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Proper monitoring of plant nitrogen (N) status and yield forecasting is essential to
achieving a healthy crop and to maximizing profitability, especially in
N-demanding crops such as potato. The most common method of
monitoring potato N status (nitrate-N analysis of petioles) by the potato
farmers in Wisconsin is time-consuming, destructive, and is impractical to
sufficiently characterize spatial-temporal variability. This study utilized narrow-
band hyperspectral imagery (including the visible and near-infrared (VNIR) and
shortwave infrared (SWIR) spectral regions) collected over two growing seasons
from two potato varieties (Russet Burbank and Soraya) grown under varied N
treatments to develop robust partial least squares regression (PLSR) models for
predicting potato in-season and at-harvest traits related to N. The results indicate
that some traits such as leaf total N content, within-season tuber yield, and the
marketable yield and quality at harvest could be well predicted for both varieties
(R2 up to 0.78). The best spectral regions for those predictions varied depending
on the growth stages of the plants, with VNIR predominating during early and
mid-tuber, and SWIR during late tuber bulking. Our research suggests that the
narrow-band hyperspectral imaging technique could be utilized to develop
robust models to assist and potentially improve crop N fertilization decision-
making, which will eventually result in higher input use efficiency of the cropping
systems and better environmental stewardship for the farmers.
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1 Introduction

Potato (Solanum tuberosum L.) is a food crop that is grown globally in a wide variety of
locations (Hijmans, 2001; FAO, 2021). Over 375 million tonnes of potatoes were produced
around the world in 2022 (FAO, 2021). In the United States, potato cultivation covers
approximately 400,000 ha, and produces a total raw product value of approximately
$4 billion per year (National Potato Council, 2018). Despite the economic importance
of potatoes, farmers lack sophisticated tools that allow them to accurately and efficiently
monitor and predict growing status of their crop during the field season, and to aid them to
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achieve maximum productivity and profitability while minimizing
impact of potato production on the environment.

Nitrogen (N) is one of the key inputs that farmers must manage
to achieve high crop yield and premium quality (Muleta and Aga,
2019; Stark and Love, 2003; Vos, 1999; 2009). Proper management
of N fertilizer ensures the crop’s ability to produce marketable
tubers, to achieve optimal canopy size, as well as to resist pest
and disease pressure and environmental stresses such as drought
and heat (Stark and Love, 2003). In spite of the essential role of N,
the potato plant itself is generally inefficient at taking up N. Potatoes
have shallow roots, with the majority of them confined to the top
30 cm of the soil (Epstein and Grant, 1973; Stark and Love, 2003).
Potatoes in the U.S. are commonly grown on coarse-textured soils
(King et al., 2020) in the northern part of the country that have low
soil organic matter content (<10 g kg-1) and relatively shallow
ground water tables. This soil feature together with rain events
that produce soil saturation during the growing season are
significant contributors to nitrate leaching and groundwater
contamination in many regions of the country (Kraft et al., 1999;
Kraft and Stites, 2003; Leghari et al., 2016; Stark and Love, 2003).
Due to these factors, precision application of N fertilizer by potato
farmers is highly necessary.

The most widely used method of monitoring N status and
planning for fertilization is by collecting petiole tissues from the
plants and analyzing them in a laboratory to determine the nitrate-N
concentration (Rosen and Bierman, 2008; Stark and Love, 2003). If
the petiole nitrate-N is lower than the published sufficiency range, a
supplemental N fertilizer application is recommended, typically by
11–34 kg N ha-1 (Colquhoun et al., 2020). Aside from petiole
sampling, similar analysis of total N in other plant parts, most
often the entire leaf or a portion of the canopy, are also utilized to
assess N status of the plants (Jones et al., 2021; Reis Jr andMonnerat,
2000; Lauer, 1985). Petiole nitrate-N reflects the immediate N status
of the plants at the time of testing, and total N in leaves or vines
indicates the accumulated N uptake of the plants from planting up
until the point of test (Liu et al., 2021). However, these field sampling
methods can only collect site-specific information from the sampled
location in the field, with no ability to cover any spatial-temporal
variability that might lead to under- or over-application of N
fertilizer. Under-application could result in tuber yield and
quality reduction, and over-application is often associated with
underdevelopment of tuber skin at harvest and high chance of
pathogen infection during storage, as well as nitrate leaching and
groundwater quality issues.

With growers’ interest in adopting new technologies to
maximize their fertilizer use efficiency and increase precision in
their crop management, agricultural remote sensing has expanded
rapidly into new areas of application in recent years (Pinter Jr et al.,
2003). Remote sensing techniques are of particular interest and value
to the agricultural industry due to the unique challenges that it faces,
such as the seasonality in biological life cycles and the weather and
climate variables that can impact crop production (Atzberger, 2013).
By avoiding contact with the crop, remote sensing allows for data
collection that is not invasive and destructive compared to the
traditional field sampling methods. As well, remote sensing has
the potential to be more time-efficient and less labor-intensive than
field sampling (Alkhaled et al., 2023). Remote sensing in agriculture
generally uses the relationship that leaf or canopy spectral signature

has with biological traits of the plants to estimate or predict
information on features of the crop (Curran, 1989; Muñoz-
Huerta et al., 2013). The optical properties used to obtain this
information may stem from characteristics such as spectral
reflectance or transmittance of plant tissues as well as
fluorescence of chlorophyll or polyphenol (Muñoz-Huerta et al.,
2013). Because N is a critical element in chlorophyll synthesis,
photosynthetic capacity and plant productivity, spectral regions
associated with chlorophyll content are oftentimes the key basis
for evaluations of crop N status and vigor (Ali, 2020; Delloye et al.,
2018; Patane and Vibhute, 2014; Schlemmer et al., 2013). As a
pigment, chlorophyll content is directly associated with reflectance
from the visible and near-infrared (VNIR) spectral regions (Curran,
1989; Evans, 1989; Gitelson and Merzlyak, 1996; 1998). In addition,
many spectral ranges in the shortwave infrared (SWIR) region
(1,400 nm–2,500 nm) are correlated with plant traits such as
content of starch, lignin, protein, cellulose, and nonstructural
carbohydrates (Curran, 1989; Liu et al., 2021). Together, spectra
from the visible through shortwave infrared (VSWIR,
400–2,500 nm) offer great potential for concurrent mapping of
many plant traits (Wang et al., 2020). In agriculture, these traits can
directly influence plant total N content, plant vigor, yield
and quality.

Handheld sensors have been deployed in N content prediction
(Abdelbaki et al., 2021; Ali, 2020; Ali et al., 2020; Prikaziuk et al.,
2022; Singh et al., 2018; Zheng et al., 2018), and remote cameras
mounted on unmanned aerial vehicles have also been used to predict
crop N status (Abdelbaki et al., 2021; Cai et al., 2019; Li et al., 2020; Li
et al., 2018; Zheng et al., 2018). These smaller-scale methods often
have high resolution but are less adept at effectively capturing
information from large agricultural areas, compared to larger-
scale methods such as imagery collected from airplanes and
satellites. In addition, the use of a small number of broadband
spectral data captured in multispectral imagery may fail to capture
the nuance of a crop canopy’s spectral signatures. By comparison,
hyperspectral imagery collects continuous measurements of spectral
data from a wide range of narrow bands across the electromagnetic
spectrum, and it is these narrow features that enable detection of
foliar nutrition (Curran, 1989; Martin and Aber, 1997).
Hyperspectral images are generally described as a data cube, with
the X and Y planes containing spatial information and the Z plane
containing a large range of spectral information, i.e., each “pixel” in
the image is a continuous spectrum covering the VSWIR
wavelengths (Shukla and Kot, 2016).

Partial least squares regression (PLSR) is a statistical model
which utilizes weighted predictor components to model the
relationship between predictor variables and a response variable
(Garthwaite, 1994). A key feature of PLSR is that it uses latent
variables to explain the effects of correlated independent variables,
causing it to perform well in situations where multicollinearity is
high (Haenlein and Kaplan, 2004; Wold et al., 1984).
Multicollinearity is an issue that occurs when two or more
independent variables in a multiple regression model are highly
correlated, resulting in a raised or lowered standard error within the
coefficients of the model, and ultimately leading to models that are
overfitted and difficult to accurately interpret (Tsagris and Pandis,
2021). Multicollinearity is a critical concern when developing
predictive models using hyperspectral data, as the number of
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ground-truthed field measurements can be considerably fewer than
the number of initial wavelengths, resulting in high correlation
between the independent variables of the model (Grossman et al.,
1996; Martens and Naes, 1992). For this reason, PLSR has been used
to avoid overfitting while accurately predicting foliar chemistry from
hyperspectral imagery, including traits associated with plant N
status and productivity (Asner et al., 2015; Li et al., 2020; Liu
et al., 2021; Nguyen and Lee, 2006; Singh et al., 2015; Wang
et al., 2020; Liu et al., 2021).

While the use of hyperspectral remote sensing to capture a wide
range of narrowband reflectance values from the full VSWIR has
been shown to aid in the prediction of biophysical traits of plants,
this technology has not been widely investigated in most crops,
including potatoes. Much of the existing scientific literature on
predictions of potato N status from hyperspectral data only
focuses on the visible-near infrared (VNIR) region, which in
remote sensing covers the range of 400 nm–1,000 nm (Abdelbaki
et al., 2021; Cohen et al., 2010; Li et al., 2020; Jain et al., 2007; Morier
et al., 2015).

The objective of the research presented in this paper is to
develop data-driven models to predict in-season and at-harvest
aboveground and belowground traits of potato plants grown
under different N treatments using hyperspectral data from a 2-
year field study. By using image data from multiple years and across
the growing season, this research addresses issues of generalizability
that arise from analyses using data from a single plant growth stage
or year, since the relevant spectral characteristics may differ
seasonally or between years if climatic conditions differ. The
models developed in this study will likely allow potato growers to
make more informed management decisions, resulting in more
efficient use of N fertilizer while still optimizing crop yield and
quality, and minimizing the impact of fertilizer use on the invaluable
ground water resource.

2 Data and methods

2.1 Field data

2.1.1 Study location, experimental design, and
weather conditions

A 2-year field trial was conducted at the University of
Wisconsin-Madison Hancock Agricultural Research Station
(Hancock, WI, latitude: 44.12°N; longitude 89.53°W; elevation
328 m) using a randomized complete block design for each
variety. In 2020, only Russet Burbank (a fry processing variety)
was grown, and in 2021 both Russet Burbank and Soraya (a yellow
fresh market variety) were grown. Russet Burbank is the No.1 potato
variety grown in the U.S., and it is highly N-demanding (Bethke,
et al., 2014). Soraya is a recently released variety from the
Netherlands, and was bred to develop small canopies with
minimum use of N fertilizer but high yield potential (D. Maum,
personal communication, 10 January 2020). The soil type in this
location is categorized as a loamy fine sand (organic matter <1%)
from a depth of 0–45 cm and as a fine sand (organic matter <0.5%)
from a depth of 45–75 cm. Each plot consisted of eight 6-m by 0.9-m
rows. Within a plot, the outermost rows (rows one and 8) were used
as guard rows, rows 2 and 3 were used for in-season tuber digging

and whole vine collection, rows 4 and 5 were used for in-season
petiole and leaf collection, and rows 6 and 7 were harvested for final
yield and quality evaluation. The study included four replications of
4 N fertilizer treatments, each treatment with varied fertilizer
amounts and application timings (Table 1). Stater fertilizer was
banded with a planter attachment. Fertilizer at hilling was banded
and incorporated. All the in-season fertilizer was side dressed and
irrigated immediately. Aside from N application, other production
practices including irrigation and pest management were performed
following University of Wisconsin–Madison Extension
recommendations (Colquhoun et al., 2020).

Planting occurred on 1 May 2020 and 22 April 2021.
Emergence was observed on 25 May 2020 and 20 May
2021 respectively. Monthly average air temperature and
average precipitation between May and August in 2020 and
2021 is shown in Supplemental Figure 1. In both years, daily
minimum temperatures dropped below freezing (0°C) within
2 weeks of planting. While precipitation events were generally
evenly distributed across 2020, there was one large
(approximately 5 cm) precipitation 2 weeks after planting. In
2021, a long dry spell coincided with daily average temperatures
above 30°C in early-to-mid June. Overall higher variation in
precipitation amounts were observed with frequent small or
large events in 2021 than 2020.

2.1.2 Ground truthing data collection
All in-season sampling occurred between 8:00 a.m. and 12:

00 p.m. 1 day at early, mid-, and late tuber bulking stages
respectively in each year. Petioles and whole leaves (petioles +
leaflets) were collected from 20 randomly selected healthy plants
per plot for nitrate-N and total N analysis separately. On the same
day, three healthy plants per plot were randomly removed and
separated for whole canopy samples (including leaves, stems and
flowers) and tuber samples. Whole canopy samples were measured
for biomass at sampling and were chopped into pieces to measure
total N content and total N uptake later. Tuber samples were
measured for tuber biomass at sampling. Petiole, whole leaf, and
whole canopy samples were placed into paper bags separately and
transported to a dryer at 70°C for a minimum duration of 48 h until
nomore weight was lost. Post drying, the tissues were ground using a
Wiley mini mill (Thomas Scientific, Swedesboro, New Jersey) to
facilitate passage through a 2-mm sieve.

For petiole nitrate-N analysis, extraction of nitrate was
conducted with 2% acetic acid (MacKown and Weik, 2004).
Firstly 0.10 g of ground dry tissue samples was weighed into a
50 mL centrifuge tube before the addition of 25 mL of 2% acetic acid.
Capped tubes were then shaken for 15 minutes before filtration of
samples through Whatman No. 2 filter papers. The filtered samples
were analyzed by flow injection analysis on a Fialyzer 1,000 Series
instrument (FIALab, Seattle, WA) using a nitrate/nitrite analysis by
the Griess method with cadmium reduction of nitrate to nitrite (Gal
et al., 2004). Unit of petiole nitrate-N was mg (kg of dry weight)−1.

For total N content analysis of whole leaves and whole canopies,
ground dry tissue samples were weighed (2 – 5 mg) into tin foil
capsules and analyzed using an elemental combustion analyzer
(Costech Analytical Technologies, INC., Valencia, CA). Whole
canopy total N uptake per plot was calculated by the equation:
whole canopy dry weight × total N %.
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All plots were harvested to measure marketable yield, tuber
specific gravity, and fertilizer N recovery % in late September of both
years. Tubers were washed and graded by weight (for Russet
Burbank) or diameter (for Soraya) using an AgRay Vision x-ray
grading machine (AgRay Vision, Acampo, California). Marketable
yield was calculated as the yield of non-culled tubers that had a
weight larger than 170 g (for Russet Burbank) or a diameter larger
than 3.8 cm (for Soraya). These values were used to reflect regional
industry standards. Culled tubers that were misshaped, diseased or
defected were disposed. Tuber quality was assessed by measuring
specific gravity (an indicator for tuber starch content) with a
Weltech PW-2050 Dry Matter Assessment System. After taking
the weight of a 2000 g–3,000 g of tuber samples from each plot in the
air and in water, the system used the following formula to calculate
the specific gravity for the sample (Kleinkopf, et al., 1987):

Specific Gravity

� Weight in air( ) / Weight in air –Weight inwater( )

Subsequently, a subsample of tubers ranging from 200 to 350 g
were randomly selected from the same batch, chopped and placed in
paper bags for drying at 70°C until no weight was lost. Post drying,
these samples were ground using a Thomas-Wiley laboratory mill
(Model 4) to pass through a 2-mm sieve, ground dry tuber tissue
samples were then weighed (2 – 5 mg) into tin foil capsules and
analyzed for total N content (% dry weight basis) of the plants in
each plot. Total N uptake per plot was calculated by the equation:
tuber dry weight × total N %. Fertilizer N recovery % was defined as
the ratio of N that was taken up by the tubers and removed from the
field during harvest to the seasonal total N applied.

2.2 Imaging data collection and processing

A co-aligned HySpex (Norsk Elektro Optikk, Norway) system was
utilized to capture hyperspectral imagery during each field season. This
system was made up of a VNIR-1800 camera with 186 spectral bands
between 400 nm and 1,000 nm and a spectral resolution of 3.26 nm, as
well as a SWIR-384 camera with 288 spectral bands between 953 nm
and 2,518 nm and a resolution of 5.45 nm. The flight was at an altitude
of approximately 365 m above the ground, giving a spatial resolution of
0.25 m in the VNIR-1800 system and 0.5 m in the SWIR-348 system.
Imagery collection dates (as indicated by crops’ days after emergence

(DAE)) in 2020 and 2021 were chosen to ensure they covered the
critical potato growth stages in each field season. They included: early
tuber bulking (53DAE in 2020 and 51DAE in 2021), mid tuber bulking
(61 DAE in 2020 and 59 DAE in 2021), and late tuber bulking (81 DAE
in 2020 and 85 DAE in 2021). Imagery collection dates were
coordinated with field sampling dates as closely as possible, although
weather factors (primarily precipitation and cloud coverage) limited the
ability to align flight dates perfectly. For predictions of in-season traits,
ground truthing data was paired with imaging data only when their
collection dates were nomore than 3 days apart. Pairs of collection dates
for aerial imaging and in-season field measurement in this study are
shown in Table 2. Data from Russet Burbank and Soraya individually
and combined were used for in-season predictions. End-of-season traits
were predicted using at-harvest measurements paired with spectral data
collected at early, mid- and late tuber bulking separately in each of the
2 years. In addition, models for end-of-season traits were developed
using spectral data collected from all three growth stages combined
across the 2 years. This paper reported at-harvest predictions for Russet
Burbank because only this variety was grown in both years.

HySpex images were processed using a consistent and open-
source workflow following Liu et al. (2021), https://github.com/
EnSpec/hypro). Processing steps included radiometric calibration
using manufacturer-provided coefficients, correction for smile
effects (shifts in wavelength position across spectrometer focal
array (Schläpfer and Richter, 2010), orthorectification to <1 m
precision using GPS-IMU data, atmospheric correction (Richter
and Schläpfer, 2010), and correction of bi-directional reflectance
distribution effects due to variations in sun-sensor-target geometry
across flightlines (Queally et al., 2022).

Spectral smoothing and data extraction for statistical analyses
Savitzky–Golay filter (window size: 7) was used to reduce noise in
surface reflectance (Schafer, 2011). Then, the average reflectance of
all vegetation pixels within each subplot was extracted. Non-
vegetation pixels (e.g., shadows and soil) were excluded using
NDVI<0.5. Vector normalization was performed to reduce the
effects of illumination conditions on reflectance (Asner et al.,
2015; Feilhauer et al., 2010). Reflectance values extracted from
the hyperspectral imagery were averaged over each plot for
modeling. Spectral data from atmospheric water absorption
features at 1,320–1,470 nm and 1780–2000 nm were removed
from analysis, as were noisy data from 2,350–2,500 nm. Plot
mean reflectance values were paired with the target predicted
trait measured from each plot and were then used to build

TABLE 1 Nitrogen application treatments applied in this study.

Application Date Treatments receiving N Applied N Seasonal total N Final treatments

2020 2021 (kg ha-1)

Starter 5/1 4/26 All 45 45 Control

Hilling 5/21 5/17 Rate 1, 2, and 3 78 123

Tuber Initiation 6/12 6/9 Rate 1, 2, and 3 45 168

Early Bulking 7/8 7/2 Rate 1 and 3 56 224 Rate 1

Mid-Bulking 7/20 7/16 Rate 2 56 224 Rate 2

Mid-Bulking 7/20 7/16 Rate 3 56 280 Rate 3
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partial least squares regression (PLSR) models. All steps were
performed using the open-source Geospatial Data Abstraction
Library (GDAL, version 3.0.4), as well as Python packages Pillow
(6.2.0), Numpy (1.17.2) and Scipy (1.3.1).

2.3 Modeling

All PLSR modeling was done using the HyTraits package in
Python. PLSR analyses (Figure 1) consisted of an outer loop, where
the original dataset was split into a calibration (70%) and testing
(30%) dataset, and an inner loop, where the calibration dataset was
further split into a training (70%) and validation (30%) dataset,
which was used for hyperparameter testing. Models were built using
different values for the maximum number of components in the PLS
process, with the model that performed the best on the validation
data being saved. The outer loop was nested within the inner loop,
with each inner loop process repeated 100 times, and a total of
200 outer loop processes. This pipeline yielded 200 final models that
were saved from each model’s respective inner loop process. Final
predictions were created by averaging the output of these 200 final
models. Models were evaluated according to the testing R2 and
Normalized Root Mean Square Error (NRMSE). The standardized
regression coefficients were used to evaluate the contribution of each
wavelength to the estimation of potato traits (Liu et al., 2021).

Cross-year validation was conducted where the models were
calibrated using data from 1 year and tested on data from the other
year. Only data from Russet Burbank that was cultivated in both years
was used for the cross-year validation. Cross-variety validation was
performed using data from one variety for calibration and those from
the other variety for testing. In addition to models using the entire
spectrum (400 nm–2,500 nm), models were built using only the visible-
near infrared (VNIR) spectrum (400 nm–1,300 nm) or the shortwave
infrared (SWIR) spectrum (1,400 nm–2,500 nm) (Liu et al., 2021).

All data management was performed using the Python (version
3.8.8) packages NumPy (version 1.20.1), pandas (version 1.2.4), and
SciKit Learn (version 0.24.1) and the R (R Core Team, 2019) package
ggplot2 (version 3.4.2).

3 Results

3.1 Evaluation of PLSR models created to
predict in-season and at-harvest traits using
the whole spectrum

For analyses using both years, model performance across all five
in-season traits of interest and by variety exhibited R2 > 0.5 and
NRMSE ranging 0.15–0.27 (Figure 2). Compared to the control
treatment, the three higher N rates (Rate one–3) were consistently

TABLE 2 Timeline of data collection (as indicated by days after emergence) for paired imaging and in-season field measurements.

Growth stage 2020 2021

Imagery Ground truthing Imagery Ground truthing

Early tuber bulking 53 54 51 51

Mid tuber bulking 61 61 59 60

Late tuber bulking 81 78 85 88

FIGURE 1
A flowchart illustrating the HyTraits PLSR modeling process.
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associated with higher N status indicators, and higher total N uptake
in both aboveground whole canopies and belowground tubers.
However, no general trends could be summarized about N effects
on the in-season immediate tuber yield. In most cases, the models
created using the Russet Burbank data alone slightly outperformed
those created using the Soraya data alone or models created from
both varieties.

Models built from the leaf data had better performance (total
leaf N, R2 = 0.66–0.70) than those built from the petiole data (petiole

nitrate-N, R2 = 0.54–0.58). Models predicting whole canopy N
uptake showed moderate accuracy, whereas those predicting
tuber N uptake and in-season immediate yield were strong with
R2 values ranging from 0.52 to 0.71.

Prediction of traits measured at harvest are shown in Figure 3.
The control treatment consistently produced the lowest yield,
smallest tuber size, and lowest fertilizer N recovery % at harvest.
No trend of N effects on specific gravity were observed. Marketable
yields in 2021 were higher than those in 2020 across all treatments,

FIGURE 2
PLSR modelling testing results (testing R2 and Normalized Root Mean Square Error (NRMSE)) of in-season aboveground traits including petiole
nitrate-N, leaf total nitrogen (N) content, and whole canopy N uptake, and belowground traits that included tuber N uptake and immediate tuber yield of
each variety as well as of both varieties combined. In each figure, different colors were used to indicate the 2 years, and different marks were used to
indicate the 4 N treatments. Horizontal bars indicate the uncertainty (±1 standard deviation) in predictions.
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likely due to different weather conditions during the two growing
seasons. In general, models built from imaging data collected from
the three different growth stages had comparable results, with the
best results from early- and mid-tuber bulking stages. In all cases,
models predicting marketable yield and specific gravity all
performed well (R2 > 0.6), whereas models predicting fertilizer N
recovery % exhibited lower evaluation statistics (R2 < 0.4).

Models to predict at-harvest traits using spectral data combined
from all three growth stages (named multi-stage models) for Russet
Burbank typically did not improve in comparison to those built
using only one date of imagery (named single-date models), except
for marketable yield (data not shown). No general trends emerged
when comparing multi-stage models with the single-date models
developed using imagery from the mid- or late tuber bulking stages.

3.2 Cross-year and cross-variety
validation results

In general, models calibrated with Soraya and tested with Russet
Burbank generated similar or better prediction results (similar or
higher R2) for both aboveground and belowground traits than those
calibrated with Russet Burbank and tested with Soraya (Table 3).
The belowground tuber N uptake could be well validated both ways
with R2 close to or higher than 0.6. Comparatively, predictions of the

immediate tuber yield could not be well validated across the
two varieties.

For the cross-year validation, the multi-stage model predicting
marketable yield showed better performances with higher R2 and
lower NRMSE than the single-date models for both ways of
validation (Table 4). Specific gravity could not be well validated
in either case. Fertilizer N recovery % showed moderate validation
results across different growth stages or over the whole season.

3.3 Standardized regression coefficients

Full spectrum standardized regression coefficient values
(“coefficients” in short) illustrate the contribution of different
wavelengths or wavelength regions to models predicting in-
season aboveground and belowground traits (Figure 4). For
interpretation, these are used to identify the plant spectral
characteristics that contribute to the prediction capacity, in
particular since some traits (e.g., marketable yield, specific
gravity) are not directly sensed in the imagery, but rather are
inferred from foliar characteristics. In both the VNIR and SWIR
regions, coefficient weights typically followed consistent trends
among the different trait prediction models. The coefficients of
features from the regions (530–630 nm and 700–750 nm) mostly
associated with chlorophyll had relatively large weights. Coefficients

FIGURE 3
PLSR modeling testing results (testing R2 and Normalized Root Mean Square Error (NRMSE)) of at-harvest traits that included marketable yield,
specific gravity and fertilizer nitrogen recovery using images collected at early,mid-, and late tuber bulking stages across the 2 years for Russet Burbank. In
each figure, different colors were used to indicate the 2 years, and different marks were used to indicate the 4 N treatments. Horizontal bars indicate the
uncertainty (±1 standard deviation) in predictions.
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from the red-edge position (680 nm–780 nm) were weighted heavily
as well. Although coefficients from the near-infrared region were not
consistently weighted heavily, some portions of this region had high
weights, particularly from 900 to 1,200 nm (the region that is related
to plant structure).

Features had overall lower coefficients in the SWIR region than
in the VNIR region. And features in the SWIR region showed more
difference between the two varieties, which is likely related to their
genetic differences. In general, features at the beginning (from
1,500 nm to 1,600 nm) and the end (from 2,300 nm to
2,450 nm) of the SWIR region had larger weights. Coefficients
from the SWIR region were overall the highest in models built
from the Soraya data alone and were the lowest in those built from
the Russet Burbank data alone. Over the whole spectrum, although
following the same trends, coefficients at specific wavelengths of
Russet Burbank are different from those of Soraya, indicating that
those two varieties have different spectral signatures under the same
N treatments.

The standardized regression coefficient values for models using
the images collected at one of the three growth stages across the
2 years for Russet Burbank to predict at-harvest traits follow the
same trends as those found in the in-season belowground traits, with
the highest weights found in the 900 nm–1,200 nm range (Figure 5).
No consistent trends were noted across different traits for models

built from imagery taken at different growth stages (i.e., early vs.
mid-vs. late tuber bulking). For models predicting marketable yield
and fertilizer N recovery % by tubers, the coefficients of features
from the chlorophyll-associated wavelengths were weighted lower at
the late tuber bulking stage of the season than in the early season,
whereas the opposite was true for models predicting specific gravity.
Models built using imagery from the mid-tuber bulking stage had
larger weights on features in the 2,250 nm–2,450 nm range than
those built using imagery from the early or late tuber bulking phases.

3.4 PLSR model performance with different
spectral regions

Predictions of each in-season trait were performed using three
different spectral datasets: 1) the entire set of spectral data; 2) the
visible-near infrared (VNIR) region ranging from
420 nm–1,300 nm; and 3) the shortwave infrared (SWIR) region
ranging from 1,400 nm–2,350 nm. The best spectral region (with the
highest R2 and lowest NRMSE) for each trait of the two varieties
individually and combined is reported in Table 5. The use of
different spectral regions generally resulted in comparable R2 and
NRMSE values for each trait, but predictive models built from the
two varieties individually or combined had noticeably different

TABLE 3 Evaluation statistics of cross-variety validation models to predict in-season aboveground and belowground potato traits.

Trait Calibration with soraya and tested
with RB

Calibration with RB and tested with
soraya

R2 NRMSE R2 NRMSE

Petiole Nitrate-N 0.48 0.20 0.52 0.19

Leaf Total N 0.39 0.36 0.17 0.49

Whole canopy total N uptake 0.42 0.24 0.17 0.47

Tuber total N uptake 0.55 0.16 0.67 0.13

Immediate tuber yield 0.31 0.43 0.05 0.49

TABLE 4 Cross-year validation results that show evaluation statistics of single-date (at early, mid- and late tuber bulking) andmulti-stagemodels predicting
at-harvest traits for Russet Burbank.

Traits Early tuber bulking Mid-tuber bulking Late tuber bulking Multi-stage

R2 NRMSE R2 NRMSE R2 NRMSE R2 NRMSE

Calibration with 2021 and tested with 2020

Marketable yield 0.16 0.37 0.07 0.41 0.28 0.32 0.48 0.22

Specific gravity 0.03 0.44 0.02 0.54 0.07 0.49 0.01 0.55

Fertilizer N recovery % 0.36 0.28 0.3 0.29 0.24 0.29 0.25 0.27

Calibration with 2020 and tested with 2021

Marketable yield 0.24 0.32 0.25 0.3 0.29 0.28 0.53 0.19

Specific gravity 0.02 0.56 0.01 0.59 0.22 0.32 0.02 0.55

Fertilizer N recovery % 0.25 0.3 0.29 0.31 0.22 0.3 0.23 0.29
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performances under different spectral regions. For Russet Burbank,
the models using the SWIR spectral data consistently
underperformed those using the VNIR spectral data or the full
spectrum. In comparison, when creating predictive models with
only the Soraya data or with data of both varieties, no single spectral
region consistently performed the best. Predictions of plant N status

using petioles and leaves, and the whole canopy N uptake generally
favored the VNIR region.

Similar to in-season predictions, evaluation statistics were often
similar between models predicting the at-harvest traits using
different spectral regions (Table 6). Models predicting fertilizer N
recovery mostly showed better performances using only the VNIR

FIGURE 4
Standardized regression coefficients for models predicting in-season aboveground and belowground traits for each variety as well as the two
varieties combined across different nitrogen treatments.

FIGURE 5
Standardized regression coefficients for models predicting at-harvest traits using images collected at each of the three growth stages during the
field season (i.e., early, mid-, and late) across the 2 years and different nitrogen treatments for Russet Burbank.
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region, while those predicting tuber marketable yield were less
consistently impacted by spectral regions, for both single-date
and multi-stage models. Notably, the SWIR region at the late
tuber bulking stage produced the best prediction results for all
the three at-harvest traits. For multi-stage models, using the full
spectrum always produced the best prediction results.

4 Discussion

4.1 PLSR models provided accurate
predictions for in-season traits about potato
plant growth

For the predicted indicators to assess crop N status (petiole
nitrate-N and leaf total N), higher N rates consistently resulted in
higher crop N status indicators. Predictive models built from petiole
nitrate-N showed moderate R2 and NRMSE (Figure 2). Although
petioles are the primary plant parts that transport inorganic N in the
form of nitrate within the plants, and nitrate-N levels are the most
common indicators to guide potato farmers’ in-season N
fertilization decisions (Colquhoun, et al., 2020; Zebarth and
Rosen, 2007), agronomic studies often see high levels of
variability in petiole nitrate-N levels under varied N treatments,
as they can be influenced by many factors such as time of tissue
collection during the day, cloud cover, and temperature (Liu, et al.,
2021; Wang, et al., 2022). In contrast, total N content in the leaves
does not exhibit this high variability, and, as well, foliage (in contrast
to petioles) is directly observed by the sensor. With a higher number
of field measurements, the variability in petiole nitrate-N might be
reduced, possibly resulting in stronger predictions. While additional
research is needed to further refine the understanding of the
relationship between plant tissue types and the spectral data
collected from them, the results of this study suggest that whole

leaf total N (directly observed) are better than petiole nitrate-N for
monitoring and predicting potato N status, and should be used
instead of petiole nitrate-N to inform in-season N fertilization if
remote sensing technologies are applied (Liu, et al., 2021).

Predictive models of in-season N uptake by both aboveground
canopies and belowground tubers of each and both varieties had
moderately good performance with R2 values between 0.43 and 0.64
(Figure 2). Tuber initiation leads to a sharp increase of N absorbed
and utilized by the plants, and tuber bulking signals a transition for
potato plants to rapidly partition N and energy from the
aboveground canopy to the belowground tubers (Alva et al.,
2002; Lauer, 1985; Millard et al., 1989; Zebarth and Rosen, 2007).
Typically, 70%–85% of the N in the plants is present in the tubers,
although as much as 40% of plant N can be present in potato vines
(Zebarth, et al., 2004). Our results suggest that hyperspectral remote
sensing of the foliage could be moderately effective in estimating
potato N uptake both aboveground and belowground. Notably,
predictions of tuber N uptake were slightly better (with higher
R2) than those of the whole canopy N uptake (Figure 2). This
capability likely results from a tight linkage between aboveground N
(detected in imagery from leaves) and N availability belowground to
tubers (which is not directly imaged). This correspondence can be
seen in the standardized PLSR coefficients for whole canopy total N
(Figure 4, third row) and fertilizer N recovery % (Figure 5, third
row), which are comparable and show higher coefficients in similar
wavelength ranges.

In addition, in-season immediate tuber yield predictions had
favorable evaluation statistics. Photosynthetic activity is one of the
major factors affecting tuber growth, and spectral reflectance data
can reflect photosynthetic activity well (Gitelson and Merzlyak,
1996; Gitelson and Merzlyak, 1998; Patane and Vibhute, 2014).
Besides, plant vigor is generally highly correlated with crop yield and
is reflected well in hyperspectral images due to high reflectance of
starch, cellulose, lignin, and nonstructural carbohydrates in the

TABLE 5 The best performing spectral region for predicting in-season traits of each variety and the two varieties combined across the 2 years. Performance
was evaluated by the highest coefficient of determination (R2) and the lowest Normalized Root Mean Square Error (NRMSE). For those cells with two results
(e.g., visible and near-infrared (VNIR)/Full or shortwave infrared (SWIR)/Full), it meant that the two regions generated similar R2 and NRMSE.

Trait Russet burbank Soraya Both varieties

Petiole Nitrate-N VNIR VNIR VNIR

Leaf total N VNIR/Full Full VNIR/Full

Whole canopy total N uptake VNIR VNIR VNIR

Tuber total N uptake VNIR SWIR SWIR/Full

Immediate tuber yield VNIR SWIR SWIR

TABLE 6 The best performing spectral region for predicting at-harvest traits of Russet Burbank using the single-date imagery or all images across growth
stages in the 2 years. Performance was evaluated by the highest coefficient of determination (R2) and the lowest Normalized Root Mean Square Error
(NRMSE). For those cells with two results (e.g., visible and near-infrared (VNIR)/Full or shortwave infrared (SWIR)/Full), it meant that the two regions
generated similar R2 and NRMSE.

Trait Early tuber bulking Mid-tuber bulking Late tuber bulking Multi-stage

Marketable yield VNIR/Full VNIR/SWIR SWIR Full

Specific gravity Full VNIR/Full SWIR Full

Fertilizer N recovery Full VNIR SWIR Full
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near-infrared and shortwave infrared regions (Curran, 1989; Liu
et al., 2021). These factors may contribute to the good real-time
prediction for the immediate tuber productivity using the
hyperspectral signatures of the foliage. Note that standardized
PLSR coefficients for intermediate yield and nitrogen-related
traits track closely (Figure 4), further supporting the
interpretation that the ability to predict yield depends on the
ability to characterize factors related to photosynthesis, such
as plant N.

4.2 In-season spectral signatures and cross-
year/cross-variety validation

Models predicting end-of-season marketable yield performed
well (R2 = 0.77–0.78). Final marketable yield could be well predicted
as early as the beginning stage of tuber bulking (R2 = 0.77, NRMSE =
0.2), and the good prediction results could be found throughout the
mid- and late tuber bulking periods, showing that higher N rates
could produce higher marketable yields (Figure 3). Accurate
prediction of marketable yield from in-season imagery over the
course of the growing season is greatly valuable to potato farmers as
it could inform economic and management decision-making for
producing sellable agricultural products, support sustainable
practices that underscore efficient N fertilizer use, and reduce
impact of crop production on the environment and the
groundwater quality (Chang, et al., 2023; Luczaj and Masarik, 2015).

Models predicting at-harvest specific gravity showed good
evaluation statistics as well (Figure 3). As a major indicator of
potato crop quality, predictions of end-of-season specific gravity
complement the good marketable yield predictions, allowing for
farmers to further estimate the final value of their crops before the
end of the season so they can adjust their harvest time and practices
to ensure the optimal conditions for maximum crop profitability.
The models derived from late-season imagery did not perform as
well as those derived from early and mid-season imagery (R2 =
0.61 compared to 0.74 and 0.68). Tuber starch accumulation, a
quality parameter that tuber specific gravity indicates, tends to level
off during the later part of the growing season than in the early or
middle of the season, when tuber bulking occurs at an exponential
rate (Zebarth and Rosen, 2007). This may result in a relatively
weaker late-season prediction for specific gravity of the tubers.

Fertilizer N recovery is the ratio of total amount of N that leaves
a cropping system through the harvested tubers to total seasonal
applied fertilizer N. The N that was not recovered by tubers at
harvest will be lost to the groundwater via nitrate leaching, to the
atmosphere via denitrification, and to terrestrial and aquatic systems
through wet or dry deposition, all of which could cause
environmental concerns (Zebarth and Rosen, 2007). Compared
to the better performance of models predicting the in-season
tuber N uptake (Figure 2), evaluation statistics for models
predicting fertilizer N recovery at the end of the season were
relatively weak (R2 < 0.4, Figure 3). This could suggest that
unlike for other potato traits, hyperspectral remote sensing might
not have the capacity to predict a trait that needed to be calculated
compared to a trait that could be directly measured.

For cross-variety testing, our study showed that models
calibrated with Soraya, a Dutch variety bred to be a highly

efficient N user, could be moderately tested on Russet Burbank,
the No.1 variety developed and grown in the U.S. for over 100 years
that is values for its frozen fry processing quality but requires high
nutrient and water inputs. Our findings suggest that the new elite
potato varieties possess similar in-season traits as the traditional
ones, but otherwise they harbor some unique characteristics such as
the high N use efficiency and low need of fertilizer inputs, which
could make them more sustainable to grow. There is ongoing
research to replace Russet Burbank in the U.S., and varieties such
as Soraya from other germplasms could provide good genetic
resources to facilitate that effort. This indicates that the
development of new varieties bred for different characteristics
will be best predicted from hyperspectral imagery using models
that explicitly include those varieties in the training data.

For cross-year testing using Russet Burbank, we did not achieve
satisfying results to predict the at-harvest traits from the single-date
models, but the multi-stage models to predict marketable tuber yield
produced relatively strong results. This finding demonstrates that
there are systematic differences in plant growth caused by different
temperature and precipitation conditions in each season
(Supplemental Figure 1), or in the hyperspectral images collected
at different growth stages of each year. These differences may not be
accounted for in the single-stage or single-season models to predict
specific gravity and fertilizer recovery %. However for marketable
tuber yield, if we combined images over all three growth stages
(early, mid-, and late tuber bulking) that covered the growing
condition range throughout the season, it could generate
moderate testing results between the 2 years. In conjunction with
the cross-variety results, this result points to the need to develop
training data sets that cover the reasonable variation that would be
expected across varieties, growth stages and years.

4.3 The optimal spectral region for making
predictive models varied

The PLSR coefficients were similar to those observed in Liu et al.
(2021) for petiole nitrate-N, whole leaf total N, and yield at harvest.
Positions of the most important wavelengths in predicting the in-
season traits were consistently found in the visible and red-edge
region (530–630 nm and 680–780 nm) that is highly associated with
chlorophyll absorption and canopy greenness, the near-infrared
region (900–1,200 nm) that is directly related with the canopy
structure and overall vegetation health (Brewer, et al., 2022;
Croft, et al., 2020), and at the beginning (1,500–1,600 nm) and
the end of the shortwave infrared region (2,300–2,450 nm) that are
related to plant starch, cellulose and protein content (Fathi, 2022).
Although the positions of the most importance wavelengths stayed
within the same ranges over the spectrum between the two varieties
(Figure 4), specific wavelengths were typically differed between
Russet Burbank and Soraya, noting that all the in-season traits
measured in this study were related to plant N status and N uptake.
This finding again suggests that although the foliar hyperspectral
signatures generally showed similar relationships with plants’
biophysical and biochemical characteristics, some wavelengths
were still variety-specific, caused by the unique N use efficiency
and partitioning between aboveground and underground N of
that variety.
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When comparing models built from the VNIR region alone, the
SWIR region alone, or the full spectrum, the best spectral regions
that generated the highest R2 and lowest NRMSE were trait- and
variety-specific, again pointing to differences in plant spectral and
nutrient usage characteristics resulting from genetic differences.
Models predicting the aboveground traits (N status and whole
canopy N uptake, Table 5) consistently performed better when
the VNIR region was used. Specifically for whole leaf total N
prediction, when using the full spectrum to build models, the
contribution from SWIR wavelengths seemed to be suppressed so
that using the full spectrum and only using the VNIR generated the
same model evaluation statistics, possibly due to very small
variations in the SWIR reflectance among different N treatments
(Liu, et al., 2021). For belowground traits (tuber N uptake and
immediate tuber yield, Table 5), the best regions are highly variable
between different varieties/combination of varieties. The VNIR
region contains wavelengths where plant spectral signatures are
impacted by chlorophyll activity, likely leading to the observed
effects of VNIR on the photosynthetic aboveground tissues than
on the belowground traits. In comparison, the ubiquitous preference
of the SWIR region by Soraya models to predict the belowground
traits (Table 5) may be influenced by its high N-use efficiency and
special characteristics to partition N between the canopy and the
tubers (D.Maum, personal communication, 10 January 2020), as the
SWIR wavelengths have important features related to plant nutrient
uptake and overall plant physiology (Gold, et al., 2020).

Table 6 clearly shows that during the early and mid-tuber bulking
phases, the best regions to predict traits at harvest mostly included the
VNIR part of the spectrum, related to vegetation greenness and vigor,
but they switched to the SWIR region during the late tuber bulking
phase, more related to foliar nutrition and foliar chemical content.
Results from our PLSR models using the late tuber bulking images
indicated the importance of the SWIR region to predict potato traits at
harvest. It has been reported that SWIR wavelengths are related to crop
dry matter content. During the latter part of the growing season, potato
dry matter content accumulation plateaus and is maximized, while the
aboveground canopy is senescing and wilting (Zebarth and Rosen,
2007), and therefore the utility of VNIR data that’s related to
chlorophyll and canopy structure would be substantially reduced,
and the SWIR-only model became the best option for predicting
potato traits using late-growth-stage imagery. As well, information
from the SWIR region may be more strongly related to nitrogen
absorption features associated with proteins (Berger, et al., 2020),
despite of confounding effects from chlorophyll and canopy vigor.
When making predictions on data that include aerial images across
different growth stages of the crop, using the whole spectrum including
both the VNIR and SWIR regions may result in more robust predictive
results (Table 6), as the relationships between plants’ spectral reflectance
and their biophysical and biochemical properties changed over the
course of the growing season.

4.4 What can we learn from this study?

Optimally managing nitrogen for potato production is
extremely challenging. The amount of N the crop needs and the
available amount in the soil change throughout the growing season.
Ideally, N should be added as it is needed, matching nutrient supply

with crop demand. Unfortunately, growers cannot currently make
real-time nitrogen budgets and calculate the ideal amount of N to
add at any certain time. Instead, they use guidelines developed
through research and past experiences for fertilization scheduling.
The most commonly adopted method in the U.S. is petiole nitrate-N
testing, and the measurements are typically made every 5–10 days.
Petiole nitrate-N suffers from high variability, high labor costs and
long turnaround testing time (typically 3 days). The present study
shows that by using narrow-band hyperspectral imagery collected at
different potato growth stages, it is possible to develop relatively
robust PLSR models with higher R2 and low NRMSE values for the
most popular potato variety (Russet Burbank) in the U.S. and a new
variety (Soraya) from Europe. The prediction results could help
farmers to gain a real-time picture of their crop N status and yield
forecasting, so that better N fertilization decisions can be made,
unnecessary N use can be reduced, and the associated groundwater
contamination may eventually be mitigated. To further refine this
approach, additional spectral and field measurement data gathered
from different locations and years, potato varieties, and production
practices should be used for training and testing. It will create more
robust models, capture further nuance behind variations in the
relationship between spectra and crop biophysical and biochemical
traits, and generate more finely tuned precision resource
management tools.

5 Conclusion

This study utilized the partial least squares regression (PLSR)
analysis of full-spectrum hyperspectral data (including VNIR and
SWIR) from aerial imagery to predict in-season potato growth and
N status as well as at-harvest yield and quality of two potato varieties
over two growing seasons. The results revealed that some traits such
as leaf total N content and immediate tuber yield during the season,
and marketable yield and specific gravity at harvest could be well
predicted, suggesting that this method could be used to inform N
fertilization decisions based on crop growth and productivity
forecasting. The study also found that the best spectral regions to
predict potato traits at harvest could change as the field season
progresses, since the relationships between plant physiological
characteristics and their spectral signatures were changing at
different growth stages. This study illustrates the potential for
this approach (PLSR + hyperspectral imaging) to be used with
future datasets to improve crop input efficiency and environmental
stewardship in agricultural cropping systems.
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SUPPLEMENTARY FIGURE S1
Daily max (red dotted line), average (green dotted line), and min (purple
dotted line) temperature, as well as precipitation amount (blue bars) during
the growing season of 2020 (A) and 2021 (B).

SUPPLEMENTARY FIGURE S2
Mapped predictions of in-season whole leaf nitrogen (in % dry weight).

SUPPLEMENTARY FIGURE S3
Mapped predictions of end-of-season marketable yield (in Mg ha-1) from late
tuber bulking stage imagery.
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