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Forest fires significantly impact ecosystems; thus, identifying characteristics that
increase the danger of fires is critical to mitigating their negative impacts. This
study examines the parameters contributing to wildfires in the Vellore Reserve
Forest This paper aims to develop GIS-based risk maps and models to enhance
fire protection, fuel mitigation strategies, and land use decisions by improving
wildfire risk recognition and prediction. This research discusses Wildfire Modeling
in Vellore Reserve Forest, Tamil Nadu, India. This field is large and rich in
knowledge on the study of wildfires in the study area. Tamil Nadu, India’s
southernmost state, is divided into 32 districts with diverse landscapes and
ecosystems. The Vellore district, covering 6,077 square kilometers, has a
significant 27% forest cover, covering 162,286 ha. This forest is primarily found
between latitudinal and longitudinal coordinates in the calm taluks of
Gudiyatham, Tirupattur, and Vellore—the Vellore Reserve Forest Report
2023 highlights this ecological diversity. Geographic information systems (GIS)
based analysis of forest fire was done using normalized difference vegetation
index, normalized difference moisture index, fuel danger index (human) activity
danger index, weather danger index, topographic danger index, normalized burn
ratio index, and differenced Normalized Burn Ratio. The geographical scope of
this research encompasses the entire Vellore district of Tamil Nadu, India. Real-
time maps were photographed by MODIS and Landsat nine satellites to obtain a
normalized difference in vegetation and moisture index. Initially, data are
converted to digital maps. The most helpful fuel, activity, weather, and
topography danger indexes are calculated using the Raster Calculator utility,
Euclidean Distance tool, Kriging tool, and Digital Elevation Model, respectively. In
the Vellore district, the calculated activity danger index ranges from 0 to 12,000,
showing that the high risk emanates from human activities. The climate is dry
fromMay to July, and the weather danger index is 345–348. In other seasons, the
weather index is 338–341, indicating a low-risk level. In Vellore, low to medium-
risk values for the topography index are 56.5–933, and high-risk values are
934–1,690. Fire severity is indexed in terms of both NBR and dNBR. NBR and
dNBR are calculated from the NIR-SWIR ratio. Despite the limited data sources
being a big challenge in this paper, the innovative elements of this study are
characterized by a comprehensive, integrated strategy that employs GIS
technology, providing an understanding of localized factors influencing
wildfire ignition. This research contributes significant data and insights
regarding the metrics that govern wildfire dynamics, serving as a vital resource
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for wildfire management efforts in the region. This paper assists in applying the
models to predict the future wildfire risk under climate change and land use
conditions.
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1 Introduction

Forest fires pose significant challenges to nations worldwide.
The frequency and intensity are steadily increasing year by year.
As the impact of climate change becomes more pronounced year
by year steeply, the risks and consequences of climate problems
and forest fires rise correspondingly, making disaster
management a critical issue across all continents. In the
context of forest fires, countries such as the United States,
Canada, Australia, and numerous African nations experience a
higher incidence of these blazes, which often lead to extensive
destruction of wildlife habitats, property, and human lives. These
forest fires can be attributed to many factors, including prolonged
droughts, heat waves, and human activities, all contributing to
the ignition and rapid spread of wildfires. Despite the severity of
forest fires evident in these regions, India exhibits a relatively
lower level of occurrence when compared to the global average.
This discrepancy can be linked to various factors, including
differences in land management practices, vegetation types,
and climatic conditions. In Tamil Nadu state, Vellore district
faces high temperatures and forest fires in the summer months
(April-July). Accidental fires are often caused by human
interventions in forest areas (Gandhi et al., 2015; District
Administration V. and State Planning Commission Tamil
Nadu in association with University V, 2017). In this region,
the Department of Forests, Government of Tamil Nadu, handles
forest fire management in collaboration with the Ministry of
Environment, Forests and Climate Change, Government of
India. During the fire season, it uses satellites (IRS and GSAT)
to image forest land and GIS-based software to model possible
fire risks and the severity of the fire. In this article, fire occurrence
is modeled by obtaining the fuel danger index (FDI), (human)
activity danger index (ADI), weather danger index (WDI), and
topographic danger index (TDI).

Geographic information systems (GIS) and remote sensing in
fire management are used to obtain digital data to calculate the
above indices (Sivrikaya and Küçük, 2022). Nowadays, the world
uses more accurate maps and digital land forest cover data from
NASA satellites such as MODIS, VIIRS, and Landsat 9. These
satellites use infrared (IR) sensors to get fire or any thermal
anomaly data and high-resolution real-time cameras to obtain
earth maps. These cameras are similar to Google’s satellite
camera. This map is converted to digital data (matrices) called
normalized difference vegetation index (NDVI) and normalized
difference moisture index (NDMI) (Mahfoud and Ali, 2017; Refat
Faisal et al., 2020). Government data on human roads and
settlements near forests are used to get the (human) activity
danger index (ADI). More roads and settlements create more
forest fire risk. Climatic factors such as temperature, rainfall, and
wind provide a weather danger index (WDI). Indian Meteorological

Department (IMD) provides climate and weather data through
regional centers and mass media (Rabiei et al., 2022; Borisova
et al., 2024). TDI is obtained using slope, aspect, and elevation
(Çolak and Sunar, 2020; Marshall et al., 2020). The most useful
metric, FDI, is obtained from NVDI and NDMI. Fire risk is
proportional to these two metrics (Gholamreza et al., 2012; Adab
et al., 2013). Topography’s slope is directly proportional to risk
(Adab et al., 2011). Infrared (IR) spectrometers present in MODIS,
VIIRS, and Landsat nine are used to provide the intensity of near-
infrared (NIR), the intensity of short wavelength infrared (SWIR),
normalized burn ratio index (NBR), and differenced NBR (BR) and,
in turn, fire severity (Heidari and Arfania, 2022; Pramanick
et al., 2023).

Many countries instituted unique fire rating systems for their
countries. For example, the USA, Canada, and Australia have
formed fire rating systems for their countries (Ibrahim et al.,
2024). Analytical network process (ANP) is used to
mathematically model wildfire risk in any region (Mangiameli
et al., 2021). The fire severity model is calculated using both
NBR and dNBR metrics. Earlier predictions made in Turkey
exactly match real-time fire problems. The fire spread science
uses NVDI obtained from maps (Mahfoud, 2020; Mamgain et al.,
2022). In general, and in this article, the fire mitigation strategies
mostly follow GIS and remote sensing data analysis. This method
has become indispensable nowadays (Sandal Erzurumlu and
Yıldız, 2024).

India’s wildfire incidence is lower than worldwide norms for
various reasons. Fires can favorably impact ecosystem dynamics
when they are caused by human activities such as land clearance and
grazing. Cultural practices include daily fire management,
encouraging growth, and resource management. Wildfire
incidents have decreased as fire management tactics have evolved
away from strong punitive measures. These variables all lead to a
better-regulated environment for wildfires in India (Schmerbeck
and Hiremath, 2007).

Relying on a few data sources could be problematic because it
could slow down and complicate data processing. Furthermore,
narrowing the scope of the study may reduce the findings’
applicability to other areas with diverse climates and
environmental factors, and the investigation results will enhance
the capabilities of wildfire management groups in Vellore in Tamil
Nadu, India. GIS-enabled risk maps and models could also help
focus fire protection and firefighting resources, inform the selection
of fuel management strategies, and improve land use-related
decisions through better evaluation and prediction of wildfire risk
using GIS technology. Further, this research aims to reduce the
adverse effects of wildfires on ecosystems, people, and communities
in these regions by identifying the risk zones in the study area, which
showed that the pressure levels in the region are not as severe as in
many other regions.
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2 Materials and methods

2.1 Study area

In the Tamil Nadu State, Vellore District is located between 78°

20′to 78° 50′east longitude and 12°15′and 13°15′north latitudes.
Tamil Nadu is divided into 32 districts, one of which is Vellore.
Vellore District covers 6,077 sq. km geographically. The Vellore
district has 27% forest cover, around 162,286 ha, most located in the
taluks of Gudiyatham, Tirupattur, and Vellore. (Vellore Reserve
Forest (RF) 2023).

Located in the eastern area of Tirupattur Taluk, the Javadhu
Hills are the highest mountain in the Vellore district. The Javadhu
Hills have peaks reaching up to 1,280.16 m, and their elevation is
762 m above mean sea level. The 975.36 m tall Yelagiri Hills are
placed at the midpoint of the Tirupathur Taluk. The district is home
to the Palar and Ponnai, two significant rivers. The capability for
irrigation-led agriculture is restricted because both rivers are

seasonal and rain-fed. Red loamy soil is in the other sections,
and black soil is in the tank and river bottoms (District
Administration V. and State Planning Commission Tamil Nadu
in association with University V, 2017).

The grasslands and mountain vegetation of the Vellore district are
blended with the forests. In addition, the wetland/dry land cover and
forest classifications for 2001 and 2006 were determined. There were
notable differences in dry farmland, hilly areas with vegetation, and
agricultural areas throughout 10 years. Between 2001 and 2006, there
was an approximate 6% and 23% decrease in forest or bushland and
open area cover types, respectively, while agricultural and built-up areas
and water areas had an approximate 19%, 4%, and 7% increase,
accordingly (Gandhi et al., 2015).

In 2010, Vellore had 36.1 thousand hectares of natural forest,
outspreading over 6.0% of its land area. In 2023, it lost 4 ha of natural
forest; as of 2000, 8.6% of Vellore’s land area was >30% tree cover,
natural forest 52.0 kha, plantations 499 ha, and other land cover
554 thousand hectares.

FIGURE 1
Study area, Vellore District, Tamil Nadu, India.
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In 2020, Vellore had >30% tree cover by land as follows: forest
52% (179 thousand hectares), grassland 20% (66.3 thousand
hectares), settlement 16% (54.2 thousand hectares),
wetland <0.1% (155 ha), cropland 12% (40.1 thousand hectares),
Other <0.1%. While tree cover density is high, in 2020, Vellore had
470 ha of land above 10% tree cover, extending over 77.7% of its land
area. As of 2001, 27% of Vellore’s total tree cover was primary forest.
Primary Forest 14.2 thousand hectares, Other Tree Cover
38.3 thousand hectares, non-forest 554 kha. Furthermore, from
2002 to 2023, Vellore lost 80 ha of humid primary forest, making
up 24% of its total tree cover loss. In the same period, the total area of
humid primary forest in Vellore decreased by 0.56%. From 2013 to
2023, 97% of tree cover loss in Vellore occurred within natural
forests (Global Forest Watch, Vellore Reserve Forest (RF)
2023) (Figure 1).

2.2 Independent parameters

This present research paper relies on independent metrics, such
as the fuel danger index (FDI), activity danger index (ADI), weather
danger index (WDI), and topographic danger index (TDI), as
independent value factors of forest fires due to metrics’
immediate impact on the occurrence of fires (Sivrikaya and
Küçük, 2022) (Figure 2).

2.2.1 Fuel danger index (FDI)
The Normalized Difference Vegetation Index (NDVI),

Normalized Difference Moisture Index (NDMI), and Fuel Danger
Index according to Vegetation Type (FDvt) metrics calculate the
Fuel Danger Index. The most essential ingredient for wildfires to
start and spread is the FDI. In this work, FDI was assessed using

FIGURE 2
Methodological framework of study area to assess wildfire factors and generate fire severity assessment.

FIGURE 3
Flowchart shows the methodology applied to estimate dNBR.
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NDVI and NDMI, and this study excluded FDI due to a deficiency in
data on forest cover type (Marshall et al., 2020; Pillai and
Sultan, 2024).

2.2.1.1 Normalized difference vegetation index (NDVI)
The NDVI is a dimensionless index that estimates an area’s

vegetation density. This study used the MODIS13Q1 image with
250 m spatial resolution of 2024-derived NDVI product to calculate
the vegetation concentration in the study area (Gandhi et al., 2015;
Refat Faisal et al., 2020).

The Normalized Difference Vegetation Index (NDVI) is a
quantitative indicator that ranges from −1 to +1. A higher NDVI
value indicates dense vegetation, whereas a lower value indicates
sparse vegetation. Areas with dense vegetation have a higher risk of
forest fires (Parajuli et al., 2020).

2.2.1.2 Normalized difference moisture index (NDMI)
The moisture content of vegetation influences the

combustion and fire propagation. Accordingly, fires are more
likely to emerge when water evaporates and the fuel becomes
dry. Wetness content can be evaluated using different
approaches involving field measurements, meteorological
data, and remote sensing, with the latter being the most
convenient. In the present research, the Normalized
Difference Moisture Index (NDMI) was applied to measure
moisture content by analyzing a Landsat nine image of
February/2023 with a 30 m resolution from the Earth
Explorer website https://earthexplorer.usgs.gov/. The NDMI
measurement using Equation 1 (Mahfoud and Ali, 2017):

NDMI � NIR −MIR

NIR +MIR
(1)

Where:
NIR is near-infrared.
MIR is mid-infrared.
For Landsat 9: NMDI = Band5 –Band6

Band5+Band6
The (NDMI) ranges are between −1 and +1; when the value

decreases, the ignition capability expands, and the fire spreads
quickly. This study gave the greatest ignition danger to the
vegetation type, density, and moisture content. FDI in the
current paper used a simple formula, as shown in Equation 2.

FDI � NDVI + NDMI (2)

2.2.2 Human Activity Danger Index (ADI)
Forests close to human activities such as highways and

settlements are more likely to catch fire because of the increased
danger of fire ignition. The ADI was computed by evaluating the
danger concerning roadways and proximity to populated areas.

2.2.2.1 Activity danger index according to distance from
roads (ADIr)

This factor also raises the possibility of fires started by people
engaging in cooking, camping, grazing, maintaining roads, keeping
animals at bay, making charcoal, hunting, and logging. The data for
this case study was taken from OpenStreetMap: https://www.
openstreetmap.org/#map=4/21.84/82.79.

Routes with much human activity that leads to fire risk were
identified using the road map in the study area (Abedi
Gheshlaghi, 2019).

2.2.2.2 Activity danger index according to distance from
settlements (ADIs)

Residential communities are widely spread in the forest areas
located in the study region, where there is hardly a forest or a forest
group without a population concentration, even if it is not large,
except for high mountain areas, and this is what poses a significant
and permanent pressure and danger on the forest areas. The
inhabitants of the settlements depend heavily on the neighboring
forest areas for their livelihood in many ways, such as collecting
forest products and grazing. Therefore, the remoteness of the forest
from these settlements plays a role in their vulnerability to fires
(Maniatis et al., 2022).

Open Street Map: https://www.openstreetmap.org/#map=4/21.
84/82.79; used to extract data for this case study to study the danger
of remoteness from residential communities. The current study
categorized the Ideas into five classes by applying the Euclidean
Distance tool in ArcGIS 10.8.

2.2.3 Weather danger index (WDI)
Situations such as temperature (T), relative humidity (RH), and

wind (W) influence fuel moisture, combustion, and the velocity at
which fires propagate. Furthermore, temperature and relative
humidity impact vegetation’s moisture content and the time fires
spread. Wind direction and speed also directly impact the spread of
fire (Borisova et al., 2024). Data for the current study was sourced
from NASA’s Data Power between 01/04/2023 – and 31/12/2023.
Themeanmaximum temperature (in degrees Celsius), mean relative
humidity (in percentage), and wind speed (in meters per second),
along with the wind direction (Qiao et al., 2018; Keeley and Syphard,
2019), were utilized to model the Weather Danger Index (WDI)
using Equation 3.

WDI � T + RH +W (3)

Temperature and relative humidity resolution are 2 m, and wind
direction and speed are 10 m. The fire season in the Vellore district is
from May to July, when the weather is dry because of cumulative
drought due to rain preservation, so the drought expands until the
rainy season.

2.2.4 Topographic danger index (TDI)
Topographic metrics impact fire intensity (Çolak and Sunar,

2020; Trucchia et al., 2020), and slope affects fire behavior, whereas
aspect and elevation influence vegetation composition andmoisture.
TDI takes these factors into account.

The Vellore district’s TDI factors were derived from the NASA
Shuttle Radar Topography Mission (SRTM) (2013). Shuttle Radar
Topography Mission (SRTM) Global. Distributed by Open
Topography https://doi.org/10.5069/G9445JDF, at a 30-m spatial
resolution. Accessed: 2024-06-18.

2.2.4.1 Topographic danger index according to slope (TDIs)
The slope is a highly powerful parameter in fire behavior as it

impacts the fire speed and ignition severity, which enhances with the
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slope, and the fire headway rises at the top of the slope more than at
the down slope. Fuel humidity and amount of radiation are affected
by slope steepness (Çolak and Sunar, 2020).

2.2.4.2 Topographic danger index according to
aspect (TDIa)

The topography index represents a significant element for
evaluating fire danger. Aspect is fundamental for identifying
vegetation type and plays a role in its susceptibility to fire. The
effects of this aspect on the temperature and fuel wetness content are
noticeable; therefore, it is called fire behavior. In addition, sunny
slopes can become hotter, making them more likely to grab fire
(Çolak and Sunar, 2020; Parajuli et al., 2020).

As the study region is located in the Northern Hemisphere, its
effect on fire behavior was categorized accordingly. The northern
aspect of the slopes is mainly shaded, which leads to a decrease in
temperatures and a rise in humidity. In return, the southern aspect
obtains much more solar radiation, and the temperature becomes
much higher than in other aspects.

2.2.4.3 Topographic danger index according to
elevation (TDIe)

The elevation influences the temperature, humidity, and a
more significant quantity of dry natural substances. The land
gives more chances for combustion (Pradeep et al., 2022). The
metrics mentioned in the research study estimated the TDI
(slope, aspect, and elevation). It is worth mentioning that the
slope has the highest weight, followed by the aspect, and the last
one is elevation according to the following Equation 4 (Marshall
et al., 2020).

TDI � Slope + Aspect + Elevation (4)

2.3 Fire severity assessment: normalized
burn ratio index (NBR) and differenced
NBR (dNBR)

As a metric for measuring fire severity, the Normalized Burn
Ratio (NBR) is a well-known index often utilized in research to
emphasize scorched regions in huge fire areas. The Normalized Burn
Ratio (NBR) is the proportion of the near-infrared (NIR) to short
wavelength infrared (SWIR) bands. In turn, burned places reflect a
more critical quantity of radiation in the wavelength’s visible and
short wavelength infrared (SWIR) regions and obtain more
radiation in the NIR; green vegetation consumes red light in the
visible band (Zhao et al., 2021; Pramanick et al., 2023). NBR images
were created for pre- and post-fire accidents, so maps of NBR-pre
(NBR before the fire) and NBR-post (NBR following the fire) were
generated (Alcaras et al., 2022).

Land-sat data were utilized in this study for NBR-pre- and post-
fire and merging the use of both NIR (B5) and SWIR (B7)
wavelengths by using a Land-sat nine data dated February/
2023 with 30 m resolution from USGS Global Visualization
Viewer website https://glovis.usgs.gov/app. Employ the NIR and
SWIR parameters to simulate NBR using the bands coupled with
each data for both pre-and post-fire images, Equation 5 (Khoirunisa
and Mucsi, 2020; Zubkova et al., 2021):

NBR � NIR − SWIR2( )
NIR + SWIR2( ) (5)

Where:
NIR: near-infrared.
SWIR: Short wavelength infrared.
For Landsat 9: NBR = B5−B7

B5+B7
NBR was conducted for the Landsat nine satellite data taken for

the pre-fire (14/Feb/2023) and post-fire (19/Oct/2023) time and
measured using Equation 5.

The Normalized Burn Ratio (NBR) is a typically used method
that presents the entire burning area for the prior-fire and post-fire
period. However, the most often employed satellite based on data
parameters to simulate burning intensity is the Delta Normalized
Burn Ratio (dNBR) (Uttaruk et al., 2022) (Figure 3).

Additionally, the dNBR is measured by deducting the pre-fire
NBR from the post-fire NBR, Equation 6 for computing dNBR
(Khoirunisa and Mucsi, 2020):

dNBR � NBRpre − fire −NBRpost − fire (6)

The dNBR ranged from −2 to +2 (Uttaruk et al., 2022). Values above
0 denote regions withmore severe blazes, while rates less than 0 represent
areas with fewer severe burns. One study suggested that the appropriate
data rank between −0.5 and 1.3, where dNBR lower than −0.5 or more
than 1.3 may occur but are usually not elaborated as scorched areas.
Instead, they are likely due tomisregistration, clouds, or other sources, not
due to actual variations in land cover (Syaufina et al., 2022).

The dNBR is a valuable factor for determining fire severity in
forest ecosystems, providing insights into the impacts of wildfires on
greenery cover and natural ecosystem quality. One study noted that
high dNBR metrics refer to severe burn severity, leading to
enormous damage to flora and fauna within ecosystems. Severe
wildfires with high dNBR rates can disrupt environmental processes
like nutrients and the water cycle, affecting the ecosystem balance. A
moderate positive bond between dNBR elements and prior-fire
vegetation was displayed, which denoted fire severity impacted by
the amount of fuel in nature. Also, as the topography greatly
influences forest fire behavior, it impacts fire severity in different
areas (Heidari and Arfania, 2022).

2.4 Dependent parameters: events including
fire and burned land

All the independent factors referred to above have the ability to
ignite and cause wildfires. Therefore, this paper has taken the historical
forest fire events and their size as the dependent parameters. Vellore
Reserve Forest (RF) (2023) confirmed that all the preceding metrics
elevated the fire risk in the Vellore district; naturally occurring forest
covered 36.1 kha (or 6.0%) of Vellore’s total land region in 2010. A 4-ha
natural forest was lost in 2023. Twelve hectares of tree cover were lost to
fires in Vellore between 2001 and 2023, whereas 410 ha were lost to all
other causes of loss. With 2 ha lost to blaze, or 5.0% of all tree cover loss
for that year, 2019 had the most due to fires during this era. Whereas
between the 16th of August 2021 and the 12th of August 2024, Vellore
witnessed 293 VIIRS Alerts fire alerts (Global Forest Watch 2024)
https://www.globalforestwatch.org/dashboards/global/; In brief, several
factors, including fuel elements like vegetation density, kind and
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TABLE 1 Variables used to model forest fires and their effects on fire behavior in the Study area.

Factor Sub-factor Classes Ratings of risk Description of fire risk

FDI NDVI (Gholamreza et al., 2012) 0.538–0.947 5 Very High

0.454–0.537 4 High

0.387–0.453 3 Medium

0.312–0.386 2 Low

−0.188–0.311 1 Very Low

NDMI (Adab et al., 2013) −0.42–0.0097 5 Very High

0.0098–0.068 4 High

0.069–0.13 3 Medium

0.14–0.18 2 Low

0.19–0.4 1 Very Low

ADI ADIr 0–0.0052 5 Very High

0.0053–0.014 4 High

0.015–0.024 3 Medium

0.025–0.036 2 Low

0.037–0.063 1 Very Low

ADIs 0–1,290 5 Very High

1,300–2,670 4 High

2,680–4,280 3 Medium

4,290–6,580 2 Low

6,590–11,700 1 Very Low

WDI Temperature 41.58–42.07 5 Very High

41.2–41.57 4 High

40.9–41.19 3 Medium

40.61–40.89 2 Low

39.95–40.6 1 Very Low

Relative Humidity 29.7–32.5 5 Very High

32.6–35.6 4 High

35.7–38.7 3 Medium

38.8–41.5 2 Low

41.6–45.4 1 Very Low

Wind/Direction South-east 1 Very High

Wind/Speed 6.05–6.29 5 Very High

5.84–5.99 4 High

5.69–5.82 3 Medium

5.21–5.52 2 Low

4.82–5.13 1 Very Low

TDI Slope % (Adab et al., 2011) 27–72 5 Very high

18–26 4 High

(Continued on following page)
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moisture content, climate conditions, topography factors, and human
activities, influence the incidence and spread of wildfires. Likewise, field
observations help validate remote sensing data and models, provide
information on the effects of fires on vegetation degradation and
environmental changes brought on by wildfires, and provide
valuable data for calculating fire risk and simulating fire behavior.

Finally, the study assessed the Fuel Danger Index (FDI) based on
density andmoisture content. The greenery density wasmeasured using
the Normalized Difference Vegetation Index (NDVI); a more excellent
score means the vegetation is more susceptible to fire in a highly
intensive fire. In addition, since drier fuels have a higher ignite potential,
the vegetation’s wetness content was measured using the Normalized
Difference Moisture Index (NDMI). These two components, density
and moisture, were combined to replicate the overall FDI. Because
forest fires are more likely to start when human activity is close to a
forest, theHumanActivityDanger Index (ADI)was enhanced using the
distance between highways and communities and the forest.
Meteorological metrics involving temperature, relative humidity, and
wind speed are considered by theWeather Danger Index (WDI), which
directly affects how fires behave. Slope, aspect, and elevation are used in
the Topographic Danger Index (TDI) to determine the impacts on fire
severity and spread. In addition, this research work applied the
Normalized Burn Ratio (NBR) and Differenced NBR (dNBR) to
rate the fire’s severity based on pre- and post-fire satellite data.
Combining many variables makes a comprehensive assessment of
wildfire danger and behavior in the Vellore Forest region possible.

3 Results and discussion

3.1 Fuel danger index (FDI)

In Vellore woods, vegetation type and density play a crucial role
as igniting agents in forest fires. The mountain vegetation and

grasslands blend with the trees. This study analyzed Shrubland
and temperate and tropical rainforests in the woods. Due to the
extended dry season, dense grasses such as lemon grass and shrubs
take the place of trees in the forest, making them an excellent
ignition source. In this study area, the NDVI ranges from −0.188 to
+0.947. The NDVI was classified into five classes using ArcGIS
10.8 to assess fire danger. The Natural Breaks Jenks Distribution
technique was applied, which provides a more balanced distribution
of values between classes, reducing contrast within groups and
increasing contrast between the groups in Table 1.

Density may be dangerous if the NDVI value falls between
0.538 and 0.947. Higher values indicate thicker vegetation. Typically,
standard NDVI values range from −1 to +1. Table 1 indicates that
the case study’s actual NDVI values range from −0.188 to +0.947.

Based on vegetation type, density, andmoisture, the Fuel Danger
Index (FDI) was utilized in a study area to determine the fire risk.
Other research used similar techniques to examine the relationship
between FDI and measurements like NDVI and NDMI, which
measure vegetation. The Forest Fire Danger Rating System
(FDRS) in Australia is one index that this technique corresponds
with research that has been employed (Ibrahim et al., 2024). The
research in the Vellore district further distinguished itself from
earlier studies by providing comprehensive data on vegetation
density and fire vulnerability, emphasizing grassland’s important
role in fire events.

Conversely, a different study examined the coniferous kind,
which has a higher resinous content and is more likely to cause
wildfires in the Mediterranean region. For instance, the study
demonstrated that pine woods are prone to wildfires (Sivrikaya
and Küçük, 2022).

In contrast, the conventional NDMI used a weighting system
of −1 to +1; a lower weight indicates drier and more flammable
vegetation. Fire risk was partitioned into five classes according to
moisture content by the Raster Calculator, then Map Algebra from

TABLE 1 (Continued) Variables used to model forest fires and their effects on fire behavior in the Study area.

Factor Sub-factor Classes Ratings of risk Description of fire risk

10–17 3 Medium

4–9.9 2 Low

0–3.9 1 Very Low

Aspect (Çolak and Sunar, 2020) South 4 High

West 3 Medium

East 3 Low

North 1 Very low

Elevation 55–195 5 Very High

196–337 4 High

338–510 3 Medium

511–742 2 Low

743–1,340 1 Very Low

FDI, Fuel Danger Index; NDVI, Normalized Difference Vegetation Index; NDMI, Normalized Difference Moisture Index; ADI, Activity Danger Index; ADIr, Activity Danger Index according

to distance from roads; ADIs, Activity Danger Index according to distance from settlements; WDI, Weather Danger Index; TDI, Topographic Danger Index; TDIs, Topographic Danger Index

according to Slope; TDIa, Topographic Danger Index according to Aspect; TDIe, Topographic Danger Index according to Elevation.
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Spatial Analyst in ArcGIS 10.8, which gives a value of five to very dry
and one to exceptionally wet. Table 1 shows that the actual NDMI
values in the study area range from 0.4 to −0.42, which were used to
classify the fire risk into five bands. Wetness of the vegetation is

deemed hazardous when the NDMI value is less than 0.0097; a value
of five denotes arid vegetation, and a value of one denotes extremely
wet vegetation is considered hazardous if its moisture content is less
than 0.0097.

FIGURE 4
Forest fire variables (A) fuel danger index, (B) activity danger index.
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Standard FDI values are contingent upon the studied region’s
particular vegetation type, density, and moisture content. About
Table 4, the research region’s actual FDI value rates range
from −0.119 to 1.15. The high and extremely high-threat areas

are described in Figure 5A. Vellore lost 80 ha of its humid primary
forest between 2002 and 2023, accounting for 24% of the district’s
overall tree cover loss. During this time, Vellore’s humid primary
forest’s total area shrank by 0.56%. As mentioned earlier, Figure 4A

FIGURE 5
(A) Weather danger index, (B) topography danger index.
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illustrates how the high vegetation density in the east contributed to
the rise in the fuel hazard index value.

The research also highlighted that the areas with high density are
very high-risk areas. This paper emphasizes the importance of
considering regional situations when estimating fire risk.

3.2 Human activity danger index (ADI)

Human activities vary in the study area, where the roads and
settlements are widely spread through the forests in the research
area, facilitating the population to visit the forests for activities
involving rangeland use, hunting, and woodcutting. Since these
parameters are considered average values, it is essential to note
that they also raise the incidence of fire, gunfire, and other mishaps.
The present study classified the ADIr into five categories using the
Euclidean Distance tool from ArcGIS 10.8. A multi-buffer analysis
was performed to categorize the values into five risk classes utilizing
the Natural Break (Jenks) distribution. As demonstrated in
(Table 1), a value of 0.037–0.063 is regarded as very low risk,
and a value of 0–0.0052 increases the danger level. As indicated
in (Table 4), the simulated human danger index (ADI) rates are from
12,000 to 0 in Figure 4B. A multi-buffer analysis was produced to
classify the values into five risk classes utilizing the Natural Break
(Jenks) distribution. As illustrated in (Table 1), a value of
6,590–11,700 is regarded as very low risk, and a value of
0–1,290 expands the risk level.

Since ADI is one of the fire indexes used in this research paper, it
rates fire risk based on human activities proximate to the roads and
settlements. This approach is similar to related studies that used
GIS-based analytical network process (ANP) simulations to
calculate wildfire risk regions (Mangiameli et al., 2021).

Furthermore, the study in the Vellore district provides more
detailed data on specific human activities related to roads and
populated areas and their effects on fire danger. The present
work depends on GIS modeling to evaluate forest fire risk
regions compared to related studies that applied different
approaches. It also underlines the importance of the vicinity of
roads and settlements to the forests in fire risk computing and
prevention, an essential factor in wildfire risk modeling.

Conversely, to related surveys that utilized the samemethod, one
relevant research conducted by Gheshlaghi discussed the influence
of closeness to roads and populated areas on fire events, which is a
crucial factor in forest fire danger modeling and impacts the
possibility of fire incidents and protection. In the study
conducted in Noshahr Forests, North Iran, the author applied
the GIS-based analytical network process (ANP) model to assist
forest fire risk areas. Also, the author pointed out that ADI raises the
forest fire risk due to human activities near the forests (Abedi
Gheshlaghi, 2019). Due to ADI, researchers and agricultural
department managers can identify and mitigate the fire damage
caused by human presence and activities in forested areas.

3.3 Weather danger index (WDI)

The weather status in the area governs the vegetation type
dominance there, as the area will be susceptible to fires in an

area with a drier climate. Standard climatic rates are based on
climate metrics such as temperature, relative humidity, and wind
speed/direction.

Weather Danger Index (WDI) simulation was generated by
ArcGIS 10.8, starting with Multidimensional tools and then using
“IDW” from Interpolation in Spatial Analyst Tool, which classifies
the temperature index into five classes by applying Natural Breaks
(Jenks) from very low danger up to very high risk. On the other
hand, “IDW” was applied to categorize wind speed and direction
and put it into five classes relying on Natural Breaks (Jenks). The
same division was used for relative humidity, producing five
categories from very low to very high danger. The final output
for WDI was created utilizing the Raster Calculator in ArcGIS 10.8.
WDI was classified into five classes, from a very low danger fire
index to a very high fire danger index using Natural Breaks (Jenks),
as shown in (Table 1) (Rabiei et al., 2022).

(Table 4) explains absolute weights for previous elements in the
study area. In turn, and shows WDI categories in five levels of risk
based on the simulated weather danger index (WDI) values, which
ranged from 338 to 348 (Figure 5A). 345–348 refers to very high risk,
while 338–341 is very low. The fire season, which lasts from May to
July, leads to hydric pressure in the woods, which causes a
cumulative proportion of dry organic substances, increasing the
fuel for fire ignition.

The present study used weather indexes like temperature,
relative humidity, precipitation, wind speed, and direction to
estimate fire risk and behavior. It provided more detailed
information on the climatic metrics and their impacts on fire
risk. This paper agrees with relevant studies that studied the
effects of climate change on wildfire risk modeling and
protection. This research work also meets with other studies that
have assured that meteorological factors directly impact fire danger
and behavior by influencing fuel moisture content and combustion
capability.

Moreover, dryness enhances fire risk by drying out vegetation
and creating a hospitable environment for fire inflammation.
Vellore’s study output differs from other regions, such as the
Mediterranean, with different weather and natural situations
(Ibrahim et al., 2024). This comparison highlights the importance
of regional variations in fire risk evaluation.

3.4 Topographic danger index (TDI)

In the research area, the terrain is crucial to spreading fire since
steep slopes facilitate the fire’s rapid expansion and eventual
annihilation of all vegetation species. Fire travels upward fastest
on slopes. In this study, the software was used for slope categorizing
into five classes and applying Natural Breaks (Jenks) distribution
due to their impacts on the fire outspread in the study region,
starting from the very low risk with one value up to very high risk,
with five values in (Table 1). The present study has classified the
aspect into four categories by applying Natural Break (Jenks)
distribution. So, the southern aspect was classified as high
ignition risk, and the northern aspect had the lowest rate, so it
was classified as very low risk (Table 1). An elevation map was
simulated using the Natural Breaks (Jenks) distribution, which was
sorted into five classes with rating values between 1,340 and 55,
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where a rate of five was given to the highest-risk group and one to the
very low-risk class (Table 1).

In the topography of current work, the slope is the leading cause
of fire spread; aspect and elevation are not as dangerous as the slope.
There is an increased risk of a fire spreading because most of the
study area’s forests are dispersed over sloping terrain. As with the
WDI index, the topographic danger index TDI value, which ranges
from one to 5, provides the basis for five risk categories (Table 4).

The methodology used in this research marked the significance
of topographic metrics, such as slope, aspect, and elevation, in fire
risk mapping Figure 5B. This paper is consistent with other studies
that have found that topography is crucial in wildfire behavior. The
study used an integration of topographic factors to evaluate fire
danger; it also highlighted the value of topography in spreading fire,
a central parameter in wildfire danger simulation. The Vellore study
found very high topographic risk values between 934 and 1,690,
while medium risk values between 56.5 and 1,690 (Table 4).

Compared to a study conducted inMenderes, Turkey, the results
indicated that topography plays a significant role in determining the
behavior of wildfires. Turkish forests with a higher slope tend to
spread fires more quickly, especially those containing Black and
Calabrian pine species, with higher canopy closure rates than 71%.
When determining the fire risk, the south aspect—which faces
portions of Turkish forests—is essential since regions facing
south are more prone to fires. The comparison with related
studies emphasizes the importance of considering topography
when evaluating a fire’s risk and how good fire behavior
forecasting requires more precise data (Çolak and Sunar, 2020).

To summarize, although this study established that slope is the
primary topographic component influencing the spread of fires,
previous research has stressed the significance of aspect and
elevation in determining the risk of fires and the extent of
burn damage.

3.5 Normalized burn ratio index (NBR) and
differenced NBR

The present study used remote sensing data and a GIS-based
model to estimate fire severity. The research also noted the value
of various land cover types in fire seriousness simulation, a
fundamental parameter in wildfire risk calculation and
prevention. Compared to related research, the study utilized
dNBR to compute fire severity. A similar method was used in
other studies that used a remote sensing approach to evaluate fire
severity. Foremost, NBR pre- and post-fire and dNBR were
measured for data analysis. Afterward, the results of the
indexes were various under pixel values, and the regions that
formed the fire danger were defined. Relying on the fire severity
model regarding the dNBR index explained that not all areas are
endangered by forest fires (Mamgain et al., 2022). According to
the NBR simulation performed during the pre-fire period,
populated areas, highways, water bodies, and forest areas all
have reflection parameters.

NBR rates between −1 and +1, where the weight closer to value +
1 indicates the vegetation area (unburned area), and the value closer
to −1 points out the scorched region. The factor was modeled by
applying the raster calculator in ArcGIS 10.8 and using the Natural

Breaks (Jenks) distribution. It was sorted into five groups: pre-fire
and post-fire, as shown in (Table 2).

By calculating the fire severity estimation using dNBR, the study
presents a complete understanding of the forest fire patterns in the
Vellore district. Combining these different metrics allowed the
complete modeling of fire risk and sensitivity in the study area
(Figure 6). So, a standard rate for NBR ranges between −1 and +1,
while the dNBR ranges from −2 to +2 (Genç et al., 2023). The dNBR
usually is scaled by 103, which rates between +59.43 and +754.7,
indicating high severity fire (Table 3). The current results
demonstrate the pre-NBR values between −0.661 and +0.545; on
the other hand, post-NBR values between −0.442 and +0.542
(Table 2). Meanwhile, dNBR ranges from −1 to +754.7 (Table 4).

This was approved with one study in Kastamonu, Turkey, that
described that dNBR is a valuable element for identifying fire
severity and produced a result that the dNBR index was used to
compute the unburned region after a forest fire in 2020. The study
site exposed enhanced regrowth, unburned, low severity, moderate
severity, and high severity classes based on dNBR values, indicating
variable levels of damage (Genç et al., 2023).

The paper meets the findings and approaches of a pertinent
study on using dNBR to evaluate fire severity. Examining the impact
of different land cover types on interpreting the fire severity indices
derived from remote sensing makes the comparison crucial. A
variety of topics were examined in this paper and related
research, including the effects of fire on vegetation cover, the use
of fire science, NDVI computing, the function of science in land
management, and wildfire-exposing techniques in diverse
environments (Mahfoud and Ali, 2017; Mahfoud, 2020). The
researchers emphasized the importance of data quality in a fire
study and the usefulness of data processing techniques, such as pre-
treatment satellite data, for precise computations in NDVI
simulation. Combining GIS-based modeling and remote sensing
improves the study’s enforcement across various forest types and
landscapes by thoroughly understanding fire behavior and danger
parameters. The papers examined the advanced use of technologies
such as remote sensing and GIS-based modeling to map burned
regions, forecast fire danger, and study fire behavior.

The study’s authors stress a more cogent approach to fire
management, prudent management of natural resources, and the

TABLE 2 Normalized burn ratio (NBR). Based on the USGS source.

Factor Classes Fire risk description

NBR (Pre-Fire) −0.661–0.0911 High Severity

0.0912–0.167 Moderate Severity

0.168–0.238 Low Severity

0.239–0.309 Unburned

0.31–0.545 Enhanced Regrowth

NBR (Post-Fire) −0.442–0.164 High Severity

0.165–0.249 Moderate Severity

0.25–0.318 Low Severity

0.319–0.388 Unburned

0.389–0.542 Enhanced Regrowth
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FIGURE 6
Differenced normalized burn ratio.

TABLE 3 Fire severity based on delta normalized burn ratio (dNBR). Source by USGS.

Severity level dNBR range (not scaled) dNBR range (scaled by 103)

High Severity 0.05943 to 0.7547 +59.43 to +754.7

Moderate Severity −0.04383 to 0.05942 −43.83 to −59.42

Low Severity −0.1057 to −0.04384 −105.7 to −43.84

Unburned −0.1745 to −0.1058 −174.5 to −105.8

Enhanced Regrowth −1.001 to −0.1746 −1 to −174.6

TABLE 4 Displays the index values together with the relevant classes.

FDI ADI WDI TDI dNBR Class Fire danger class

0.702–1.15 0–1,800 345–348 934–1,690 +59.43 - +754.7 5 Very High

0.587–0.701 1,900–3,400 344–345 697–933 −43.83–59.42 4 High

0.483–0.586 3,500–5,100 342–344 512–696 −105.7–43.84 3 Medium

0.369–0.482 5,200–7,600 341–342 326–511 −174.5–105.8 2 Low

−0.119–0.368 7,700–12,000 338–341 56.5–325 −1–174.6 1 Very Low
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promotion of effective fire danger mitigation techniques; they also
emphasize the ecosystem impact of fires on vegetation strain, soil
degradation, and changes in land cover and use (Sivrikaya and
Küçük, 2022; Sandal Erzurumlu and Yıldız, 2024). GIS and RS
technologies were used to determine fire risk categories, calculate fire
hazard factors, and create fire severity maps to develop effective
management strategies. Concentrating on fuel administration in
areas with high vegetation species reduces the fire risk and spread.
Also, acknowledging that human activity plays a crucial role in
initiating fires is imperative. Simultaneously, to prevent wildfires, it
is imperative to keep an eye on geographic features and weather
patterns, especially during dry seasons. In addition to academic
institutes, collaboration with forestry and environmental authorities
is crucial for gathering field and wildfire data that will provide a
thorough understanding of forest fire dynamics and optimal
reduction strategies.

4 Conclusion

The study utilizes remote sensing and geographic information
systems (GIS) to analyze fire behavior and risk, combining variables
such as fuel danger index (FDI), weather danger index (WDI),
topographic danger index (TDI), and differenced NBR (dNBR). This
comprehensive approach emphasizes respecting geographical
differences in fire risk computation. The dNBR provides a
quantitative assessment of the fire size in the research region,
ranging from −1 to +754.7.

Briefly, the quantitative data for the factors show crucial insights:

• FDI: Values rated from −0.119 to +1.15, with high and very
high-risk regions including almost 26.22% of the total
forest area.

• ADI: Values rated from 1,800 to 12,000, with high and very
high risks showing an essential part of the forest area.

• WDI: Classes ranged from 338 to 348, with high and highly
high-risk areas covering an immense portion of the study’s
forest areas.

• TDI: High and very high topographic risks constitute
934–1,690 of the VRF area, while medium risk ranged
between 512–696

• dNBR: rated from −1 to −174.6 (indicating less severe burns)
to +59.43 to +754.7 (referring to severely burned areas),
clarifying the extent of fire effect before and after the
fire accident.

In light of the study’s conclusions, future research should
enhance the methodology by incorporating other variables and
using additional sophisticated analytical methods to complement
GIS technologies. Further integration is needed to combine different
indices and aspects to fully understand fire danger and behavior.

Furthermore, by considering various regions and environmental
circumstances, subsequent research must seek to increase the
generalizability of the results. Given the rise in forest fires,

finding the most effective way to forecast and prevent wildfires
and the most effective methods for assessing and monitoring fire
danger in varied locations with diverse meteorological and
environmental variables is crucial.
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