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The levels of amylose and amylopectin in foxtail millet are important factors that
influence grain quality. The application of organic fertilizers can affect the ratio of
amylose and amylopectin components. These components are typically
determined using chemical analysis methods, which are difficult to apply on a
large scale for nutrient deficiency diagnosis and do notmeet the original intention
of precise agricultural development. This study set up five different gradient
treatments for organic fertilizer (sheep manure) application. Hyperspectral
imaging combined with chemometrics was employed to achieve rapid and
non-destructive detection of the content of amylose and amylopectin in
foxtail millet flour. The aim of this study was to determine the optimal dosage
of organic fertilizers for application. Spectral data preprocessing used
multiplicative scatter correction (MSC), and the combined algorithm of
competitive adaptive reweighted sampling (CARS), random frog (RF), and
iterated retaining informative variables (IRIVs) was employed for key band
extraction. Partial least squares regression (PLSR) was then used to establish
the prediction model and regression equation, which was used to visualize the
two components. Results demonstrated that the key band extraction combined
algorithm effectively reduced data dimension without compromising the
accuracy of the prediction model. The prediction model for amylose using
MSC–RF–IRIV–PLSR exhibited good performance, with the correlation
coefficient (R) and root mean square error (RMSE) predicted to be 0.73 and
1.23 g/(100 g), respectively. Similarly, the prediction model for amylopectin using
MSC–CARS–IRIV–PLSR also demonstrated good performance, with the R and
RMSE values predicted to be 0.59 and 7.34 g/(100 g), respectively. The results of
visualization and physicochemical determination showed that the amount of
amylopectin accumulation was highest, and the amount of amylose was lowest,
under the application of 22.5 t/ha of organic fertilizer. The experimental results
offer valuable insights for the rapid detection of nutritional components in foxtail
millet, serving as a basis for further research.
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1 Introduction

Foxtail millet (Setaria italica) is recognized as one of the world’s
oldest cultivated crops, with a history spanning over two millennia
(Shi et al., 2019; Lv et al., 2023). This cereal is particularly significant
in northern China due to its short reproductive cycle, strong storage
capability, drought resistance, and tolerance to saline-alkaline soils
(Wang FX. et al., 2022; Hou et al., 2022). As a valuable crop, foxtail
millet is ideally suitable for cultivation in arid and semi-arid regions
(Arora et al., 2023). Compared to staple cereals such as rice, wheat,
and corn, foxtail millet is not only rich in various health-promoting
nutrients, dietary fiber, antioxidants, macronutrients, and
micronutrients but it is also a gluten-free grain with a low
glycemic index (Sachdev et al., 2021). The primary edible
component of foxtail millet is starch, which constitutes
approximately 70% of its total content (Kumar et al., 2022;
Mahajan et al., 2021; Kaimal et al., 2021). This starch is
composed of two polysaccharides, namely, amylose and
amylopectin (Lv et al., 2023). The ratio of these components
significantly influences the quality of foxtail millet (Xing et al.,
2023; Annor et al., 2014), with a lower amylose proportion
contributing to increased stickiness and glossiness, while a higher
proportion leads to dryness, darker coloration, and diminished
palatability (Aprodu and Banu, 2021). Consequently, the sensory
attributes and quality of foxtail millet directly affect its market
pricing and sales volume. To optimize the yield and quality of
foxtail millet, it is crucial to implement appropriate cultivation
strategies, considering factors such as variety genetics, growing
environment, and agronomic practices (Sun et al., 2021). Among
these, fertilization practices play a vital role in regulating the quality
of foxtail millet. The application of organic fertilizers, as sustainable
alternatives to chemical fertilizers, can mitigate the adverse effects of
soil acidification on crop quality while also enhancing the
appearance and palatability of foxtail millet (Sun et al., 2022).
Furthermore, the development of rapid detection methods for
amylose and amylopectin content in foxtail millet is of significant
practical importance for product processing and quality evaluation.

With the sustainable development of modern agriculture,
organic fertilizers have garnered increasing attention from
researchers in agricultural production (Wang et al., 2020a). The
appropriate application of organic fertilizers enhances soil fertility,
improves soil structure, increases microbial populations, mitigates
soil pollution, and bolsters crop resilience (Das et al., 2017).
Compared to chemical fertilizers, organic fertilizers provide a
more balanced nutrient profile, facilitating optimal nutritional
balance in crops and improving their overall quality (He et al.,
2022; Seufert et al., 2012). Crops cultivated with organic fertilizers
yield products that are not only more nutritious and flavorful but
also healthier and more environmentally friendly. This aligns with
the increasing consumer demand for healthy food and the
overarching trends in modern agricultural development. Recent
studies have demonstrated the positive effects of organic
fertilizers on the quality of foxtail millet. Tao et al. (2023)
investigated the influence of varying proportions of organic
fertilizers on the physicochemical properties and in vitro
digestibility of buckwheat starch, revealing that a combined
application of chemical fertilizers, organic fertilizers, and biochar
enhances the quality of common buckwheat grains. Zhao et al.

(2023a) found that varying proportions of organic fertilizers affect
the appearance quality of foxtail millet and the content of major
nutrients and trace elements. This highlights the potential of organic
fertilizers to enhance the nutritional quality of foxtail millet.
Currently, traditional chemical detection methods, such as
titration (Liu and Liu, 2020), spectrophotometry (Wang et al.,
2010), chromatography (Weng et al., 2018), optical rotation
(Zhou et al., 2016), and thermogravimetric analysis (Tian et al.,
2011), are predominantly employed for the compositional analysis
of foxtail millet starch (Li KH. et al., 2019; Abedin et al., 2022; Verma
et al., 2015). Although these methods are reliable, they are often
cumbersome and costly, limiting their applicability for rapid
detection. In contrast, hyperspectral imaging has emerged as a
rapid detection technology that merges imaging and spectral
analysis (Wu and Sun, 2013; Xia et al., 2019; Saha and
Manickavasagan, 2021; Pu et al., 2019). This technique has been
extensively utilized for the qualitative classification and quantitative
detection of components in agricultural products (Tsai et al., 2007;
Zou et al., 2010; Bonah et al., 2019; Huang et al., 2016; Kong et al.,
2013; Gao et al., 2013). Hyperspectral imaging technology can reflect
the growing conditions, physiological and ecological parameters,
and nutritional quality of crops through the reflected spectral
information. Zhang et al. (2022) employed hyperspectral imaging
combined with chemometric analysis to identify selenium-sensitive
wavelengths, enabling rapid and non-destructive detection of
selenium-rich foxtail millet. Wang et al. (2022b) established a
predictive model correlating spectral data with the grain starch
content and leaf water content using an intersection method. Zhao
et al. (2023b) conducted visual monitoring of the nitrogen content in
tomato leaves under different fertilizer ratios, demonstrating the
potential of hyperspectral imaging technology for fertilizer ratio
diagnosis and rapid component estimation. Hyperspectral imaging
technology can also provide information on foxtail millet quality,
such as crude fat, crude protein, starch, and trace elements. Such
information allows for the assessment of different fertilizer strategies
for foxtail millet quality. Hyperspectral data comprise a vast array of
narrow-band spectral information, resulting in high dimensionality.
Additionally, the spectral reflectance signals produced by functional
groups of substances may overlap within individual bands,
complicating data analysis (Wang et al., 2016). To reduce the
dimensionality of the variables and enhance the predictive
accuracy of the model, the key band extraction combination
algorithms are typically employed to select the important spectral
bands from the target variable dataset. Zhao et al. (2019) utilized the
competitive adaptive reweighted sampling (CARS) method to
extract key bands from full spectral data on two types of whole
wheat flour and established partial least squares regression (PLSR)
models for adulteration testing, achieving high prediction accuracies
with coefficients of determination (R2) of 0.993 and 0.991,
respectively. Yang et al. (2023) applied the MSC–IRIV–RSEL
model to select optimal hyperspectral wavelengths for maize seed
and purity detection, presenting a novel method for maize seed
quality assessment using hyperspectral technology. Currently,
combined algorithms for key band extraction are being
increasingly adopted. Yu et al. (2021) proposed a three-step
combined strategy for selecting near-infrared spectral wavelengths,
enhancing model prediction accuracy while leveraging the strengths
of various algorithms and addressing their limitations.
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In this work, we conducted a gradient experiment to investigate
the effects of different organic fertilizer application rates on the
contents of amylose and amylopectin in foxtail millet flour. A total of
358 foxtail millet flour samples were collected, along with their
corresponding hyperspectral data. Traditional chemical methods
were employed to determine the amylose and amylopectin contents
in the samples, enabling the identification of the optimal organic
fertilizer application rate. To mitigate the impact of data
redundancy, we proposed a “coarse-to-fine” key band extraction
strategy and developed predictive models for the amylose and
amylopectin contents in foxtail millet flour based on this
approach. By integrating hyperspectral imaging information,
detection models, and chemical measurements, we achieved a
visual representation of the component distribution in foxtail
millet flour. This work aims to establish a predictive model for
amylose and amylopectin contents using an optimized combination
of key band extraction algorithms, providing a theoretical basis for
rapid detection. Figure 1 illustrates the workflow of this work.

2 Materials and methods

2.1 Experimental materials

The experimental variety of foxtail millet selected for this study is
Changsheng 13, which was bred by the foxtail millet team at the
Foxtail Millet Research Institute of Shanxi Agricultural University.

The experimental area spans 3,000 m2 and is situated in Puzhang
village, Wuxiang County, Shanxi Province, China (36°45′48.66″N,
112°55′59.57″E). The area boasts an average elevation of 953 m above
sea level and features a warm, temperate, continental climate. It has an
annual average temperature of 9.3°C and a frost-free period of
150 days. The mean annual precipitation is 580 mm. The soil type
in the area is classified as red soil, possessing a pH value of 7.4. Prior to
conducting the experiment, the basic fertility of the soil was assessed.
The soil moisture content at the pre-planting stage for the basal
fertility soil was recorded as 15.9%. The soil contained 58.67 mg/kg of
available nitrogen, 15.54 mg/kg of available phosphorus, 95.20 mg/kg
of available potassium, and 10.75 g/kg of organic matter. Based on
these measurements, the soil fertility is deemed to be at a moderate
level. Concurrently, the composition of the organic fertilizer (sheep
manure) was analyzed. The results showed that the organic fertilizer
contained 42.7% organic matter, 1.86% nitrogen, 1.47% phosphorus,
and 2.02% potassium. Five different treatments were established for
the application of organic fertilizers: S1 with 15 t/ha of organic
fertilizer, S2 with 18.75 t/ha, S3 with 22.5 t/ha, S4 with 26.25 t/ha,
and S5 served as the blank control without any organic fertilizer
application. Sampling was carried out using the chessboard sampling
method, where each processing batch encompassed 72 zones, with
each zone covering 2 m2 (Berndt, 2020). Following sun-drying,
cleaning, and polishing of the experimental samples, a total of
358 foxtail millet flour samples were obtained. These samples were
then sieved through an 80-mesh screen, sealed, and numbered for
proper documentation and record-keeping.

FIGURE 1
Analysis process flow chart.

Frontiers in Remote Sensing frontiersin.org03

Wang et al. 10.3389/frsen.2025.1460523

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1460523


2.2 Hyperspectral imaging system

Hyperspectral data acquisition was conducted using a starter kit-
type hyperspectral imager supplied by Headwall Photonics (Bolton,
MA, United States). This imager comprises a scanning stage, a
hyperspectral camera with an aperture of 1.4 and a focal length of
25 mm, a light source, and a portable computer. It offers a spectral
range of 900–1700 nm and a spectral resolution of 4.715 nm,
capturing a total of 172 spectral bands. The acquisition
parameters were configured as follows: the sample surface was
positioned 25 mm away from the lens, the stage translation
speed was set to 16 mm/s, and the time exposure for the camera
was adjusted to 0.9 m.

2.3 Data acquisition

2.3.1 Hyperspectral data acquisition of foxtail
millet flour

The experimental samples were placed in vessels with a diameter
of 5 cm and a depth of 1 cm to ensure a flat and compact surface for
testing. Each sample was measured three times for hyperspectral
data collection, and the results were sequentially numbered and
saved. Prior to collecting hyperspectral data, a black-and-white
correction was applied using Equation 1, with the correction
process repeated every three images collected (Wang et al.,
2020b). This correction is essential for eliminating noise caused
by dark current and uneven light intensity in the hyperspectral
camera. By performing the black and white plate correction on the
hyperspectral imaging device, the spectrum of the external reference
light source can be calibrated, ensuring accurate and reliable
hyperspectral data acquisition.

X � I − B

W − B
. (1)

Here, X refers to the corrected hyperspectral images; I refers to
the original hyperspectral image; B represents the dark background
image with the lens cap closed (<0% reflectance); and W represents
the white background image with the standard white calibration
plate (>99.9% reflectance).

2.3.2 Measurement of amylose and amylopectin
contents in foxtail millet flour

Following the collection of hyperspectral data from the samples,
the content of amylose and amylopectin was determined. To
minimize errors associated with the single-wavelength
spectrophotometry method for starch content determination, the
samples underwent a defatting treatment prior to analysis
(Sampaio and Lycarião, 2021). Subsequently, the dual-wavelength
spectrophotometry method was employed to determine the amylose
and amylopectin content (Zhu et al., 2008). The statistical results of
the content measurements are presented in Figure 2.

2.4 Hyperspectral data analysis

The collected hyperspectral images encompass both spectral and
imaging information about the experimental samples. Utilizing

ENVI 5.1 software, we extracted spectral data from the regions of
interest (ROIs) within these images and computed the average
reflectance of each pixel, forming the original dataset for
subsequent analyses. Spectral stability can be affected by factors
such as grain luster, light scattering, background interference, and
baseline drift. To mitigate the discrepancies arising from these
influences, we preprocessed the hyperspectral dataset of foxtail
millet powder using the Savitzky–Golay (S-G) convolutional
filter, standard normalized variable transformation (SNV), and
multiplicative scatter correction (MSC). Specifically, these
preprocessing methods—S-G, SNV, and MSC—were applied to
the foxtail millet flour hyperspectral dataset (Xie et al., 2022).

For the hyperspectral data processing of foxtail millet, the
Kennard–Stone algorithm was employed to split the spectral data
into training and prediction sets in a 2:1 ratio (Li et al., 2021).
Subsequently, a combined algorithm for key band extraction was
utilized to identify key spectral bands and establish PLSR models for
predicting the amylose and amylopectin content in the samples. The
optimal model was selected to develop regression equations and
visualize the results. The model evaluation was conducted using the
correlation coefficient (R), root mean square error (RMSE), and
relative percent deviation (RPD) as performance metrics.

By employing key band extraction, one can effectively mitigate
the risk of diminished model prediction capability that arises from
redundant variables while simultaneously enhancing variable
interpretability (Yun et al., 2019). In our study, a combined key
band extraction algorithm is proposed, aiming to minimize the
number of variables while maintaining model accuracy and
enhancing computational efficiency. This is achieved through a
“coarse-to-fine” extraction process. Consequently, CARS–IRIV
and RF–IRIV were chosen for key band extraction in this
research. Following this, PLSR prediction models were developed
to forecast the amylose and amylopectin content in foxtail
millet flour.

FIGURE 2
Statistics of the amylose and amylopectin content based on
organic fertilizers. Note: Lowercase letters indicate significant
differences at the different organic fertilizer application levels,
P < 0.05.

Frontiers in Remote Sensing frontiersin.org04

Wang et al. 10.3389/frsen.2025.1460523

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1460523


The CARS method, which simulates Darwin’s theory of
evolution’s “survival of the fittest” concept, employs an adaptive
reweighted sampling technique to select wavelengths. This selection
is based on the absolute regression coefficients calculated by partial
least squares regression. Additionally, cross-validation is utilized to
identify the combination set with the lowest root mean square error.
Given the algorithm’s stochastic nature, multiple iterations are
necessary to retain the most frequently selected wavelengths,
thereby enhancing the stability of subsequent regression models
(Wang et al., 2019).

The computational principle of the CARS algorithm is
as follows:

ⅰ) Using the Monte Carlo method, 80% of the samples are
randomly selected from the calibration set to form the
modeling set, and the remaining samples are used to
establish the PLS model. The absolute values of the weights
of the regression coefficients are recorded for each sampling.
In the Equation 2, |bi| represents the absolute value of the
regression coefficient for the ith variable, and wi represents the
absolute value of the weight of the regression coefficient for the
ith variable. M represents the number of remaining variables
for each sampling.

wi � bi| |
∑m
i�1

bi| |
. (2)

ⅱ) Using the exponentially decreasing function (EDF), the
wavelengths with relatively small absolute value weights of
the regression coefficients are forcefully eliminated. When
establishing the PLS model based on the Monte Carlo
sampling for the ith time, the retained wavelength
proportion Ri is obtained according to the EDF.

Ri � μe−ki . (3)

In the Equation 3, μ and k are constants, which can be calculated
in the following two cases:

1) When a single sampling is performed for calculation, all bands
participate in the modeling analysis, and Ri = 1.

2) When the last sampling (the Nth time) is completed and
calculated, only two bands are left to participate in the
modeling. At this time, Ri = 2/n, where n is the original
number of bands. Therefore, from the initial and final
sampling conditions, In the Equations 4, 5, we can know
that μ and k are, respectively, as follows:

μ � n /

2( ) 1
/N−1, (4)

k � ln n /

2( )/N − 1. (5)

3) During each sampling, adaptive reweighted sampling (ARS) is
used to select Ri*n bands from the variables in the previous
sampling for modeling and calculation of the root mean square
error of cross-validation (RMSECV).

4) The sampling number is set to N, the operation is executed,
and the variable corresponding to the minimum RMSECV is
the selected band.

RF is an intelligent optimization algorithm capable of utilizing a
limited number of variables for iterative modeling in high-
dimensional data, thereby achieving variable selection. It is
characterized by its swift running time and straightforward
process. RF calculates the probability of variable selection by
simulating a Markov chain that conforms to a steady
distribution. This process facilitates the extraction of key bands
(He et al., 2017). The computational principle of the RF algorithm is
as follows:

ⅰ) Initialize a subset V0 of variables containing Q elements;
ⅱ) Generate a candidate subset V* of Q* variables from the

original subset V0 and choose V* by calculating RMSECV
between V* and V0. Assign the value of V1 to V* so that
ultimately V0 = V1. Iterate the calculation N times to complete
the operation;

ⅲ) Calculate the probability of each variable being selected.
Variables with high selection probabilities will be selected.

The IRIV algorithm is grounded in the concept of model cluster
analysis, taking into full account the combined effect of variables. It
randomly combines variables to create a binary matrix, where rows
signify variable combinations and columns denote the count of
variables. For each row, a PLS model is constructed, and the efficacy
of these combined models is assessed using RMSECV. Subsequently,
variables are categorized into four types, namely, strong information
variables, weak information variables, no information variables, and
interference information variables. The determination of retained
variables hinges on the difference between mean values (DMEAN)
and P-value. DMEAN represents the mean value difference in root
mean square error when the wavelength variable is included versus
excluded, while the P-value stems from the Mann–Whitney U test.
By repeatedly executing the algorithm, invalid and interference
variables are eliminated. Through reverse elimination, the
optimal feature bands are extracted from the strong and weak
information variables (Silva et al., 2022).

3 Results and analysis

3.1 Analysis of physicochemical results of
amylose and amylopectin

Current research indicates that foxtail millet with low amylose
and high amylopectin content possesses a soft and sticky texture,
which translates to higher quality and of significant commercial
value (Xie et al., 2022). As depicted in Figure 2, the variations in the
quantities of organic fertilizer applied result in discernible
differences in the component content of the samples. Notably,
the average amylose content was lowest in S3 at 12.42 g/(100 g),
exhibiting significant differences compared to the other four
treatments. Although there was minimal variation between
S2 and S4, both demonstrated significant differences compared to
S1 and S5. Despite the average amylopectin content peaking at
51.62 g/(100 g) in S3, no significant difference was observed among
the five treatments. The findings reveal that the starch content of
foxtail millet undergoes systematic changes under different organic
fertilizer treatments, with a more pronounced difference observed in
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the amylose content compared to the relatively smaller difference in
amylopectin content.

3.2 Results of data preprocessing and
dataset partitioning

The average spectral curves were plotted by collecting samples
under five treatments. Due to the large reflectance error at both ends
of the range of a hyperspectral imaging instrument, the spectral data
in the range of 950–1,650 nm from each sample are selected as the
base spectral data. In this spectral range, the spectral data on the
material to be tested contain rich chemical functional group
information. It can be observed from Figure 3A that the curves
show basically the same trend. The average spectral curves of
different organic fertilizer application rates show different
reflectance values in each wavelength. The reflectance in the
regions of 950–980 nm, 1,100–1,250 nm, and 1,300–1,450 nm

shows a decreasing trend. After 1,450 nm, the curves change
smoothly. In this wavelength range, the samples’ spectral
reflectance is greatly affected by the moisture content. According
to Xia et al. (2019), the range of 950–980 nm corresponds to the
O-H-combined frequency absorption, 1,100–1,250 nm is the C-H
double frequency absorption, and 1,300–1,450 nm is the
O-H-combined frequency absorption and N-H single-frequency
absorption. These absorption peaks can all reflect the contents of
amylose and amylopectin in the samples.

Figures 3B–D display the spectral curves obtained after
preprocessing the dataset using S-G, SNV, and MSC, respectively.
The results of the PLSR simultaneous detection model are provided
in Table 1. Among the methods evaluated, the PLSR model
established for amylose and amylopectin exhibits the best
performance with MSC preprocessing. For the amylose
prediction set, the R and RMSE values were 0.68 and 1.13 g/
(100 g), respectively. For the amylopectin prediction set, the R
and RMSE values were 0.58 and 7.97 g/(100 g), respectively. The

FIGURE 3
Average spectral curves of foxtail millet flour; (A) the average spectral curve of all samples; (B) S-G preprocessed spectral curve of all samples; (C)
SNV preprocessed spectral curve of all samples; (D) MSC preprocessed spectral curve of all samples.
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results of the sample dataset partitions using the K-S algorithm are
provided in Table 2, where the mean values of the components in
both the calibration and prediction sets were close. This indicated
that the data division was reasonable.

3.3 PLSR model for key band extraction

Figures 4A–F describe the process of key band extraction for
amylose and amylopectin using the CARS algorithm. As the number

TABLE 1 PLSR of preprocessing from amylose and amylopectin of foxtail millet flour.

Component Preprocessing Calibration Prediction

RC RMSEC RPDC RP RMSEP RPDP

Amylose RAW 0.62 1.13 1.27 0.60 1.33 1.25

SG 0.66 1.15 1.33 0.65 1.05 1.32

SNV 0.68 1.15 1.36 0.63 1.25 1.29

MSC 0.70 1.04 1.40 0.68 1.13 1.36

Amylopectin RAW 0.54 8.52 1.19 0.51 9.01 1.16

SG 0.56 8.06 1.21 0.53 8.33 1.18

SNV 0.58 7.92 1.23 0.55 8.14 1.20

MSC 0.60 7.03 1.25 0.58 7.97 1.23

TABLE 2 Partition results of the dataset for the content (g/(100 g) of amylose and amylopectin using the K-S algorithm.

Component Dataset NS Maximum Minimum Mean SD

Amylose Calibration 239 16.98 8.14 12.44 1.40

Prediction 119 14.65 9.54 12.70 1.23

Amylopectin Calibration 239 70.07 28.67 48.82 6.29

Prediction 119 61.64 35.02 50.00 4.58

NS denotes the number of samples; SD denotes the standard deviation.

FIGURE 4
Key band extraction using the CARS and RF algorithm; (A–F) key band extraction by RF; (G, H) key band extraction by CARS; (A–C, G) key band
extraction for amylose; (D–F, H) key band extraction for amylopectin; (A, D) changing trend of the number of sampled variables; (B, E) variation in the
root-mean-square error of cross-validation values; and (C, F) regression coefficients of each variable with increasing sampling runs.
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of MCS runs increases, the number of sampled variables, the
RMSECV, and the regression coefficient pathway exhibit changes.
Initially, the selected variables demonstrated an exponential
decrease, which then stabilized. The trend of RMSECV, which
first decreased and then increased, subsequently indicated that
the variables initially eliminated during the selection process were
unrelated to the component of interest, followed by the inclusion of
irrelevant variables. By retaining more effective wavelengths at the
marked positions, RMSECV reached its minimum, leading to the
formation of the optimal variable set. For amylose, when the
sampling frequency was 68, the minimum RMSECV was 1.19 g/
(100 g), and at this point, a detection model was established using
nine variables in the subset. For amylopectin, when the sampling
frequency was 52, the minimum RMSECV was 9.18 g/(100 g), and at
this point, a detection model was established using 14 variables in
the subset.

Figures 4G, H depict the key band extraction process for amylose
and amylopectin using the RF algorithm, respectively. The RF
algorithm selected 0.4 as the threshold for key band extraction.
The selection probability (SP) was used as the criterion to evaluate
the likelihood of each wavelength being chosen. As a result, nine key
bands were selected for amylose, while 10 key bands were selected
for amylopectin.

The IRIV was applied for fine key band extraction, following the
coarse extraction with CARS and RF. The results indicated that the
coarse extracted band set comprised only strong and weak
informative variables, without any non-informative or interfering
variables. This underscores the advantages of CARS and RF in key
band extraction, further emphasizing the crucial role of weak
informative variables in model construction. By applying IRIV to
reverse the elimination of strong and weak information variables,
the optimal subset of key bands was obtained. For amylose, after

coarse extraction with CARS and RF, two wavelengths were
removed from the variable set. For amylopectin, one wavelength
and two wavelengths were removed, respectively. Notably, the
removed key bands were all weak informative variables. Based on
the combined algorithm of key band extraction, the spectral data
extraction was carried out using MSC–CARS, MSC–CARS–IRIV,
MSC–RF, and MSC–RF–IRIV algorithms, and Figure 5 shows the
extraction results.

The amylose models using MSC–CARS–IRIV and
MSC–RF–IRIV retained seven and eight feature bands,
respectively. For amylopectin, the models retained 12 and 8 key
bands, respectively. The number of variables was less than that
extracted without the combined algorithm of key band extraction.
Under the condition of ensuring the accuracy of the prediction
model, this approach also simplifies the modeling process. For the
extracted key bands, PLSR models were established separately.
Table 3 shows the PLSR models established by the combined
algorithm of key band extraction.

The PLSR model established after applying the combined
algorithm of the key band extraction demonstrated slightly
improved performance compared to those obtained through the
individual algorithm of key band extraction. Overall, the prediction
accuracy for amylose was better than that for amylopectin.
Specifically, the MSC–RF–IRIV–PLSR model for amylose
exhibited a predicted RP value of 0.73 and an RMSEP value of
1.23 g/(100 g). In contrast, the MSC–CARS–IRIV–PLSR model for
amylopectin achieved an RP value of 0.59 and an RMSEP value of
7.34 g/(100 g). The comparison of the predicted and measured
values of the model for both amylose and amylopectin is shown in
Figure 6. The regression equation for amylose is shown in Equation
6, and the regression equation for amylopectin is presented in
Equation 7. In the following, the regression equations will be

FIGURE 5
Key band extraction by the key band extraction-combined algorithm.
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utilized to visualize the changes in the content of amylose and
amylopectin in foxtail millet flour under different organic fertilizer
application rates.

Yamylose � −949.8λ1134 − 843.7λ1228 + 626.3λ1355 + 124.4λ1370
−1486.7λ1478 + 2955.3λ1483 − 2519.2λ1558 + 2971.3λ1582,

(6)
Yamylopectin � −789.2λ983 + 1695.7λ1007 − 1053.5λ1030 − 793.5λ1054

+1064.1λ1068 − 1404.6λ1087 + 955.1λ1096 − 198.4λ1143
+1432.5λ1200 − 1458.5λ1214 + 765λ1454 + 248.3λ1619.

(7)

3.4 Visualization of amylose and
amylopectin content in foxtail millet flour

Using the regression equations, the visualization of the changes
in the contents of amylose and amylopectin in foxtail millet flour
was expressed. Figure 7 shows the visualization images of the

content of amylose and amylopectin in foxtail millet flour under
different organic fertilizer application rates. Overall, it can be
observed from the figure that the visualization of the content of
amylose shows a gradual change among the treatments, while the
visualization of the content of amylopectin was slightly higher only
in S3. Among them, S3 has the lowest content of amylose and the
highest content of amylopectin, while S5 has the highest content of
amylose and the lowest content of amylopectin.

4 Conclusion

Organic fertilizers significantly enhance the grain quality, as
evidenced by studies such as that conducted by Sun et al. (2022),
which found that substituting chemical fertilizers with organic
fertilizers boosts the nutrient content and palatability of foxtail
millet. In our research, hyperspectral imaging and chemometrics
were integrated to establish various rates of organic fertilizer
application. Consequently, 358 samples of foxtail millet flour

TABLE 3 PLSR of key band extraction from amylose and amylopectin of foxtail millet flour.

Component Preprocessing nLVs Calibration Prediction

RC RMSEC RPDC RP RMSEP RPDP

Amylose MSC–CARS 9 0.60 1.22 1.25 0.59 1.35 1.24

MSC–CARS–IRIV 10 0.59 1.23 1.24 0.58 1.41 1.23

MSC–RF 7 0.70 1.20 1.40 0.68 1.25 1.36

MSC–RF–IRIV 8 0.74 1.19 1.49 0.73 1.23 1.46

Amylopectin MSC–CARS 8 0.56 7.70 1.21 0.55 8.04 1.20

MSC–CARS–IRIV 8 0.60 6.97 1.25 0.59 7.34 1.24

MSC–RF 9 0.57 7.02 1.22 0.55 7.61 1.20

MSC–RF–IRIV 10 0.54 7.37 1.19 0.53 8.02 1.18

FIGURE 6
Calibration and prediction results of the detection model; (A) amylose and (B) amylopectin.
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were collected to assess the amylose and amylopectin content. The
CARS algorithm leveraged the EDF to eliminate wavelength
coefficients with minimal regression coefficients, thus refining the
key band extraction process (Wang et al., 2019). Specifically, the key
bands for amylose and amylopectin represented 6.08% (9/148) and
9.46% (14/148) of the total wavelengths, respectively. On the other
hand, the RF algorithm employed a global search strategy within the
feature space to explore diverse feature combinations (He et al.,
2017). It executed multiple random selections, focusing on highly
correlated features, thereby exhibiting robustness and adaptability.
Consequently, the key bands for amylose and amylopectin
constituted 6.08% (9/148) and 6.76% (10/148) of the total
wavelengths, respectively. The IRIV algorithm utilizes the
Mann–Whitney U test to discern variable characteristics (Li GY.
et al., 2019), ensuring that the optimal variable set excludes non-
informative and interfering variables. This suggests that both CARS
and RF algorithms possess certain advantages in key band
extraction. Through the reverse elimination of the variable set,
the optimal variable combination was identified, leading to the
establishment of a PLSR detection model. The optimal model for
amylose was MSC–RF–IRIV–PLSR, with the key band accounting
for 5.41% (8/148) of the total wavelengths. Conversely, the best
model for amylopectin was MSC–CARS–IRIV–PLSR, with the key
band comprising 8.11% (12/148) of the total wavelengths.
Additionally, the study revealed that weakly informative variables
played a pivotal role in the combination, effectively enhancing the
model’s predictive performance. This underscores the reliability of
the “coarse-to-fine” key band extraction strategy proposed in
this research.

In the past, researchers primarily utilized hyperspectral imaging
for classifying foxtail millet varieties and detecting nutritional
components (Zhang et al., 2022; Ji et al., 2019; Zhang et al.,
2023). The detection model for amylose identifies key bands at
wavelengths 1,134 and 1,228 nm, which are situated within the C-H
secondary harmonic absorption region. The bands at 1,355 and
1,370 nm belong to the combined frequency absorption region.
Additionally, the bands at 1,478, 1,483, 1,558, and 1,582 nm are

within the N-H primary harmonic absorption region. On the other
hand, the detection model for amylopectin highlights a key band at
983 nm, which is located in the free O-H secondary harmonic
absorption region. The bands at 1,007, 1,030, 1,054, 1,068, 1,087, and
1,096 nm are part of the combined O-H secondary harmonic
absorption. Furthermore, the bands at 1,143, 1,200, and
1,214 nm are within the C-H secondary harmonic absorption,
while the band at 1,454 falls into the combined frequency
absorption range, and the band at 1,619 nm is within the N-H
primary harmonic absorption (Wang et al., 2022a). This conclusion
aligns with the findings of Zhang et al. (2022) and Wang et al.
(2022a), who used spectroscopic techniques to screen spectral
wavelengths related to foxtail millet nutrient components. All
these selected key bands correspond to chemical groups
associated with amylose and amylopectin content. The combined
key band extraction algorithm effectively eliminates redundant
bands and reduces data dimensions while preserving as much
spectral information related to amylose and amylopectin as feasible.

The visualization results have demonstrated the accumulation of
amylose and amylopectin in foxtail millet flour under various
organic fertilizer application rates. This is attributed to the good
adaptability of the chosen experimental variety, where amylopectin
serves as the primary nutritional component, with its content
varying based on the stable expression of genes. The detection
model has successfully achieved accurate prediction results for
amylose content, and the visualization of its accumulation reveals
notable differences under various organic fertilizer treatments,
which correlate well with the results obtained through physical
and chemical measurements. Although the prediction performance
for amylopectin content is less ideal, with some deviation in
visualizing its accumulation, qualitative judgments regarding the
accumulation of both amylose and amylopectin in foxtail millet can
still be made through visualizations. The visualizations shown in
Figure 7 further confirm the good stress resistance of the
experimental samples. When combined with the detection results
of amylose and amylopectin content in foxtail millet flour shown in
Figure 2, it can be concluded that under the optimal organic fertilizer

FIGURE 7
Comparison of amylose and amylopectin content by visualization.
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application rate, the content of amylose is relatively low, while the
content of amylopectin is high, as visually reflected in the
visualizations. By integrating physicochemical analysis with
visualizations, it can be qualitatively determined that S3 (22.5 t/
ha) treatment represents the best organic fertilizer application.

5 Discussion

This study examines foxtail millet flour under various organic
fertilizer application rates, utilizing hyperspectral technology
combined with chemometric methods to predict and visualize the
amylose and amylopectin content with the flour. Spectral data
preprocessing involved employing the MSC method alongside a
combined algorithm for key band extraction, specifically tailored for
sample spectral data, to establish PLSR models. The optimal
algorithms for extracting key bands from the spectral data of
amylose and amylopectin were identified as
MSC–RF–IRIV–PLSR and MSC–CARS–IRIV–PLSR, respectively.
The predictive performance of these models was evaluated, with the
predicted RP values reaching 0.73 for amylose and 0.59 for
amylopectin. Meanwhile, the RMSEP values were 1.23 g/(100 g)
for amylose and 7.34 g/(100 g) for amylopectin. Using the regression
equations derived from these models, visualization expressions were
developed. The results revealed that the amylose content undergoes
significant changes in response to different organic fertilizer
application rates. In contrast, the amylopectin content was best
represented under S3 treatment. These findings offer valuable
insights into the impact of organic fertilizer application on the
nutritional composition of foxtail millet flour.

In conclusion, this data analysis approach offers a viable solution
for multidimensional reduction and visualization component content.
The research findings provide theoretical backing for the simultaneous
and rapid hyperspectral detection of nutritional components in foxtail
millet flour. Organic fertilizers, serving as alternatives to chemical
fertilizers, possess characteristics such as nutrient richness, soil
structure improvement, and environmental friendliness. They not
only furnish crops with vital nutrients but also elevate grain quality.
Hyperspectral imaging technology holds the advantage of non-
destructive testing, furnishing abundant chemical information
conducive to multi-parameter analysis. Thus, by integrating
hyperspectral imaging technology, it becomes feasible to diagnose
the abundance or deficiency of nutrient components in crops and
deduce their quality. Notably, the accuracy of visualization is intricately
linked to the quantitative detection model, thereby rendering the
establishment of a high-precision detection model a prerequisite
and cornerstone for precise visualization.
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