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Trees play a crucial role in mitigating climate change by absorbing CO2 and
providing biophysical cooling. The European Commission’s climate policies
underscore the importance of forest monitoring systems to achieve
substantial greenhouse gas reductions by 2030. In Cyprus, an EU member
state located in the Eastern Mediterranean, and a climate change hot-spot,
increasingly impacted by forest fires and more arid conditions, the absence of
a comprehensive tree monitoring system hinders effective carbon stock
assessment and land-based mitigation strategies. The exact tree population
inside and outside forests is currently unknown. Artificial Intelligence is a
powerful tool that can enable the development of tree monitoring systems by
applying machine learning models to high-resolution image data. This study
presents a deep learning neural networkmodel applied to high resolution (10 cm)
airborne images collected during the year 2019, to generate segmented tree
crowns and the number of individual trees over selected areas of Cyprus,
including a large national forest park, a forest park in the capital city, and a
small urban area, encompassing a total studied area of 107km2. The model,
previously applied in Denmark and Finland was completely re-tuned using local
annotations to account for Cyprus’s specific conditions and achieved an overall
accuracy of 90% and 93% to estimate the area covered by tree crowns and the
number of trees, respectively. The results are regressed against coarser resolution
tree covermaps to predict the area covered by tree crowns at a national level. The
accuracy of the tree cover maps created by this study is compared to those of
existing global tree cover maps, such as the Copernicus products. This work lays
the foundation for establishing a tree-level inventory for Cyprus using airborne
remote-sensing.
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1 Introduction

In the face of climate change, rapid implementation of mitigation and adaptation
measures has become a major priority. The Eastern Mediterranean and Middle East region
stands out as a climate change hot-spot (Cramer et al., 2018; Giorgi, 2006; Lelieveld et al.,
2012; Zittis and Hadjinicolaou, 2017). In this region, the island of Cyprus, object of this
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study, has already experienced a higher warming rate than the global
mean, with extreme heat and drought in summer (Zittis et al., 2019).
One of the main mitigation measures is afforestation and
reforestation since new trees absorb CO2 and sequester carbon,
while providing biophysical cooling through transpiration and
shading. Reforestation also limits the loss of biodiversity in the
case of natural forest restoration. In addition, trees emit volatile
organic compounds causing the formation of clouds which can
potentially cool the Earth’s surface (Guenther et al., 2006). Within
the scope of the 2021 (Parliament and Council, 2021) European
climate law and the European Green Deal, the European
Commission aims to reduce greenhouse gas emissions by at least
55% by 2030 including a sink of 400 MtCO2 per year in the forest
sector. Simultaneously, it is planned to invest in reforestation and
planting trees in urban areas, with 3 billion new trees to be planted
by 2030. To monitor their forest carbon stocks, a growing number of
EU countries are aiming to complement existing national
inventories by using remote-sensing data and models. The
Cyprus Republic has no national inventory with a network of
periodically sampled forest plots, and has neither established a
tree monitoring system based on remote sensing. Moreover,
forests in Cyprus have been recently impacted by forest fires,
which requires protection of remaining trees and adds to the
need of monitoring trees and forests. Such a gap leaves the
country with highly uncertain information regarding the
distribution of trees within and outside of forests, hindering
efforts to accurately assess Cyprus’s carbon balance and develop
effective land-based mitigation strategies, to achieve national carbon
neutrality objectives. The present study fills this critical information
gap by developing a proof of concept for monitoring individual trees
in Cyprus based on airborne remote sensing data. Specifically we
developed a new methodology to estimate tree cover and to count
trees over two large forest parks and one urban area. The specific
condition of Cyprus is that it has few forests and many trees outside
forests, included in urban areas and croplands. In this context, using
coarse or moderate remote sensing images would not achieve a high
accuracy (Turner et al., 2015; Hansen et al., 2013). In this study, we
show the potential of high resolution airborne images and deep-
learning models for monitoring the area of individual tree crowns
and counting trees, over three contrasted areas with trees inside and
outside forests. To reach this goal, we modified and adapted the
deep-learning model of Li et al. (2023) that uses aerial images and
LiDAR data to segment trees for estimating individual tree crown
areas and heights. Similarly, a recent study developed a semi-
supervised deep learning method to segment urban tree canopies
from high-resolution remote sensing images across a number of
cities in Brazil (Guo et al., 2023). In Cyprus, many urban areas lack
dense forests, which limits the use of other models like the
TreeDetector (Gong et al., 2024). LIDAR data have become
popular for image segmentation tasks (Zhou et al., 2020) and can
be applied to forestry. For example, Sun et al. (2022) used LIDAR-
derived height maps and the YOLO-v4 deep learning network
(Bochkovskiy et al., 2020) for tree crown segmentation,
overcoming limitations of aerial imagery, such as sensitivity to
capture angles (Yin et al., 2020) and uncertainties in solar
radiation intensity (Zhang et al., 2022). Another study proposed
a method combining high-resolution imagery and Canopy-Height-
Model data for individual tree detection and canopy segmentation,

demonstrating high accuracy and robustness (Zhang et al., 2024).
Despite the benefits of LIDAR data, their high cost makes them less
feasible. Given the lack of comprehensive LiDAR survey over
Cyprus and the availability of very high-resolution aerial images
(10 cm), we chose to adapt the model of Li et al. (2023) by training it
only with airborne images.

The model was modified and optimized to produce an airborne
tree inventory for an area of about 107km2 in Cyprus, covering three
different landscape types, a large national forest park in the Troodos
mountains, a small forest park and a small urban area in the capital
city (Nicosia). The main task is the estimation of the area covered by
tree crowns and the number of trees in the three different landscapes.
The model was applied to high-resolution airborne orthophotos with
a 10 cm spatial resolution. Considering that Cyprus has a totally
different type of landscape compared to Denmark, where the model
was initially trained on, we used a supervised transfer learning
strategy: the model was first pre-trained on the Denmark
annotations and then fine-tuned by integrating some local
annotations made in Cyprus. The main differences between the
two countries that requires re-tuning of the model are the small
size of the three studied areas in Cyprus, the prevalence of sparse
forests located in mountains, with smaller trees, and the existence of
many trees outside forests. Finally, we derived an improved estimate
of the area covered by trees on the whole island by training a random
forest to regress the CLC + Backbone (Copernicus, 2020) tree cover
product, a comprehensive land cover mapping tool that categorizes
land into 11 classes (based on a pixel-by-pixel analysis using a multi-
temporal series of Sentinel-2 imagery, providing wall-to-wall coverage
with a spatial resolution of 10 m), against our high resolution
individual tree crown cover areas over the three landscapes
studied. Our analysis lays the foundation for the establishment of
the first national tree inventory for Cyprus and maps the precise
number of trees and area covered by trees over two significant
forest parks.

2 Materials and methods

2.1 Description of the studied area

The Cyprus island (9,251 km2) is located in the Mediterranean
Sea and combines various ecosystems found across the basin. It has

FIGURE 1
Land use map of Cyprus taken from ESA WorldCover Viewer ESA
(2024). The location of the three study areas is pointed on the map.
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two prominent mountain ranges: the Troodos and the Kyrenia
Mountains (also known as Pentadaktylos), with a central plain,
the Mesaoria, lying between them. The peak of the range, Mount
Olympus (also known as Mount Troodos), stands at an elevation of
1951 m. A significant portion of the island’s arable land, more than
one-third, is irrigated and is primarily concentrated in the Mesaoria
Plain and surrounding regions of Paphos in the southwest. This
facilitates agricultural activities and contributes to the productivity
of these lands.

2.1.1 Cyprus forests
The total forest area of Cyprus is equal to 1,725.1 km2 which

corresponds to 18.65% of the total country area. The largest forests
are located in the Troodos National Forest Park (see Figure 1) which
corresponds to 5.3% of the total country forest land. Considering
that the Cyprus climate is semi-arid, the official forest definition
adopted by the Cyprus government is: “Forest comprises of land
covered by forest trees which covers at least 0.3 ha, where the tree
crown cover is at least 10 percent and the minimum tree height is of
5 m (at maturity)”. (In agreement with the Forest National Law of
2012 (25 (I)/2012) and the Global Forest Resource assessment) (The
republic of cyprus ministry of agriculture, rural development and
environment. 2019).

2.1.2 National Forest Inventory data
The most recent National Forest Inventory (NFI) report was

published in 2019 and was based on campaigns, where limited
sampling and statistical methods were applied. The NFI data is re-
evaluated every 10 years and so far, no remote sensing data have
been used, to measure and report on the Cyprus forest resources.

According to the NFI report of 2019, there are two main types of
trees in Cyprus, coniferous and broad-leaved. The most widespread
forest types are composed of pinus brutia, pinus nigra, mixed pinus
brutia, and riparian communities. The harvest rate was found to be
about 9% of the increment, which is extremely low compared to
Western and Central Europe, and was reported separately for
coniferous and broad-leaved trees. The analysis for broad-leaved
trees was based on previous NFI data of 2001–2011 while the
analysis for the pinus brutia forests was based on permanent
plots. The information used to estimate the forest reference area
from the National Forest Inventory encompasses 81,575.42 ha of
land that includes the Pinus brutia community within the state forest
area. The tree covered area occupied by each forest type is presented
in Table 1. This information does not refer to the tree crown area,
and tree size has not been considered. Estimations in Table 1 result
from a raw approximation based on the number of trees that have
been surveyed from 1997 until 2013. Below is a short description of

the three small areas analyzed for high resolution tree crown area in
this study 1.

2.1.3 Troodos National Forest Park
The Troodos mountain range is the primary geological and

topographical feature of the island, with natural forests providing
habitats for various plant and animal species. Its central forest,
encompassing its loftiest peaks is called Chionistra, in the heart of
the range. In 1992, a major portion of this forest, around 91 square
kilometers, was designated as a National Forest Park, aiming to
preserve its unique biodiversity; and it has been integrated into the
European network of “Natura 2000″ protected areas. The forests
within the National Forest Park are predominantly natural, having
regenerated without human intervention. Calabrian pine (Pinus
brutia) is the prevailing tree species at lower heights, reaching up
to 1,200m, and on warm, south-facing slopes, up to 1,600m. Smaller
trees and shrubs occupy specific niches, influenced by altitude,
geology, and moisture conditions. At higher elevations, from
1,200 to 1,500 m, black pine (Pinus nigra) dominates the forest
species. Other hardwood species include foetid juniper (Juniperus
foetiditssima), wild service tree (Sorbus aria), cotoneaster
(Cotoneaster racemiflorus), barberry (Berberis cretica), and the
endemic dwarf gorse (Genista sphacelata subsp. crudelis), among
others. A significant number of black pine trees and junipers in this
zone are exceptionally old, some exceeding 500 years, and a few
reaching up to 1,000 years. These trees are strictly protected due to
their high ecological and cultural value (Troodos, 2024).

2.1.4 Peri-urban forest park, Athalassa
This park (see map in Figure 1) is situated on the southeastern

outskirts of the city of Nicosia, and covers 840 ha, serving as a “green
paradise” with endemic and indigenous trees, shrubs, and grasses.
Athalassa was designated a National Forest Park in 1990 in
accordance with Forestry Legislation.

2.1.5 Urban area, Aglantzia
This area is a suburb of Nicosia, characterized by a mix of

modern blocks of apartments and traditional houses. The maximum
building height is 24 m adhering to urban planning regulations, and
the building-plot ratio, according to the Department of Land and
Survey of Cyprus, is equal to 1.60. Aglantzia has small parks and
green spaces, such as the Pedagogical Academy National Forest
Park. Our study domain includes a park with large trees of
0.25km2 in area.

2.2 Data description and pre-processing

As an input, the model receives RGB and NIR orthophotos
collected over Cyprus during 2019 with a 10-cm resolution by the
Department of Land and Survey of Cyprus. The GeoTIFF images
used here are of high-resolution (10 cm per pixel), derived from
UAV (drone) flight data with Red, Green, Blue (RGB), and Near-
Infrared (NIR) bands, and use the ESRI:102,319 - CGRS-1993-LTM
coordinate reference system (Transverse Mercator, meters). The
images were processed using the Inpho GmbH software, commonly
used in photogrammetry. The combination of RGB and NIR bands
makes the images suitable for both visual interpretation and

TABLE 1 Estimated forest area occupied by different types - Table taken
from National Forest Inventory report of 2019 (The republic of cyprus
ministry of agriculture, rural development and environment. 2019).

Area occupied by each type of forest (in
hectares)

Coniferous 143,767.9

Broadleaves 3,958.4

Total 147,726.3
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vegetation analysis. We split the dataset into small images, each of
0.25km2 in size, that cover the Troodos, Athalassa and Aglantzia
areas described above (428 images in total). The first step of the
analysis was to produce specific training data by labeling trees in
Cyprus. Since the model had already been pre-trained in Denmark,
it was decided to use the method of transfer learning where the pre-
trained model was fine-tuned using manually labeled tree crown
data from Denmark and a new set of labels created for Cyprus (the
size of the training set was determined by monitoring the
performance of the model during the model training procedure
aiming at a model loss of E−05 order - see Supplementary Appendix
C). For the creation of the new Cyprus training dataset, trees from
the each of the 3 studied areas have been labeled with 80% of labels in
Troodos and 40% in Athalassa, and Aglantzia. As reference outputs,
6,000 individual tree crowns (mixed deciduous and coniferous) were
delineated and labeled manually and further used together with
21,787 labels created for Denmark. This database was built through
visual inspection of aerial images, without the aid of any semi-
automatic assistance. The training areas were then created by
considering rectangles, in which every tree has been delineated.
The manual delineation of trees in Cyprus took approximately
2 months of computer-based processing and covered a variety of
tree species and landscape types within urban and rural areas. This
manual labeling was time-consuming but ensures that the reference
database represents what the naked eye can see on an aerial image.
No case separation was made for coniferous and broad-leaved trees.
To distinguish neighboring tree crowns in dense forest areas, the
spaces between adjacent crowns were included as input to themodel,
alongside the crown delineations. Note that this case of touching
crowns is very rare in Cyprus due to the sparse distribution of trees,
even in forests.

2.3 Model description

The deep-learning model of Li et al. (2023) to create maps of
trees crown areas uses convolutional neural networks. Initially, it
was developed to map trees in Denmark and further tested and
validated in Finland and France (Li et al., 2023). Given the huge
differences of trees and forest structure between Cyprus and
Denmark, related to the dry climate of Cyprus which influences
tree density, species and related crown shapes, as well as the presence
of trees in mountains (not present in Denmark). The method used to
re-tune the model for Cyprus is presented in the following section.
We implemented tree counting and crown segmentation tasks
simultaneously by using a multitask deep learning-based network
(see Figure 2) derived from the U-Net architecture (Ronneberger
et al., 2015), featuring two separate output branches dedicated to
each task. The crown segmentation branch addressed a semantic
segmentation challenge, where every pixel in an image was
categorized either as part of an object (white) or as part of the
background (black) (Wang, 2018). Therefore, the model outputs a
binary mask (see Figure 3) showing tree areas with white pixels and
non-tree areas with black pixels. The secondary branch estimates the
overstory tree count by generating density maps through regression
for a specific image. The ground truth density maps were created by
applying normalized 2D Gaussian kernels (see Figure 2) on the
delineated tree crowns (Zhang et al., 2016). The overall count of trees

in an image of any dimension was determined by integrating the
density map. Compared to counting by enumerating the segmented
tree crowns, where several adjoining tree crowns might be
incorrectly counted as one, the density estimation-based
approach, according to the authors (Li et al., 2023), improves the
overall counting bias.

2.4 Model configurations and training

The model architecture is a U-Net framework, widely employed
in computer vision tasks. In line with the methodology proposed by
Oktay (2018), the conventional U-Net was enhanced by integrating
self-attention blocks to capture more relevant information during
the down-sampling phase. Additionally, batch normalization was
employed after each convolutional layer to enhance stability and
accelerate the training procedure (Wang, 2018; Zhang et al., 2016).
Most of the model parameters were shared between the two
branches (segmentation and counting) with only those necessary
for generating the ultimate output predictions being specific to each
task. In the segmentation branch, a sigmoid activation function was
employed in the final output layer to generate probabilities of a pixel
to belong to a tree, ranging from 0 to 1. These probabilities were
subsequently transformed into binary labels using a threshold of 0.5.
According to Li et al. (2023), in the counting branch, a linear
activation function is the best choice to preserve the values of the
Gaussian kernel.

During each training epoch, random patches (tree crown labels)
measuring 256 × 256 pixels were extracted from all accessible
labeled images to create training and validation patches with a
batch size of 8. These image patches were standardized, adjusting
each instance and channel to have a mean of 0 and a standard
deviation of 1, before being utilized as inputs to the network. The
model was trained using the Adam optimizer for 2,500 epochs.
Machine learning methods offer the opportunity to play with several
parameters to improve the quality of the model. Several
combinations of hyper-parameters (such as the optimizer, the
number of epochs, etc.) were checked by inspecting the model
performance, to find the most optimal one (see Supplementary
Appendix A). The model was optimized by minimizing a loss
function that was derived from the two branches and has been
evaluated by monitoring closely the evolution of the loss function.
The Tversky loss function (Salehi et al., 2017) was chosen as in Li
et al. (2023). The model performed well for accurate estimate of tree
counting (error of order 10−2). Various data augmentation methods
were implemented, such as random flipping, cropping, Gaussian
blurring, and brightness adjustment, to augment the dataset
(Shorten and Khoshgoftaar, 2019).

2.5 Model evaluation

For evaluation, we generated a new test dataset of
2,500 manually created tree crown labels, 2,000 labels in Troodos
forest, and 500 labels of trees in Athalassa, and Aglantzia. There was
no spatial overlap between this test data and the training data. There
is unfortunately no accurate National Forest Inventory (NFI) sample
data for Cyprus, as recent data based on permanent plots is lacking.
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Consequently, the evaluation of the model was done by using only
our new testing dataset. For the crown area segmentation task, the
model output was evaluated by calculating the common area
between predictions and labels (F1 score). For the tree counting
task, three metrics were used (Chalmers and Adkins, 2020; Sigal and
Chalmers, 2016): the relative mean error (Equation 1), the relative
total error (Equation 2), and the coefficient of determination
R2 (Equation 3), a measure of how well the independent variable
explains the variability of the dependent variable.

RelativeMAE �
1
n ∑

n

i�1
yi − ŷi

∣∣∣∣
∣∣∣∣

�y
(1)

Relative total error RTE �
∑
n

i�1
ŷi−yi
yi

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

∑
n

i�1
yi

(2)

R2 � 1 −
∑
n

i�1
yi − ŷi( )2

∑
n

i�1
yi − �y( )2

(3)

where yi, ŷi, and �y denote the reference, prediction, and the mean
reference value, respectively, and n denotes the total number of
samples (tree crowns).

3 Results - estimation of tree crown
area and tree counts

The evaluation metrics reported in the second column of
Table 2, indicate an overall good agreement between manually
created and predicted tree crown areas, as reflected by a relative
total error of 7.21%. As a second step, we extended the test set by
adding 500 labels of trees in urban areas and open dry fields (see
Figure 4). By doing so, the model was evaluated with the same
metrics against a test set of 2000 labels from forest trees and an
additional 500 labels from trees in urban areas (see third column of
Table 2), achieving a relative total error 14.81% for crown
segmentation. Yet the model over-predicted tree counts for forest
areas by 3.5%, for forest and non-forest areas by 9.5%. Overall, we
found that the model failed to count trees accurately in dry open
fields and overestimated them in such areas. This pattern indicates

that the model is trained to count trees more efficiently in forest
areas than in cities or open fields. The coefficient of determination
for crown areas was found equal to 0.98 for forests and 0.92 for non-
forests. Over the Troodos area, our calculations using high-
resolution images make it possible to separate accurately
individual tree crowns, avoiding the false accounting of space
between trees. The tree cover density (TCD) defined as the total
area covered by tree crowns divided by the total area, ranges from
8.57% to 40.15% per km2 (see Figure 5A; Table 3). The number of
trees per km2 ranges from 6,028 to 17,780 trees, for a total of
927,562 trees (no species categorization). Over the Aglantzia area,
which includes the majority of the Athalassa National Forest Park.
Within the building-covered area (almost 850 ha), a total of
48,104 trees were counted, with a tree density of 38 trees per
hectare (see Table 4). In the Athalassa Forest Park (750 ha), we
counted 81,258 trees corresponding to 70 ha of tree-covered area
(see Table 4) with density ranging from 2.24% to 13.72% per km2.
Considering that the small urban area accommodates a significant
number of trees and is located next to the Athalassa forest park, it
can be characterized as a relatively “green” urban area.

3.1 Correlation between tree cover density
(TCD) and number of trees

The relationship between tree cover density and the number of
trees within an area allows us to better understand the structure of
forests that include sparse trees. The correlation between these two
variables for the Troodos National Forest Park, Aglantzia urban
area, and Athalassa Forest Park is shown in Figures 6B, D, F,
respectively.

For the Troodos Park, a correlation coefficient of 0.93 was found
between tree cover density and the number of trees, as shown in
Figure 6B. In other words, as tree cover density increases, there is a
tendency for the number of trees to increase as well. The 1km2 sub-
areas with the largest TCD contains trees with the largest size of tree
crown, equal to 23m2. Over the Troodos Park, for a given number of
trees (e.g., 3,000 per area) there is a large range of TCD. The area
with minimum TCD (8%–10%) contains trees with an average
crown size equal to 10m2. This area has the potential to grow up
to TCD of about 20% with an average tree crown size of 20m2 (as
shown in Figure 6B). This information can be used in future studies

FIGURE 2
Graphical representation of the model - based on Figure 1 of Li et al., 2023, Li et al. (2023).
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to predict the potential growth of this area (e.g., in terms of carbon
stock). The positive correlation suggests that the Troodos forest is
quite homogeneous with a fairly constant crown area per tree. In
specific areas where the above relationship does not apply, tree
crown areas are different from the rest of the forest. This is
consistent with the NFI data in Section 2.1.2 which indicates that

the Troodos forest park encompasses a diverse array of tree species
with different typical crown areas. Alternatively, the diversity of
crown sizes within these areas can also be explained by a mix of large
or mature trees next to smaller or younger ones. In Figure 6B, there
are a few outliers that correspond to areas that accommodate a large
number of trees with small tree crown sizes. We found that these

FIGURE 3
Three images of different landscapes that have been considered by the model together with the corresponding picture of tree masks that has been
created by the model as crown segmentation output. (A) Athalassa forest park, (C) Troodos forest park, (E) Urban area). Each image covers an area of
0.25km2. (A) Image with low tree cover density. (B) Tree masked image with low density. (C) Image with high tree cover density. (D) Tree masked image
with high density. (E) Image of an urban area (Aglantzia area). (F) Tree masked image of the urban area.
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outliers correspond to planted areas with many young trees at the
Amiantos mines (see Supplementary Figure S8 in the Appendix
section), within the Troodos forest park. This area has been planted
in the context of a reforestation campaign of the Department of
Forests between 2009 and 2014.

For the Athalassa National Forest Park, the situation is slightly
different. The correlation between TCD and the number of trees
across 1km2 sub-areas is equal to 0.94 (see Figure 6D), possibly
indicating either similar diversity of the tree species in this area with
the Troodos forest or trees with similar maturity. This is consistent
with the fact that the majority of the Athalassa forest park primarily
consists of artificially planted trees for recreation and environmental
conservation purposes.

For the urban area, which includes buildings, a large number of
trees has been found. Despite the fact that a very small area has been
considered as a sample, it was found that there is a strong positive
correlation between TCD and tree numbers, equal to 0.99 (seen
Figure 6F). This is a surprising result given the expected wide variety
of trees (and related maturity) encountered within the city.

According to Figure 6D, the maximum tree cover density of a
1km2 sub-area in Athalassa forest park is equal to 14%,
corresponding to almost 14,000 trees, with an average tree crown
size equal to 10.5m2. Such an area with tree cover density equal to
14% can accommodate between 8,000 and 10,000 trees in the
Troodos forest (Figure 6B), corresponding to an average tree

TABLE 2 Evaluation metrics of the model.

Predictions Tree in forest areas
(2000 annotations)

Trees inside and outside Forest areas
(2,500 annotations)

rMAE 15.01% 20.8%

Relative total error 7.21% 14.81%

Reference count (labeled trees) 2041 2,525

Predicted count (predicted
trees)

2,112 2,771

FIGURE 4
Examples of a dense forest area [image (A)] and a dry field [image
(C)] that the model has been tested on, where all the trees were
manually labeled with red masks. The corresponding binary masks of
tree crowns are shown in images (B, D). The relative Mean
Absolute Error (considering the total tree count based on density
estimation for the two areas) for images (A, C) respectively, was found
equal to 2% and 12.85%. The relative total error was found equal to
0.93% and 57.36%, respectively. Based on the relative error of the
prediction for each image, it can be seen that the model counts trees
more efficiently in dense forest areas due to its original design.

FIGURE 5
Histogram of the number of trees (X-axis) for Troodos forest park and Athalassa forest park (Frequency corresponds to the number of reference area
images (covering 1.0km2) that possess this number of trees). (A) Troodos forest park. (B) Athalassa forest park.
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TABLE 3 Tree covered area, number of trees, and tree cover density range among 91 images in Troodos forest park. The tree covered area and the TCD have
been calculated per reference area that covers 1.0km2

Variable Estimated value Range of quantity Value Tree covered density Value

Total tree covered area 16.38km2 Range of tree covered area 0.085km2 to 0.4km2 Minimum TCD 8.57%

Tree counts 927,562 Range of tree counts 6,028 to 17,780 Maximum TCD 40.15%

TABLE 4 Tree covered area, number of trees and tree cover density (per 1km2) over the Athalassa National forest park and the small urban area.

Studied area Tree covered area Number of trees Min TCD Max TCD

Athalassa forest park (total area 750 ha) 70 ha 81,258 2.24% 13.72%

Small urban area (total area 850 ha) 38 ha 48,104 1.60% 7.86%

FIGURE 6
Histogram of the tree covered density and Scatter plot of Tree Cover Density (TCD) vs. Number of trees per reference area (size 1.0km2) for Troodos
forest park (A, B), Athalassa forest park (C, D) and the small urban area (E, F). The color scale defines the average size of the tree crown in the reference
area. (A) Tree covered density for Troodos. (B) TCD vs. Number of trees for Troodos. (C) Tree covered density for Athalassa. (D) TCD vs. Number of trees
for Athalassa. (E) Tree covered density for urban area. (F) TCD vs. Number of trees for urban area.
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crown size between 14m2 and 16m2, respectively. In other words, for
the same TCD, the Troodos forest has two times less trees but each
with almost double crown size compared to Athalassa Park.
Assuming these two forests are similar (in terms of abundance of
tree species), such difference can indicate a different level of maturity
for the two forests (with older trees in Troodos having larger
crowns). Other features can also explain this difference such as
the location of the forest park (in the mountains for Troodos and a
flat terrain for Athalassa), and the limited amount of rainfall over the
Athalassa area (compared to Troodos). For the urban area, it can be
observed in Figure 6F that it contains a reference area of 1.0km2 with
a surprisingly high tree cover density, almost equal to 10%, and
many trees in it, almost 10,000 trees. A careful visual check of this
reference area shows that it includes a green park with large trees,
located in the urban area.

3.2 A power law for closed forests

A well-known empirical law in closed forests, referred to as self-
thinning, is a linear heuristic relationship between log-transformed tree
density and individual tree crown size in a forest stand that reaches its
maximum density (Farrior et al., 2016). Essentially, trees compete for
resources and space, so that a given area can only accommodate either a
few large trees or many small trees. This principle is well-established in
dense forests (i.e., with high TCD) where trees compete for access to
sunlight. It is therefore, very interesting to examine the law for non-
closed (i.e., with low TCD) forests such as the Troodos forest park and
the small Athalassa forest park, where trees do not compete for light but
rather for water or nutrients. The self-thinning exponent for these two
forests is calculated as the linear regression slope between the logarithm
of the average area covered by a tree crown against the logarithm of the
number of trees. For the Troodos Forest Park, the self-thinning
exponent equals −0.45, indicating that as the average individual tree
size increases, the number of trees decrease quickly, with a strong
relationship between the two (see Supplementary Appendix E). This
steeper slope suggests a higher level of competition among tree species
for resources such as water and nutrients. It also implies a more
pronounced hierarchical canopy structure, with larger, dominant
trees more effectively competing for resources and a decrease in the
number of smaller trees. Additionally, the maximum tree cover density
in a reference area of Troodos was found to be approximately 45%,
indicating that Troodos is a sparse forest. This observation is
particularly interesting because the forest law considered here has
not been previously applied to sparse forests. For the Athalassa
forest park, the self-thinning exponent equals −1.17, which indicates
a moderate to strong negative relationship between tree density and
individual tree size within this small city forest park (see Supplementary
Appendix E). This indicates that trees in the area compete strongly for
resources and they form a relatively uniform canopy. Since the park
consists of mainly man-made vegetation we could suggest that a lot
(possibly too many) trees were planted per area in Athalassa compared
to Troodos forest park (see slopes of Figures 6B, C. The self-thinning
exponent carries significant implications for forest management
practices. For example, it can help in making decisions related to
thinning treatments, spacing of trees, and stand density management to
optimize timber production, biodiversity conservation, or other
management objectives.

3.3 Estimation of the total area covered by
tree crowns over Cyprus using our results
and CLC + Backbone product map for
tree cover

Because it was not possible to get access to all the photos available for
Cyprus, we established a transfer function between our very high
resolution dataset and a coarser resolution dataset, available for the
whole island. When considering different coarse resolution tree cover
datasets in Cyprus, such as the Global Forest Watch (GFW), the
European Forest Institute (EFI) Maps, the CORINE Land Cover
(CLC), we decided to use the CORINE CLC + Backbone product
with 10 m resolution for the year 2018 to derive a moderate resolution
estimation of the total tree covered area over Cyprus (Copernicus, 2020).
TheCLC+Backbone raster product provides comprehensive land-cover
mapping, distinguishing 11 different land cover types, one of which is the
tree cover. It uses pixel-based, multi-temporal Sentinel-2 imagery to
create a continuous 10 m resolution map. When overlapping land cover
types occur within a single pixel (such as a combination of vegetation
and sealed surfaces), the product assigns one dominant class, generally
using amajority rule where the class coveringmore than 50%of the pixel
is selected. In the case of tree cover, the pixels of tree cover class are
classified into two forest type classes, coniferous and broad-leaved.

The reason behind the choice ofCLC+ is the quality of the prediction,
which forCyprus is almost 90% and its open access. Themain differences
between CLC + Backbone and our methodology and data sample are
essentially i) the type of the sensors (CLC+: satellite images of Sentinel-2,
our study: aerial images - orthophotos), ii) the resolution (CLC+: 10 m/
pixel, Our study: 10 cm/pixel), iii) the size of the reference area (CLC+: all
Cyprus, our study: 107km2), and iv) the definition of tree cover (CLC+:
categorizes each pixel to a land category and then to a forest type, our
study: segments each tree without the space between them set as a
condition the existence of the visible shadow of the tree to avoid including
shrubs). The CLC + Backbone product forest type tree cover map was
used in combination with our results to estimate the total tree covered
area of Cyprus (occupied and non-occupied parts). Firstly, the tree
covered area of our very-high-resolution dataset has been calculated
over 428 images of 0.25 km2. The lowest recorded tree cover density was
1.81% in an open, arid field with sparse tree coverage, while the highest
tree cover density reached 44.94% in Troodos forest. As a first step, we
resampled the CLC + data to match the resolution of our images
(10cm/pixel) and re-projected it to the same coordinate system.
After that, we cut the map into small parts with the same dimensions
of our original data (0.25km2). As a next step, we calculated the
percentage of each image that is forested (includes trees of any type).
Now, for our studied areas we have the area covered by tree crowns per
reference image area and we combine this information with the forested
percentage. At this step we have a dataset of 106 images of 0.25km2 for
which we have the size of the area covered by tree crowns (output of our
model) and the percentage of the image classified as forested in CLC+.

For the prediction of the size of the area covered by tree crowns per
reference area, we used a Random Forest regression method, having as a
feature value the forested percentage of CLC+ and as a target value the
area covered by tree crowns from our very high resolution images. Using
the area that is covered by our dataset of high-resolution images as a test
set, we found that the performance of the model was good with Mean
Absolute Error (MAE) equal to 0.0068, Mean Squared Error (MSE)
equal to 9.125e-05 and R-squared (R2): 0.82. The data in Figure 7) show
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that themodel prediction is more efficient for areas with amoderate tree
cover value compared to the rest of the data but also achieves the
accurate prediction of tree cover in dense forest areas.

The RF results applied to the whole island indicate that in Cyprus,
1381km2 are covered by tree crowns, which corresponds to almost 15%
of the total country area. According to Figure 8, when a very small part
of a reference area is covered by tree crowns, the CLC + Backbone failed
to identify it as being tree-covered. On the other hand, when a reference
area includes a large fraction of tree crowns, the CLC + overestimated
the tree cover. For instance, when we considered the Troodos forest
park as a case study, we found that according to CLC+, 32.71km2 are
covered by trees compared only to 16.38km2 in our very high resolution
data. Thus, CLC + over-estimates tree cover by 100 per cent.

4 Discussion

We used airborne remote sensing images alongside deep learning
neural network models to estimate both area covered by tree crowns
and the number of trees over three small study areas in Cyprus. This
approachwas selected based on the best availablemethods for creating

tree inventories at the time of the study. The high-resolution (10 cm)
aerial images enabled us to segment even small trees located outside
forest areas, providing insights into urban tree resources, which have
not been accounted for in any tree inventory conducted in the
Mediterranean region. Simultaneously, deep learning models allow
for fast and efficient analysis and prediction.

A test set was created to evaluate themodel’s performance, covering
all landscape types. The size of the test and training sets was determined
based on the acceptable loss threshold we established, as well as the
quality of the prediction we aimed to achieve. For other applications,
such as the segmentation of larger objects (e.g., buildings), a smaller test
set may suffice to achieve acceptable model performance.

The overall prediction quality of the model was excellent in forest
areas and remained acceptable for trees outside of forests. In the original
study by Li et al. (2023), the relative total error for non-forest trees was
approximately 20%, indicating that our model can effectively count
trees in urban areas. To validate this, a test case was designed for a small
urban area that includes a forest park within the capital city of Cyprus.
Our results revealed a significant number of trees in the urban area,
demonstrating that the model is suitable for estimating tree resources
across various landscapes. Based on these findings, the model will be

FIGURE 7
Prediction of the area covered by tree crowns in Cyprus by using the Random Forest regression.
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applied in a subsequent study to create Cyprus’s first national airborne
tree inventory and calculate for the first time the total biomass and
carbon stock of trees at a national scale.

When combining our results with coarser resolution maps of tree
cover and forest types, we found that tree canopy can be predicted at a
national level by using a small sample of very high-resolution images as a
reference. This combination improves the quality of the information
derived from lower-resolution maps and highlights the advantages of
using high-resolution images and state-of-the-art models. As illustrated
in Figure 8, coarser-resolution (10 m) maps such as CLC + tend to
overestimate tree cover in dense forest regions while underestimating it
in urban areas with smaller trees. In the case of Troodos Forest Park, we
found that CLC + Backbone overestimated tree canopy size by 100%,
underscoring the importance of high-resolution data for developing tree
inventories and the advantages of using advanced methods like CNN
models for segmenting individual tree crowns. Our results can be
compared with other freely accessible tree cover maps, such as the
Copernicus Tree Cover Density map, as shown in Figure 9, and observe
that our findings reveal the true structure of the tree canopy, identifying
small trees that low-resolution maps fail to capture. Our observations
highlight the importance and the urgent need for high quality national
inventories that lie on up-to-date data of high resolution to illustrate the
realistic image of tree resources in a country.

5 Summary and conclusions

This study addressed for the first time the quantification of the
number of trees and the extent of tree cover within the largest
forested region of Cyprus (the Troodos National Forest Park),
employing tree segmentation and density mapping techniques.

The model developed by Li et al., 2023 was used here by
applying minor modifications to become compatible with the
Cypriot landscape. It must be highlighted that this is the first
time that a state-of-art model has been applied to segment and
count trees over an Eastern Mediterranean region, Cyprus, making
our results to be of high importance. Until now, there are no accurate
estimates of the total number of trees in Cyprus and no national
airborne inventory has been created. Therefore, the model can offer
us the opportunity, having available data for the full country area of
Cyprus, to create the first national airborne tree inventory.

To set up our model, a high-resolution orthophoto dataset was used
to create manual annotations to define accurate tree areas and train our
model efficiently. It was found that the Troodos forest area contains as
many as 927,562 trees (no species categorization)with a total tree-covered
area equal to 16.38km2. Considering that Troodos forest park has a size
of about 91km2, trees cover almost 18% of the area while the remaining
area is the background space between trees. The accurate segmentation of
trees, accounting for space between them is one of the main features of
our model since every previous tree inventory over Cyprus has utilized
satellite images of much lower resolution compared to ours. Hence, our
model results can provide the real number of trees in Troodos and have
the potential to be extended to the entire country easily, thereby creating
the first national airborne tree inventory for Cyprus.

As a case study, we extended the application of our model to an
urban area which includes a small forest park in the suburb of Nicosia.
This is the first time that a study counted trees and evaluated the tree
coverage in an urban area of Cyprus. A significant number of trees
were found in this urban area, with approximately 130,000 trees in
16km2 and a total tree-covered area of 108 ha. It is worth noting here
that trees in urban areas have not been considered so far by any
previous study or National Forest Inventory.

Our model results were further processed by employing some
additional statistical tests such as the correlation between the tree
cover density and the number of trees measured for each image of
reference area. The existence of areas with the same tree cover density but
different numbers of trees at Troodos Forest Park, despite the strong
correlation between the two variables, highlights the presence of tree
species diversity in the area and provides insight into the nature of the
ecosystem. For theAthalassa forest park (inNicosia), there is also a strong
correlation between tree cover density and the number of trees but with a
rather different slope compared to the Troodos forest, suggesting a rather
different type of forest while the strong correlation also suggests a quite
homogeneous forest with trees in this area having similar size and age.
Interestingly, for the small urban area, the correlation is again very strong
with a slope similar to the forest park next to Nicosia. Therefore, our
analysis highlights the significance ofmonitoring the number of trees and
not only the tree-covered area, which is the parameter that is mainly
studied worldwide. The correlation between tree cover density and the
number of trees holds important implications for forestmanagement and
conservation efforts. Some of the aspects that can be considered, to
develop a more sophisticated analysis are biodiversity, carbon stock, and
the ecosystem in general. Consequently, it will be beneficiary to refine our
study and examine other parameters such as climate, soil characteristics,
and other environmental factors.

Due to the high purchasing cost of aerial images, we restricted
our study to a small portion of the Troodos Mountains area while
the CLC + backbone product map was used to scale up our model
results and derive a raw estimation of the total tree covered area of

FIGURE 8
Comparison between the tree masks created by our model and the
CLC+Backbonemap of forest type tree cover with resolution 10m/pixel.
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Cyprus. In 2019, the total tree-covered area of Cyprus was estimated
to be approximately 138,100 ha. Using the Troodos Forest Park as a
case study, we found that the CLC + Backbone overestimated the
tree canopy size by 100%. This result underscores the key advantage
of our analysis—the use of high-resolution images. These images,
with a resolution finer than 1 m/pixel, allow us to accurately account
for gaps between trees, large shrubs, and other green objects that are
not detectable in lower-resolution imagery. Overall, our results
indicate that Cyprus holds a significant amount of tree-covered
area which contributes to carbon stock. Our analysis emphasizes
how important it is to look at both tree cover density and the number
of trees. Knowing how these two factors interact can help in making
smart choices in forest management and conservation efforts. It
should be noted that the images were collected in 2019.
Consequently, the variation in tree cover must be considered to
make an accurate evaluation of the tree resources of Cyprus today.
Our proposed strategy can be used in the future to evaluate how the
tree-covered area changed through the years by using deep learning
models and high-resolution orthophotos.

Thanks to the development of this model, we can realistically
aim at the creation of the first national airborne tree inventory of
Cyprus by applying the model to high-resolution images that cover
the full area of the island. Such an inventory can contribute to the
monitoring of the carbon emissions level to assess the development
of strategies for the achievement of carbon neutrality, especially in
the context of the Land Use, Land-Use Change and Forestry
(LULUCF) initiative.
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FIGURE 9
Comparison between our results, Copernicus TCD dataset, and Google satellite. Image (A) Copernicus TCD data image that includes the reference
area that we used for estimating the total tree covered area of Cyprus. Image (B) Image of the same area including the tree masks that have been created
by our model for the area in the rectangular. Images (C, D) Image taken by Google satellite for the same area and the tree-masked image that has been
created by our model.
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