620 nm, a spectral feature specific to cyanobacteria (Beck et al.,
2017). This enables distinguishing cyanobacterial scums from
emergent vegetation or other chl-a sources such as green algae.
Whilst Sentinel-2 does not have a band configuration which
supports this, SuperDoves have a band centred at 612 nm and so
could potentially be used for high resolution cyanobacteria-specific
monitoring.

4.3 Spatial resolution

The spatial resolution analysis of the SuperDoves chl-a data over
Airthrey Loch showed that the difference in resolution between
SuperDoves and Sentinel-2 is important (Figure 10). Specifically,
down-sampling SuperDoves from 3 m to 10 m or 20 m, resulted in
chl-a distributions with notable differences, including higher
occurrences of lower to moderate values. Visually, this appears as
a blurring of the patches of higher chl-a concentration, which could
prevent detection of smaller scums, pointing to a clear benefit of the

FIGURE 10
Comparison of SuperDoves chl-a image from 2023 to 05-29 at three different spatial resolutions (top: 3.0 m, middle: 10.0 m, bottom: 20.0 m).
Histograms show the frequency of chl-a values over the entire image in each scenario.
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higher resolution imagery for algal bloom monitoring applications.
Whilst higher resolution imagery typically has a lower signal to noise
ratio (Niroumand-Jadidi et al., 2022), this is likely less important for

detecting high concentrations of algae, where the chl-a signal is
typically strong. Therefore, for algal bloom detection and tracking,
the higher spatial resolution offered by the SuperDoves is beneficial.

FIGURE 11
Comparison of Superdoves OC3 chl-a images from five small water bodies in central Scotland. The left column shows images from late January, and
the right column shows images captured on dates close to Bloomin’ Algae bloom reports. Median (M) chl-a values for each image are also shown. (a)
Image date: 2023-01-26. (b) Image date:2023-09 08 Bl oom report: 2023-09-10. (c) Image date:2023-0125. (d) Image date:2024-07-31 Bloomn!JIOrl::
2024-07-31. (e) lmilge date: 2023-01-26. (f) Image date: 2023·10 23 Bloom report: 2023-10-28. (g) Image date: 2023 01-25. (h) Image dm:2023-
08-07 Bloom n!JIC)rt:: 2023 08-10. (i) Image date: 2023-01-25. (j) Image date: 2023 08-07 Bloom report: 2023-08-08.
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Furthermore, the lower resolution Sentinel-2 NDCI data showed
some apparent adjacency-effects in the wider basin. The very low
chl-a values at the edge of the water body in the Sentinel-2 NDCI
images likely included 20 mNIR pixels (705 nm) which overlap both
water and land. For such pixels, high NIR reflectance would be
expected as the shoreline of the lake has significant vegetation cover
(Huang et al., 2021).With the NDCI algorithm, high NIR reflectance
should produce high chl-a values, and therefore the low chl-a values
indicate an over-correction in the NIR by the C2X_COMPLEX_nets
algorithm. Whilst these are only issues for a relatively small portion
of Airthrey Loch, they would likely be more prevalent for smaller
lakes where narrow geometries, edge-adjacent pixels, and mixed
pixels tend to make up a larger portion of the total area (Jiang et al.,
2023). Therefore, our results corroborate and extend upon those of
Wasehun et al. (2025), indicating that a key advantage of the higher
spatial resolution SuperDoves data is that this reduces distortion in
the distribution of measured chl-a values and reduces the extent of
adjacency-effects.

4.4 Wider applicability to other small
water bodies

The finding that gross changes in water quality associated with
the presence and absence of algal blooms were detectable in several
small water bodies indicates promise for the wider applicability of
SuperDoves data for algae monitoring. Still, there are various
sources of uncertainty associated with this analysis which are
difficult to quantify without additional in situ data. For example,
in shallow water bodies bottom effects may contribute an unwanted
component to the chl-a signal (Ma et al., 2011). Given that most of
the water bodies considered in this study were relatively shallow, this
was likely a source of error for them all (Table 2). With sufficient in
situ chl-a data, it is possible to correct for bottom effects and other
errors (Zhang et al., 2018), however this poses a specific challenge
when considering using high resolution satellite imagery for
widespread water quality monitoring: given the sheer number of
small water bodies, gathering sufficient data for validating
phytoplankton monitoring schemes and algal bloom detection
systems is potentially difficult. Furthermore, routine monitoring
programs tend to be reserved for larger, more economically
significant lakes (Biggs et al., 2017). However, the efficacy of
using irregular records from reactive environmental monitoring
and citizen science to validate satellite monitoring (Figures 7, 11)
suggests that this approach could be used more widely than
currently for comparing with remotely sensed data. Satellite
imagery can suffer from errors and missing data due to
atmospheric effects, cloud cover, confounding (non-algal) chl-a
sources, and adjacency effects (Zahir et al., 2024). Likewise,
citizen science data are likely to be collected somewhat
irregularly, possibly with inconsistencies, and uncertainty arising
from human error and biases (Pocock et al., 2023). However, as their
sources of error are very much independent from each other,
together these data complement each other very well. Therefore,
further exploring ways to use these data alongside each other would
offer a richer, more complete way of monitoring and understanding
aquatic ecosystems than either would be capable of alone (Putman
et al., 2023).

Alongside spatial resolution, another clear advantage of the
SuperDoves data is that of temporal resolution. Given that
SuperDoves images are acquired daily, this imagery could be
expected to give approximately a five-fold increase in the number
of useable images compared with Sentinel-2. However, only slightly
more than twice as many useable images were obtained with
SuperDoves. This is largely a reflection of a challenge associated
with using optical remote sensing data at high latitudes (e.g., central
Scotland) where significant cloud cover is common throughout the
year (McGrath et al., 2023). On average, approximately one cloud-
free SuperDoves image was obtained each week. Although a
significant improvement on the Sentinel-2 data, this is far from
the daily observations which Dubelaar et al. (2004) suggest are
required to follow ecosystem dynamics of phytoplankton in detail.
Therefore, for regions like Scotland with consistent and regular
cloud cover, higher frequency monitoring data would likely be best
obtained using automated in situ measurement platforms (Marcé
et al., 2016). However, even in areas where satellite temporal
coverage is limited by cloud cover, there is still the potential to
collect far more data than would be feasible with manual sampling
efforts. Whilst there were some errors and discrepancies between the
SuperDoves and Sentinel-2 chl-a estimates, we were still able to
detect gross changes in water quality. Therefore, if applied on a
larger scale, this capability could be of significant use to assist
regulatory agencies with targeting sampling efforts to reduce
operational costs.

Finally, it is worth noting that Planet SuperDoves data are not
freely available, except for small-scale research projects, such as the
present study (Planet Labs PBC, 2018). Whilst Planet have various
pricing structures available, including discounts for non-profit
organizations, it is still possible that certain projects such as
global lake studies or implementation of widespread algal bloom
monitoring programs might be prohibited by cost. It is therefore
very likely that freely available products such as Sentinel-2 and
Landsat will continue to be widely used for water quality monitoring
applications even as higher resolution imagery becomes increasingly
attractive.

5 Conclusion

Our study highlights several key findings and challenges
associated with using the Planet SuperDoves satellite
constellation for monitoring phytoplankton in a small,
eutrophic lake. Despite some challenges, it was found that
SuperDoves data are competitive with Sentinel-2 for this
application and have distinct advantages arising from higher
spatial and temporal resolution. We have shown that the higher
spatial resolution offered by SuperDoves can enable monitoring of
a vast number of smaller lakes, which has important implications
for the field of limnology, environmental monitoring, and public
health protection efforts. Furthermore, it has been demonstrated
that alongside irregular environmental agency records, citizen
science data can be a valuable complement to satellite imagery.
This points to a low-cost means of validating widespread
monitoring data, whilst also generating an increased sense of
shared environmental stewardship in society. Ultimately, while
high-resolution satellite data like SuperDoves offer great potential
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for monitoring phytoplankton dynamics, they should
complement, rather than replace other data collection methods.
Such a combined approach could enable monitoring of a huge
number of unstudied lakes, and therefore provide critical data to
improve the management and conservation of small, sensitive
aquatic ecosystems at a scale previously impossible.
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Glossary
AC Atmospheric correction

ACOLITE Atmospheric Correction for Operational Land Imager ‘lite’

AOI Area of interest

chl-a Chlorophyll-a

C2RCC Case 2 Regional Coast Colour

C2RCC_nets General case-2 waters neural network

C2X_
COMPLEX_nets

Complex extreme case-2 waters neural network

C2X_nets Extreme case-2 waters neural network

DALEC Dynamic Above-water Radiance and Irradiance Collector

ESA European Space Agency

HPLC High performance liquid chromatography

MAD Mean average difference

MAPD Median absolute percentage difference

MSI Multi spectral imager

NASA National Aeronautics and Space Administration

NDCI Normalised difference chlorophyll index

NIR Near infrared

OC Ocean colour

OC2 Ocean colour 2 (NASA chl-a algorithm)

OC3 Ocean colour 3 (NASA chl-a algorithm)

OLI Operational land imager

PBC Public benefit company

POLYMER POLYnomial based algorithm applied to MERIS

RBD Red band difference

RBR3 Red band ratio (3-band chl-a algorithm)

RMSE Root mean squared error

Rrs Remote sensing reflectance

SD SuperDoves

SDG Sustainable development goal

SEPA Scottish Environment Protection Agency

SR Surface Reflectance

SWIR Short wavelength infrared region

S2 Sentinel-2

UDM Useable data mask

UK United Kingdom

UKCEH United Kingdom Centre for Ecology and Hydrology

UTC Coordinated universal time

Frontiers in Remote Sensing frontiersin.org18

Atton Beckmann et al. 10.3389/frsen.2025.1549119

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1549119

	Widespread phytoplankton monitoring in small lakes: a case study comparing satellite imagery from planet SuperDoves and ESA ...
	1 Introduction
	2 Material and methods
	2.1 Study site
	2.2 In situ data collection
	2.2.1 Reflectance measurements
	2.2.2 Chlorophyll-a measurements

	2.3 Satellite imagery
	2.3.1 Collation and pre-processing
	2.3.2 Atmospheric correction
	2.3.3 Chlorophyll-a estimation

	2.4 Bloom detection
	2.5 Spatial resolution analysis
	2.6 Bloom detection in other small water bodies

	3 Results
	3.1 Atmospheric correction
	3.2 Chlorophyll-a algorithm evaluation
	3.3 Bloom detection
	3.4 Spatial analyses
	3.5 Bloom detection in other small water bodies

	4 Discussion
	4.1 Atmospheric correction
	4.2 Chlorophyll-a retrieval and algal bloom detection
	4.3 Spatial resolution
	4.4 Wider applicability to other small water bodies

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References
	Glossary


