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Introduction: Acoustic monitoring and soundscape analysis provide valuable
data for the conservation and restoration of underwater habitats. However,
before these methods can be widely implemented for management purposes,
it is crucial to validate the ecological relevance of different sampling
methodologies and quantify potential biases.

Methods:We investigated how the distance and orientation of an acoustic sensor
relative to a target habitat influence the received soundscape. Using a spatial array
of hydrophones, we recorded sound at different distances (1 m, 2 m, 5 m) and
orientations (vertical vs. horizontal) from a shallow coral reef.

Results: Hydrophones oriented horizontally toward the reef exhibited the
expected decrease in sound levels with increasing distance. In contrast,
hydrophones oriented vertically showed an inverse trend, with lower sound
pressure levels at closer distances and higher levels further away.

Discussion: These findings indicate that sensor directivity significantly influences
the received soundscape, introducing a potential methodological bias within and
across acoustic datasets. To improve the accuracy and comparability of acoustic
sampling in coastal habitats, sensor beampatterns should be carefully considered
in experimental design.
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1 Introduction

Marine ecosystems worldwide are facing unprecedented changes to habitat and
community structure, impacting the ecological, economic, and social functions they
support (Tallis et al., 2013). Developing new or improving sampling methods that
facilitate efficient, scalable, and reliable ecological monitoring is therefore urgently
needed to increase the efficacy of management actions (Pereira and Cooper, 2006;
O’Connor et al., 2020). Ocean Sound is now recognized as an Essential Ocean Variable
(EOV) by the Global Ocean Observing System (GOOS) due to its applicability to
management (Tyack et al., 2023). This recognition, along with recent advances in
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passive acoustic monitoring (PAM) technology (Sethi et al., 2018;
Lin and Yang, 2020), have highlighted the potential for PAM to add
widespread value to marine management initiatives (Gibb et al.,
2019). Soundscapes can convey information about habitat
composition, the presence and abundance of soniferous species,
and the ecological processes underway (Duarte et al., 2021);
however, optimization and validation of soundscape data
collection methods are required to confirm the ecological
relevance of resulting analyses and interpretation (Mooney
et al., 2020).

Healthy coral reefs are noisy environments with distinctive, site-
specific patterns of biological sound production (McCauley and
Cato, 2000; Staaterman et al., 2013; McWilliam et al., 2017).
However, a substantial proportion of the world’s coral cover is
predicted to be lost within a few decades, negatively impacting
biodiversity, as well as a range of essential ecosystem functions and
services (Mumby et al., 2008). As a result, there is increasing interest
in identifying the role of sound within these ecosystems (Elise et al.,
2022), and how soundscapes could inform our understanding of
coral reef health and resilience. However, their innate structural and
biological complexity makes acoustic monitoring challenging, with
habitat-specific methodologies likely required (Obura et al., 2019).
As a critical first step, assessing the ecological reliability of current
soundscape sampling methods and technologies will help to refine
their use, rapidly advancing their applicability for monitoring coral
reefs, as well as other coastal ecosystems (Wilford et al., 2021).

Propagation of acoustic signals in shallow waters, such as those
of coral reefs, is inherently complex, due to multi-path interference,
variations in seafloor acoustic properties (and therefore their
reflectivity), and near-field and boundary conditions (McCauley
et al., 2021; Bies et al., 2023). Further, reef soundscapes comprise a
variety of impulsive and continuous sounds generated by sources
distributed unevenly in three dimensions around complex
structures. Close to a sound source (the near-field), sound waves
exhibit complex interference patterns with areas of high and low
pressure, and the size of the near-field is frequency-dependent
(Meyer and Neumann, 1972; Larsen and Radford, 2018), making
sound propagation the near-field challenging to study and often
leading to oversimplification or to be neglected in studies (Bies et al.,
2023). This level of complexity and innate variation means that the
sampling protocol used can have major ramifications on the quality
and comparability of the data collected. This near-field zone can
extend tens of meters, which is essentially beyond the distance at
which most coral reef soundscapes are sampled. For example,
recordings are mostly collected within the near-field, on top of or
next to the reef (Kaplan et al., 2015; Elise et al., 2019; Dimoff et al.,
2021; Lin et al., 2021; Jones et al., 2022; Lamont et al., 2022b), and
multiple studies have reported substantial variation in sound levels
at small spatial scales using drifting sensors (Lillis et al., 2018b; Lillis
et al., 2023). In addition, the frequency-dependent directionality of
underwater recorders (Parsons and Duncan, 2011; Taylor et al.,
2024) and seafloor reflectivity at the recording site (Parsons and
Duncan, 2011) can influence the receive pattern of the hydrophone,
i.e., recorded sound energy that varies with signal frequency as well
as receiver orientation relative to source(s) and seafloor.

Given these complexities, understanding how the distance and
orientation of recording sensors relative to multiple sound sources
affect the recorded soundscape is crucial for accurate bioacoustic

and ecoacoustic analyses. If variations in the positioning of acoustic
sensors can significantly alter the received spectra and sound
pressure levels, there is potential for measurement bias to
influence the interpretation of key ecological metrics. To address
this uncertainty, we characterised the effect of two factors on the
received soundscape of a shallow coral reef, recorded within the near
field (up to 5 m away): (a) distance between an acoustic sensor and
the target habitat and (b) orientation of an acoustic sensor, relative
to the target habitat and the seafloor.

2 Methods

2.1 Study site

We conducted the experiment in Coral Bay, Nyinggulu Coast, a
Natural World Heritage Area in Western Australia (Figure 1).
Nyinggulu (commonly known as Ningaloo) is one of the longest
near-shore reefs in the world (280 km length), enclosing a 2–8 m
deep lagoon ranging from 0.5 to 6 kmwidth, dominated byAcropora
and Montipora corals (Hearn et al., 1986; Simpson et al., 1993).
These reefs have not been severely affected by bleaching events
(Gilmour et al., 2019); however, there has been an overall decline in
coral cover in the reef flat and inshore areas (Thomson et al., 2020).

2.2 Soundscape sampling

The effect of distance and position of the sensors (underwater
acoustic recorders) on the received soundscape was tested using an
array of 12 underwater acoustic recorders simultaneously deployed
between August 26th–18 September 2022 (Supplementary Table 1).
We established three transects (South, Middle, and North) separated
by 20 m, at 4 m depth in the sand along the edge of a fringing reef
~2 m height, ~500 m length, and ~110 m width. At each transect we
established three sampling stations at varying distances from the
reef: 1 m, 2 m, and 5 m (Figure 1; Supplementary Figure 1A). No
other reefs or coral heads were located within 100 m. An underwater
acoustic recorder was attached to a star-picket (orientation: vertical)
at each sampling station, with the hydrophone positioned 60 cm
above the seafloor, pointing upwards (Supplementary Figure 1B).
Three additional recorders were deployed at each sampling station
of the Middle transect using T-bars (orientation: horizontal)
positioned on the bottom, pointing to the target reef, with the
hydrophone 5 cm above the seafloor (Supplementary Figure 1B). All
the instruments were SoundTrap digital sound recorders ST600
(Ocean Instruments). These systems are pistonphone-calibrated at
250 Hz by the manufacturer with a flat response (±3 dB) across its
full bandwidth (from 20Hz to 150 kHz). Recordings were conducted
using a 48 kHz sampling frequency, with a duty cycle of 5 min every
15 min, high gain, and the instrument internal clock GPS-
synchronized to the local time.

2.3 Soundscape analyses

The recordings were inspected using CHORUS (Gavrilov and
Parsons, 2014) in MATLAB® (The MathWorks Inc., United States).
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We found no significant contributions of wind sound to the bands
of interest during the recording period. We only analysed
simultaneous recordings and excluded deployment/retrieval
times. Calibrated acoustic data was converted to long-term
spectral averages (LTSA, with 2 min averaging period) and
power spectral density percentiles with an overlay of the power
spectral probability density (PSD%PD). We used the Soundscape
Code (SSC) to characterize the amplitude (root-mean-square
sound pressure level, Lp,rms, and peak sound pressure level
Lp,pk), impulsiveness (kurtosis of sound pressure, β), periodicity
within 1 min recordings (time-lagged autocorrelation for 0.1 s
mean square sound pressure averages, Acorr3), and uniformity
(dissimilarity index, D) (Wilford et al., 2021); in addition to the
acoustic complexity index (ACI). All metrics were computed for
the frequency bands containing the main biological contributors to
our soundscape (Supplementary Figures 1, 2), fish (200–800 Hz)
and invertebrate (2–5 kHz) bands, in MATLAB® custom code
(Azofeifa-Solano et al., 2025) following the original equations
(Pieretti et al., 2011; Wilford et al., 2021) with adaptations to
terminology (ISO, 2017; Sueur, 2018). The code for the soundscape
code metrics is available at MATLAB Central File Exchange
(Azofeifa Solano, 2024).

2.4 Statistical analyses

All metrics were assigned to a time of the day according to
the specific twilight, sunrise, and sunset time of each day
(https://geodesyapps.ga.gov.au). The times of the day were
defined as Dawn (beginning of nautical twilight until
sunrise), Day (from sunrise until sunset), Dusk (from sunset
until end of nautical twilight), and Night (from end of nautical
twilight until beginning of following nautical twilight). All

analyses were conducted using the R environment, version 4.
3.2, in RStudio, version 2024.09.1, (RStudio Team, 2024). Each
metric was plotted over time to visualize general patterns. We
conducted two different models to test for the influence of
distance and orientation of the hydrophones relative to the
target habitat on the received soundscape. Time of day was
considered by analysing each period separately (Elise et al.,
2019). For the distance experiment, we conducted a linear model
considering distance from the reef (1 m, 2 m, 5 m) and transect
(N: north, M: middle, S: south) as fixed categorical factors. The
model residuals were tested to check for normality (Anderson-
Darling) and homoscedasticity (Levene). For this comparison
we only considered data from the vertical deployments (star-
pickets). For the orientation experiment we conducted a
linear model considering deployment method (M: middle
star-pickets or vertical, T: middle T-bars or horizontal) and
distance from the reef (1 m, 2 m, 5 m) as fixed categorical
factors, as well as the interactions among them. The model
residuals were tested to check for normality (Anderson-Darling)
and homoscedasticity (Levene).

3 Results

The soundscape at all the stations shows diel patterns typical of
coral reefs, with higher values for the fish band during day, and
higher values for the invertebrate band during night (Supplementary
Figures 2, 3). All SSC metrics and the ACI showed conspicuous
spatial and temporal variability for the fish and the invertebrate
bands (Supplementary Figures 4–9). The Lp,rms, Lp,pk, D, and ACI
have noticeable diel patterns, but the β andAcorr3 did not. Our data
had no problems with residual normality or homoscedasticity
(Supplementary Table 2).

FIGURE 1
Map of study site. Sampling stations of the soundscape showing the experimental design at Nyinggulu Coast, Western Australia.
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3.1 Distance experiment

Our results show that for the fish band, only the amplitude
(mostly Lp,rms) varied with distance from the reef (Figure 2),
however, the models had a relatively low deviance explained
(10% < DE < 50%; Supplementary Tables 3–6). In the case of
the invertebrate band, amplitude (Lp,rms), contrary to our
expectations, increased with distance from the reef (Figure 2),
with the models explaining most of the variance during dawn
and dusk (DE > 50%) (Supplementary Tables 3–6). The
remaining metrics did not vary among distances (Supplementary
Figures 10–14; Supplementary Tables 3–6).

3.2 Orientation experiment

We found differences for the fish band metrics between the two
deployment methods; however, the models have low deviance
explained (DE < 10%; Supplementary Tables 7–10; Figure 3;
Supplementary Figures 15–19). In the case of the invertebrate
band, the amplitude (Lp,rms) showed differences between
deployment methods during dawn and dusk (Figure 3), with a
relatively low deviance (10% < DE < 50%). The amplitude tended to
increase with distance from the reef in the vertical deployment, while
recordings from the horizontal deployment showed a decreasing

amplitude with distance from the reef. The remaining metrics were
similar between orientations (Supplementary Figures 15–19).

4 Discussion

The findings of our experiment clearly indicate that both
distance and orientation influence the received soundscape when
sampling within shallow coral reefs, which broadly aligns with
observations from other habitat types (Urick, 1983; Parsons and
Duncan, 2011; Taylor et al., 2024). Here, three main patterns of
sound levels were observed: differences among relative distances and
orientations of the sensors, differences between frequency bands
(fish vs. invertebrate), and differences among times of the day. As it
is critical to identify and limit potential sources of bias within
soundscape analyses, these results have significant implications
for the optimization, testing, validation, and standardization of
acoustic sampling methodologies in coastal habitats and in their
near field.

We found two distinct patterns in the sound pressure level of the
invertebrate band between the sensors pointing upwards (vertical)
and those pointing directly at the target habitat (horizontal). In the
horizontal deployments, the sound pressure level of the invertebrate
band decreased with increasing distance, as predicted (Bies et al.,
2023). However, in the vertical deployments, the sound pressure

FIGURE 2
Sound pressure level comparison. Boxplots of root-mean-squared sound pressure level (dB) of the fish band (200 Hz–800 Hz) and the invertebrate
band (2 kHz–5 kHz), showing transects and distances from the reef, Nyinggulu Coast, Western Australia. N, north; M, middle; S, south.
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level of the invertebrate band (2–5 kHz) increased slightly with
increasing distance, opposite to what would be expected from an
incoherent line source (Bies et al., 2023) or even an “extended”
sound source area (Radford et al., 2011). We explored potential
explanations for this unusual pattern in the invertebrate band. First,
we examined pictures from a 3D photogrammetry transect
conducted in the same area and time of our study to look for
snapping shrimp burrows near to the furthest recorders from the
reef. We also scrutinized the LTSA from our recordings to detect
loud transient sounds, for example, snaps from snapping
shrimp. We discarded this possibility as we found no snapping
shrimp burrows located in higher numbers in the sand area 5 m off
the reef (Supplementary Figure 20), neither loud transient sound in
the LTSAs (Supplementary Figures 2–3). We also explored the
potential effect of interference from standing waves in 4 m of
water within the near field, considering the phase difference
between the direct and reflected sound paths (Urick, 1983; Smith,
2010). Despite some frequencies having minima very close to the
position of the hydrophones at 1 m and 2 m off the reef at 60 cm
above the seafloor, this is not the case for all frequencies
(Supplementary Figure 21). However, our metrics represented an
average of sound pressure levels over a wide frequency band
(2 kHz–5 kHz), thus, we discarded interference from standing
waves as a potential driver of our unusual pattern. Finally, we

explored modelling the sound propagation of a hypothetical reef
with random sources (snapping shrimp), while randomizing the
positions and sound level sources, according to available
information (Versluis et al., 2000; Butler et al., 2017; Dinh and
Radford, 2021). However, our preliminary models suggested overall
declines in sound levels with increasing distance (Supplementary
Figure 22), similar to the “extended” sound source area (Radford
et al., 2011). The interference between two or more hypothetical
sources within an incoherent line source and extended source
produce some inhomogeneities in the sound propagation. The
seafloor sediment and other environmental variables can
influence the sound speed profile; however, our experimental
setting is such that the two farthest transects are only separated
by 40 m. Thus, it is possible the sediment types and sound speed
profiles are similar among these locations. The influence of the
seafloor sediment is another further topic future studies might
include into consideration. Our three transects, separated only by
20 m, showed the same increasing pattern. This suggests that there
might be another explanation for the unusual increasing pattern of
sound level.

The hydrophone, or the hydrophone-recorder system, is an
important variable to consider when it comes to the received
soundscape. A hydrophone’s ability to transform acoustic
pressure to an output voltage is called sensitivity, and this is

FIGURE 3
Sound pressure level comparison. Boxplots of root-mean-squared sound pressure level (dB) of the fish band (200 Hz–800 Hz) and the invertebrate
band (2 kHz–5 kHz), showing transects (different deployments) and distances from the reef, Nyinggulu Coast, Western Australia. M,middle star-pickets or
vertical; T, middle T-bars or horizontal.
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usually characterized for normally incident, quasi-planar acoustic
pressure waves as a function of frequency (Saheban and
Kordrostami, 2021). However, the sensitivity of a hydrophone also
depends on the angle between its acoustic axis and the direction of
propagation of the incident wave. The hydrophone directivity
describes the difference in output voltage from the quasi-planar
acoustic pressure as a function of the angle relative to the
hydrophone axis, and it can be represented as a beam pattern
(Saheban and Kordrostami, 2021). Previous studies have
demonstrated that the hydrophone beam pattern varies according
to range, angle, and frequency, with changes of up to 10 dB or 25 dB
depending on the seabed (Parsons and Duncan, 2011). For example,
Parsons and Duncan (2011) found that the sound level received was
lower at higher angles (further off-axis). Similarly, a study on the
HydroMoth low-cost underwater recorders discussed the issue of
having a hydrophone with direction-dependent sensitivity; and
suggested that most commercially available recorders might have
some degree of directional bias (Lamont et al., 2022a). Most recorders
have a nominally omnidirectional hydrophone extruding from the
rest of the cylindrical-shaped recorder to reduce this effect. However, a
recent study also found frequency-dependent acoustic directivity on
several recorders used in underwater acoustics research: the PVC air-
filled Loggerhead Snap, the PVC oil-filled SoundTrap ST300, and the
titanium air-filled SoundTrap ST600 (Taylor et al., 2024). Their results
indicate that the sensor directivity, which is also frequency-dependent,
cannot be neglected, with variations of up to 20 dB as a function of the
orientation angle and frequency (Taylor et al., 2024). In the specific
case of the SoundTrap ST600 (same model used in this study), the
received sound pressure levels drop conspicuously (~2–10 dB
depending on the frequency) at various angles, with increasing
losses starting around 90° for 2–5 kHz (Taylor et al., 2025).

In our experimental design, the vertical deployments had the
hydrophones pointing upwards, all positioned at 60 cm above the
seabed. These hydrophones were located 1 m, 2 m, and 5 m from the
edge of the reef. Since only the invertebrate band showed an
unexpected pattern, we will focus on the invertebrate sounds. Most
invertebrates are found close to the seabed, contrary to the fish which
might be expected either close to the seabed or on the water column.
Snapping shrimp are the main acoustic contributors to the
invertebrate band in coral reefs (Lillis and Mooney, 2018). These
shrimp are benthic dwellers and usually hide in borrows or crevices
(Knowlton, 1980). Snapping shrimp have an enlarged cheliped with a
highly specialized snapping claw (Anker et al., 2006; Kaji et al., 2018).
This snapping claw can be closed at a high velocity, displacing water
from a socket and producing a cavitation bubble which implodes,
resulting in a water jet and a very loud broadband snap sound with
peak-to-peak source levels up to 183–189 dB re 1 μPa at 1 m (Au and
Banks, 1998; Versluis et al., 2000; Dinh and Radford, 2021). Let us
consider a hypothetical snapping shrimp at seabed at the edge of the
reef which produces a snap. Now, consider the angles between the
direct propagation path of this snap sound and the acoustic axis of the
hydrophones located 1m, 2 m, and 5m from the shrimp and at 60 cm
height from the seabed. These angles are approximately 130°, 116°, and
106°, respectively (Supplementary Figure 23). Considering the
directional response results of the SoundTrap ST600 (Taylor et al.,
2025), in the specific case of a sound source (i.e., snapping shrimp)
located on the seabed, the sensitivity of the hydrophone as a function
of the angle will result in lower sound levels at the recorder located

closer to the snapping shrimp (higher angles), and higher levels with
increasing distance (lower angles) (Supplementary Figure 23). Thus,
the unexpected pattern of the sound pressure levels of the invertebrate
band for the vertical instruments in our study could be related to the
sensor directivity, and the angles formed between the direct path of
the wave and the acoustic axis of the hydrophones.

Our results have significant implications for underwater
acoustics in coastal habitats and instruments deployed in the
near field of the target habitats or species. Further studies must
address the potential effects of the relative distance and orientation
of the sensors and the sound sources of interest. For example,
methodologies should be developed to quantify and minimize
any potential methodological bias introduced by the spatial array
of sensors according to the target sound sources and the sound
propagation in the ecosystem.

We observed two different patterns in the received sound pressure
level between the fish band (200–800 Hz) and invertebrate band
(2–5 kHz). Significant differences among distances and orientations
were detected in the invertebrate band, but the pattern for fish was
not obvious and our models provided low explained variation. Sound
propagation models consider the effect of different wavelengths of sound
and its interaction with boundaries and other inhomogeneities (Oliveira
et al., 2021). Previous studies have also observed that attenuation patterns
differ between the fish and invertebrate frequency bands (Radford et al.,
2011; Piercy et al., 2014; Raick et al., 2021). For example, a study in
Hawai’i found that invertebrate frequencies attenuate rapidly beyond
200 m from the reef compared to fish frequencies, which might be
expected as sound attenuation in sea water is more pronounced at higher
frequencies (Kaplan and Mooney, 2016). However, the effect of
absorption in sea water is considered to be negligible in the range of
frequencies and the distances of our study (Ainslie and McColm, 1998);
therefore, other, more complex and site-specific propagation effects such
as multiple bottom and surface reflections and scattering are the likely
cause of this observed rapid attenuation.

Differences among distances and orientations were more evident
during dawn and dusk for both fish and invertebrate bands. Dawn and
dusk have significantly higher (i.e., >30 dB above background levels)
sound activity for fish and invertebrate in coral reefs (Staaterman et al.,
2014; McWilliam et al., 2017). In some cases, however, the higher
variability of vocalizations at dawn and dusk might obscure other
ecological patterns and it is not recommended to use these times for
inter-sample comparisons (Elise et al., 2019). The marked differences
found at twilight periodsmight be explained by the overall higher sound
production, with declines that are more noticeable with distance.
Otherwise, the lower levels during day and night could result in less
noticeable dependence on range from the reef. Similarly, in Hawai’i, the
sound attenuation was more conspicuous during dawn than during
mid-morning than other times of the day (Kaplan and Mooney, 2016).

4.1 Implications

Ocean soundscapes convey valuable information about ecological
processes (Duarte et al., 2021) and represent a possible solution for
large-scale monitoring (Gibb et al., 2019). Acoustic sampling and
analyses still require validation (Mooney et al., 2020). If we aim to
produce reliable acoustic data to study and monitor our oceans, we
must develop practices that avoid or reduce methodological biases.
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Future studies should consider the significance of field-testing sensor
directivity to quantify and minimize any possible methodological bias
on the received soundscape. Biased source levels as functions of angles,
distances, and frequencies would have significant implications for a
number of acoustic studies. For example, these biases might hamper
localization methods that rely on the received acoustic energy from
multiple sensors if the variation in the beam pattern is not considered
(Parsons and Duncan, 2011).

Another example is ecoacoustics, which commonly use acoustic
indices to summarize and characterize soundscapes (Sueur et al.,
2014; Gibb et al., 2019). For example, the acoustic complexity index
quantifies the variability of the sound signal within each frequency
band over time (Pieretti et al., 2011). Likewise, many of these indices
extract information from the spectrogram, which is a representation
of acoustic power as a function time and frequency (Sueur, 2018).
However, these methods rely on the assumption that the received
soundscape is a function of the ecosystem and not an artifact of
methodological bias. If the frequency-dependent directivity of the
hydrophone is not addressed (Parsons and Duncan, 2011; Taylor
et al., 2024), the recorded soundscape will not be representative of
the true soundscape, as the acoustic energy of some frequencies will
be differentially affected. Thus, we must consider the directivity of
the hydrophones during the processing of the data.

Soundscapes have an important role for orientation in a range of
marine species (Simpson et al., 2005; Lillis et al., 2018a), and are the
foundation of the ecological application of soundscape analyses (Duarte
et al., 2021). Animals can extract information from the soundscape to
interact with their surrounding environment (Dall et al., 2005;
Deichmann et al., 2018; Duarte et al., 2021). In coral reefs, for
example, acoustic cues play an important role for navigation
towards suitable habitats and settle-decision in many marine species
(Tolimieri et al., 2004; Simpson et al., 2005; Montgomery et al., 2006;
Vermeij et al., 2010; Lillis et al., 2018a). It is important to consider that
the perception of sounds of marine animals depends on the energy of
each source, the direction of the propagation of the signals, the influence
of the physical environment on the propagation of the signals, the
behavioural and historical context of the listener, and the hearing
capabilities of the listener (Miksis-Olds et al., 2018). Thus,
considering the propagation of sound and the directivity of the
listener (sensor or animal) might help us elucidate the ecological
importance of sounds, and how sources and listeners in the
environment might perceive and respond to the acoustic signals.
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