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Nowadays, the development of Unmanned Aerial Vehicle in conjunction with
Photogrammetry and LiDAR technologies, has revolutionized the collection of
geospatial data. These technologies enable the acquisition of very high-
resolution images and dense point clouds. They also allow the generation of
aerial mapping products and simulations of geospatial data for territories that are
difficult to access using traditional surveying methods. The paper deals with the
use of kinematic remote sensing technique for the study of surface with extreme
topography as is a near-vertical cliff named Olandian hat situated in the Seaside
regional park on the Baltic sea coast of Lithuania. This area has been significantly
eroded by the sea due to the climatic changes of the last few decades, which have
caused substantial damage to the coastline. Quantitative measurements show
that coastal erosion has led to a retreat of up to [X]meters over the last [Y] years. In
order to preserve this unique cultural object, needs to keep an observation on a
regular basis (as monitoring) for capture the real situation. Applying an
appropriate way for generation of the reliable and accurate spatial models of
surface with extreme topography, four data sets were processed: images gained
with the camera, oriented horizontally; images gained with the camera tilted at
about 50°; combining both image sets collected from camera; LiDAR data. Point
clouds and orthophoto maps were generated. The evaluation of aerial mapping
products showed that the best accuracy was achieved with products derived
from the combined image sets, based on the metric of RMSE, with a mean RMSE
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of 0.048m in X, Y, and Z directions. The spatial model generated from LiDAR data is
more accurate in Z direction. Correct representation of DEMwas not possible using
only image data from camera horizontally oriented.
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modeling, UAV-photogrammetry

1 Introduction

Nowadays, due to the latest developments regarding unmanned
aerial vehicles (UAVs), which include their enhanced payload,
operating time, and autonomous flight capacities, it has become
possible to utilize them in several different applications (Cariou
et al., 2023; Šiljeg et al., 2023; Li et al., 2019). Recently, the capabilities
and performance of UAVs—commonly referred to as drones or
remotely piloted aircrafts, depending on their operational
procedures—have improved. For example, recent technological
advancements have significantly increased UAV battery life,
allowing for longer flight durations, and improved camera
resolutions, enabling the capture of high-quality, detailed images
from higher altitudes (Manfreda et al., 2018; Vélez et al., 2022).
UAVs can operate either autonomously or follow a pre-established
flight plan. Their main advantage lies in their capacity of obtaining
data with very high levels of spatial resolution (Alvarez-Vanhard
et al., 2021; Sozzi et al., 2021). Due to this particular feature, the
majority of scientists favor the use of UAVs to assist them in
interdisciplinary research (Delavarpour et al., 2021; Watts et al.,
2012). Studies have demonstrated the significant utility of UAVs
across multiple domains, such as agriculture (Sousa et al., 2022),
environmental monitoring (Apaza et al., 2017), and infrastructure
maintenance (Buggiani et al., 2023; Koganti et al., 2021; T. Li et al.,
2019; Rodríguez-Molina et al., 2021). UAVs have several features
that make them highly efficient in scenarios where swift and
responsive collection of information across expansive areas is
key: (a) their high mobility enables a wide range of maneuvers
and facilitates access to areas that were previously inaccessible to
humans or larger devices due to distance, positioning, or
environmental conditions (Casalbore et al., 2022); (b) acquiring
and employing these devices is usually cost-effective; (c) these
devices are compact as they require minimal logistics for their
relocation; (d) they are able to efficiently collect large amounts of
information without significant time constraints, which means that
they might end up being highly effective for handling big data (C. Li
et al., 2022); (e) as a result of their capability for remote control or
autonomous operation, they may undertake monotonous tasks
independently, therefore eliminating the need for supervision
(Shojaei et al., 2020). Notwithstanding the extensive use of UAVs
across various sectors and the advantages that such use brings, there
are specific areas where these devices lack the popularity that other
types of hardware possess (Addabbo et al., 2018; Hartley et al., 2020;
Pinton et al., 2023).

UAV is the effective platform flying at low altitude and can be
used for taking images or scanning by Light Detection and Ranging
(LiDAR) of territories where humans access is difficult and
complicated for classical surveying (C. Li et al., 2022; Lin et al.,
2019; Y. Liu et al., 2017; H. Wang et al., 2013; J. Wang et al., 2017;

Woo et al., 2019). The technology of UAV-photogrammetry is related
with photogrammetric data acquisition, processing, and generation of
the aerial mapping products used in surveying and cartographic or
GIS environment. UAV-photogrammetry is rapidly changing the
classical methods used in geodesy and cadastral measurements,
among others. Traditional geodesy methods, such as the use of
total stations, GPS, and terrestrial laser scanning, typically require
extensive fieldwork and are often limited by the terrain or difficult-to-
reach locations. These methods are time-consuming and costly,
particularly in areas with complex topography or hard-to-reach
areas, such as cliffs or densely vegetated environments. In
contrast, UAV-photogrammetry, coupled with LiDAR technology,
allows for rapid data acquisition, reduces the need for extensive
fieldwork, and provides high-resolution, accurate topographical
models, even in challenging environments (Fan et al., 2023; Lee
et al., 2009). This methodology not only saves time and cost but also
enhances the quality and accuracy of the data collected, offering
significant advantages over classical methods. The main advantages
are as follows: the costs are not high and are decreasing, real-time
collection of images is fast, it is possible to acquire images of the
territories where relief is complicated or where it is not possible to
reach the object, rapid processing of images, and the obtained
cartographic products are accurate depending on customers’
requirements. A UAV with a mounted camera and flying at low
distances above the ground is mostly advantageous for collecting
images of linear objects (network of roads, seacoasts, etc.), cultural
monuments, objects with extreme surface, etc. (Qiao et al., 2023;
Ruzgienė et al., 2015; Zang et al., 2019).

These devices are used to gather information about land changes
in the form of images, especially in small areas with significant
alterations. Multirotor UAVs, in particular, offer the ability to
monitor phenomena in specific areas due to their capacity to
maintain a stable altitude and hover in a place for predefined
durations (Qiao et al., 2023; Smaczyński et al., 2020). The study
by Laporte-Fauret et al. (2019) demonstrates the use of low-cost
UAVs for high-resolution, large-scale monitoring of coastal dunes,
highlighting the efficiency and cost-effectiveness of these
technologies for environmental mapping in challenging terrains
(Laporte-Fauret et al., 2019). In our research, we address the
challenge of generating thematic maps that illustrate official land
use, including areas affected by human activity, such as pedestrian
paths (Zang et al., 2019). Techniques for acquiring UAV data
demand the creation of a digital elevation model (DEM) and a
point cloud that derives from the captured images (Clapuyt et al.,
2017; Colomina and Molina, 2014; Niedzielski, 2018).

The texture of the soil is one of its key physical properties,
affecting its permeability, water retention, and fertility (Song et al.,
2023). Mapping the spatial distribution of soil texture improves
digital soil databases and provides crucial data for studies on the
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spatial distribution of soil properties (Swain et al., 2021). With the
enhancement of UAV hyperspectral technology, it is now capable of
delivering imagery with both high spatial and spectral resolution,
which ultimately leads to more precise mapping outcomes in regard
to soil texture content (Shahriari et al., 2019).

Photogrammetric requirements should be considered the basis
for preparing the technical specification of aerial mapping projects
and realization of workflow. Aerial mapping is one of the most
advanced methods to obtain information about the surface of the
Earth and other objects using images. The quality of images and
mapping products mainly depends on the success of aerial
photography missions, qualified guidance of photogrammetric
works, and appropriate realization of aerial mapping
requirements. A UAV mission has to be executed in good
meteorological conditions—light wind (1, 6–3, 3 m/s) and
minimal cloudiness. Aerial photography of the object on the
seaside should preferably be realized in the spring before the
storm season (preliminary in March) and/or in the autumn after
the storm season (e.g., in November) (Neitzel and Klonowski, 2011).

Three-dimensional (3D) data have a high level of importance
regarding autonomous driving, domestic robots, and remote sensing
(Lan et al., 2023; Wu et al., 2019a). Different types of data—for
example, point clouds, depth images, and polygon meshes—are part
of the 3D data (Guo et al., 2021). Point clouds are generated by
LiDAR, which enables supplying precise and useful information at
360°. Furthermore, LiDAR can maintain consistent functionality
even in low-light environments. This occurs because its operations
remain unaffected by variations in terms of light conditions (Gens,
2010; Sylvester and Macon, 2011; Wu et al., 2019b). In recent times,
point clouds have been receiving much attention (Sousa et al., 2022),
and multiple studies of onboard LiDAR for the detection of 3D
objects were proposed. The main goal of the detection of 3D objects
is to determine the position, dimensions, and category of the objects
in the surrounding areas, which would ultimately allow the creation
of a bounding box that would provide information regarding the
object’s shape and heading angle (Qian et al., 2022; Szostak and
Pająk, 2023). Additionally, regarding river geometry acquisition,
LiDAR has become one of the most used sources, which enables a
quick and precise 3D point cloud collection. It is capable of
determining the distance to a given target by measuring the time
between the moment when a sensor emits a pulse of laser and the
moment when the target’s reflection of that same laser is detected
(Awadallah et al., 2023; Lefsky et al., 2002). There are two different
types of LiDAR sensors, depending on the wavelength: topographic
LiDAR and bathymetric LiDAR. In regard to topographic LiDAR, it
is associated with a laser wavelength of 1,064 nm; given that this laser
cannot penetrate water bodies, topographic LiDAR is commonly
used for topographic surface detection. In terms of bathymetric
LiDAR, it is associated with a laser of 532 nm—a laser that is able to
penetrate water bodies—which provides bottom detection.
Therefore, bathymetric LiDAR is widely used in river studies that
demand a higher mapping precision—for instance, environmental
river studies (Juárez et al., 2019; Moniz et al., 2020; Saltveit et al.,
2020), sediment transport studies (Mandlburger et al., 2015), or even
flood modeling (Awadallah et al., 2022; Juárez et al., 2021).

LiDAR is useful when used for the creation of high-resolution
digital surfaces (Alesheikh et al., 2007; Boak and Turner, 2005).
Information generated from LiDAR data terrain and elevation

models is applied for various applications (Liu et al., 2019). It is
highly recommended for the correct monitoring of the evolution of
land use depending on the climatic evolution (Nunes et al., 2020).
Through innovations by leading LiDAR manufacturers to lower the
costs and size of LiDAR models, everybody can now easily exploit a
LiDAR system mounted onto a UAV as a 3D-mapping device.
LiDAR offers significant savings over ground survey methods
(Ackermann, 1999; García-Rubio et al., 2015; Kim et al., 2017; Y;
Liu et al., 2017; Obu et al., 2017). By using the method of detecting
distant objects such as leaves, shrubs, trees, and even grass, LiDAR
can determine their position, velocity, and other characteristics by
analyzing pulsed laser light reflected from an object’s surface
(Aksamitauskas et al., 2016; Morsy et al., 2018; Pe’eri & Long,
2011; Xu et al., 2019).

The goal of this research is to identify the most effective sensor
and technique for generating accurate aerial mapping products of
surfaces with extreme topography. The “best sensor” and “best
technique” are defined based on multiple factors, including
accuracy (quantified through root mean square error (RMSE)),
cost-efficiency, and processing time. The effectiveness of the
sensor is assessed by its ability to capture high-resolution data
under challenging terrain conditions, while the technique’s
efficiency is evaluated based on the speed and accuracy of data
processing (Kovanič et al., 2023; Telli et al., 2023).The specific focus
of this study is on a parabolic dune hill created by aeolian processes,
located on a moraine ridge within the Seaside Regional Park, which
is classified as a preserved natural heritage site and a natural
monument. This particular object presents significant
topographical challenges, including steep cliffs and a constantly
changing surface with protrusions, depressions, and downward-
sloping patches of land. Therefore, this area is classified as a surface
with extreme topography. In this context, extreme topography refers
to surfaces characterized by steep gradients, sudden elevation
changes, and irregular or uneven landforms such as folds, caves,
and protrusions. These features create difficulties for traditional
surveying methods, making the application of UAV-based
photogrammetry and LiDAR particularly valuable. The
methodology proposed in this research focuses on effectively
capturing and modeling these complex and dynamic surfaces,
ensuring the preservation of such unique and sensitive cultural
and natural heritage sites.

2 Study area

The experimental area/test site, Dutchman’s Cap (named
Olandian hat), is located on the Baltic Sea coast between the
cities of Klaipėda and Palanga in the western part of
Lithuania (Figure 1).

The test site, Olandian hat, is the cut-slope surface, near-vertical
cliff situated in the Seaside Regional Park on the Baltic Sea shore
(Figure 2). Olandian hat is approximately 24 m high and is a
parabolic dune drifted on a moraine crest. This place is intensely
eroded, mainly by the sea and torrential rains. As a result of the
damage to the base of the cliff, landslides are formed from the top of
theOlandian hat due to gravity. This area, measuring approximately
2 km long (~3 ha), was chosen advisably for the experimental study
due to the unique challenges presented by the extreme topography.
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The site’s steep gradients, constant exposure to coastal erosion, and
the dynamic nature of its landforms make it an ideal location to test
UAV-based photogrammetry and LiDAR methodologies. The
morphology of the Olandian hat, particularly its near-vertical cliff
and parabolic dune, presents significant challenges for aerial
mapping. These features can cause distortions in the captured

images, making it difficult to achieve accurate representations of
steep gradients and complex terrain, a challenge that traditional
surveying methods also struggle to address. Similar studies have
shown that steep and highly eroded landscapes require the use of
advanced mapping technologies to compensate for the terrain’s
irregularities (Eakins and Grothe, 2014; Filippelli et al., 2019).

FIGURE 1
Overview map of the test area—Dutchman’s Cap: Baltic Sea coast, Lithuania. (source: ORT10 NZT, National Land Service under the Ministry of
Environment).

FIGURE 2
Experimental object: cut-slope surface of Olandian hat, which is located on the seacoast.
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Furthermore, its location within a preserved natural heritage site
ensures that accurate mapping and monitoring are critical for
ongoing conservation efforts.

3 Methods

3.1 Technology and workflow

The operations of unmanned aerial systems (UASs) have seen
significant advancements in recent years. These systems now employ
cutting-edge technologies, driven by the development of new concepts
in airmobility (EASA, 2022; Fakhraian et al., 2023). UAVoperations, an
emerging concept, hold vast potential when integrated with innovative
technologies, which leads to the development of new applications
(Rosen et al., 2018). The UAV’s actuator, consisting of motors,
electrical controls, and propellers, is a critical component and serves
as the primary power source. During UAV operations, factors such as
friction, wear, shock, and vibration are inevitable, posing risks to the
actuator’s components. The degradation of these components can result
in malfunctions or major mechanical failures. Therefore, continuous
and precise monitoring of actuator health is essential for ensuring the
reliable performance of UAVs (Alemayehu et al., 2020; Hamadi et al.,
2022; Zhang et al., 2023).

The application of UAS in mapping objects with diverse
topographies has revolutionized surveying technology. UAS aerial
imaging solutions are designed to reduce both time and costs
associated with aerial data collection, while ensuring the
reliability of mapping products (Enterprise, 2022).

Through a single UAV flight, numerous images can be captured,
and point clouds can be gathered via laser scanning of the terrain. The
UAV-mounted camera is equipped with a high-resolution imaging
sensor that captures detailed and color-rich images. Image overlap is a
crucial parameter in the preparation of aerial photography projects and
for obtaining high-quality cartographic products. Optimal results are
achieved when images overlap by more than 50%. Considering that
UAV systems are often unstable during aerial photography, with
positioning largely affected by wind gusts, it is recommended that
70%–80% of the images overlap. This overlap percentage is optimal for
the specific conditions of the study area due to the variability of the
terrain and the UAV’s stability during flight. In areas with significant
topographic variations such as steep slopes and cut slopes, the increased
overlap ensures more comprehensive data capture and minimizes gaps
in the resulting images, especially when wind gusts or other
environmental factors may affect image stability. Furthermore, side
and front overlaps were set to 80% and 90%, respectively, to ensure full
coverage of the area, especially in critical sections that required detailed
resolution. The 70%–80% overlap ensures that sufficient data are
captured for photogrammetric processing, minimizing the risk of
missing critical features or details. Such overlap is generally
recommended in UAV-based photogrammetry, especially when
working with complex or variable terrains. Previous studies have
emphasized the need for high overlap percentages to ensure the
accuracy of the derived models and minimize errors related to
image misalignment (Ferrer-González et al., 2020; McGlone, 2013).
The use of overlap in the recommended range improves the consistency
and precision of the resulting geospatial data, particularly when the
UAV is operating in dynamic conditions where factors such as wind or

variable lighting may influence image capture (Ferrer-González et al.,
2020). The side and front overlaps should be set to 80% × 80% and
90% × 90%, respectively. When processing photographic images, the
target point identification accuracy is typically accepted as one-tenth of
the ground sample distance (GSD). For instance, if the GSD is 2 cm, the
accuracy of target point identification would be at least 2 mm.
Achieving greater accuracy is generally not feasible. Using classical
surveying methods, such as RTK GPS, the point position accuracy is
determined to be approximately 1 cm (McGlone, 2013; Nurminen
et al., 2013).

A key tool for modern land surveyors utilizing UAS technology is
the Pix4Dmapper image data processing software, developed by the
Computer Vision Lab in Switzerland. This software package integrates
state-of-the-art photogrammetric techniques with advanced computer
vision algorithms, producing outputs with high accuracy and requiring
minimal manual intervention. The Pix4Dmapper software, including
the rayCloud module, extends the stereo-view triangulation concept,
enhancing the accuracy of 3D modeling. Aerial images are imported
with location, orientation, and camera calibration parameters.
Photogrammetric algorithms correct the orientations of the images,
first adjusting with photo tie points that are automatically matched
across all images. These tie points are typically distributed densely, even
in low-terrain texture. Pix4Dmapper offers efficient capabilities for
orthophoto generation, surface modeling, and more. Operations
within this software are fully automated and flexible, with scalable
data input, easily editable output data, and real-time on-site quality
assessment (Pix4D, 2024).

TerraScan and TerraMatch, software products from Terrasolid
(Finland), are used for managing and processing LiDAR point
clouds collected by UAV platforms. TerraScan is designed for
LiDAR data handling and 3D vector data creation, while
TerraMatch improves the accuracy and quality of raw laser point
clouds. With UAVs operating at low altitudes, where the system is
more unstable, improving data accuracy by eliminating
misalignment and positional inaccuracies due to poor trajectories
is crucial in the LiDAR data processing workflow. The accuracy of
laser scanning results depends on flight height, scanning angle,
terrain type, and the size and characteristics of the objects being
scanned. Under optimal conditions, laser scanning results can
achieve accuracy within a few centimeters. For example, at a
flight height of 60 m, the positional accuracy of points on the
ground can be within ±1 cm (Terrasolid, 2024).

To preserve unique objects or terrain with extreme
topographies, a photogrammetric/GIS workflow has been
developed. By acquiring reliable and accurate data and enhancing
the efficiency of spatial modeling processes, the following actions for
scanning and processing the research object are planned:

- UAV flights with an integrated Zenmuse X5 camera and
MAPPER LITE 2 (LiDAR equipment).

- Aerial photography of the object, with the camera oriented
horizontally and tilted by approximately 50°.

- Simultaneous surface scanning with LiDAR equipment.
- Photogrammetric data processing (combining vertical, tilted,
and both datasets) using Pix4Dmapper software.

- LiDAR data processing and surface modeling with TerraScan
and Terrasolid software applications, including the generation
of cross-sections from the point cloud.
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- Analysis of the results and accuracy assessment.

For the analysis of aerial mapping results and accuracy
evaluation, the RMSE calculation is performed according to the
following equation:

RMSEx,y,z �

��������������������������∑n
i�1 X,Y, Z cpi( ) −X,Y, Z ci( )( )2

n

√√
, (1)

where X, Y, and Z(cpi) are coordinates that are determined using the
geodetic methods (measurements performed by the total station) for
the ith check point; X, Y, and Z(ci) are coordinates of check points
measured in the generated aerial mapping production and dense
points cloud; and n is the number of check points.

The aerial drone surveying project was developed considering
the standard requirements for flight planning and realization. The
aim was to perform short flights over unique and cultural heritage
objects with extreme topography and acquire images of high quality.
Considering the specific features of the object, which is located
alongside the seacoast, the flight realization has strong dependence
on good meteorological conditions (minimal cloud, low winds, mild
temperature, and good visibility). The important procedures were
checking the forecast before flight and choosing well the
flying height.

3.2 Experimental procedures

The flight mission of the UAV equipped with a digital camera of
high resolution (16MP), LiDAR, and GPS was executed over the test
site—Olandian hat. The main focus was on capturing image data
suitable for photogrammetric processing and laser scanning for
correct relief representation. The flight mission was executed at
the end of May 2021, with good meteorological conditions.

3.2.1 Data acquisition
The UAV’s camera and LiDAR equipment are specified, along

with the software and processing steps taken for generating the 3D
models and digital terrain models (DTMs). The UAV, model

MATRICE 600 PRO, DJI, with mounted camera Zenmuse X5 and
3D laser scanner MAPPER LITE 2, was applied for data acquisition
(Figure 3). TheMATRICE 600 PRO is a UAV platform with low cost
and weight. The weight is 9.5 kg, the max. speed is 65 km/h, hovering
time is 32 min, and flying height is up to 2,500m. The UAV’s weight,
speed, and hovering time were key factors in the data collection
process. The MATRICE 600 PRO, with a weight of 9.5 kg and a
maximum speed of 65 km/h, was capable of reaching the required
flight speeds required for efficient mapping in this study. However,
the maximum hovering time of 32 min limited the total duration of
each flight, requiring precise planning of the flight path and efficient
data acquisition to ensure full coverage of the study area within the
UAV’s operational time. The limited hovering time also impacted
the number of images captured during each flight as it was crucial to
balance flight duration with the need for sufficient image overlap
(70%–80%) to ensure high-quality photogrammetric outputs
(McGlone, 2013). Furthermore, the UAV’s weight influenced its
maneuverability, particularly in the presence of strong winds, which
required careful consideration of wind speed and direction during
flight planning (Shahbazi et al., 2015). Despite these constraints, the
UAV’s specifications were sufficient to meet the accuracy
requirements for this study area, ensuring precise mapping and
3D model generation. The main features of gimbal camera DJI
Zenmuse X5 are the following: sensor’s size, 17.3 × 13.0 mm;
resolution, 4,608 × 3,456 px. (16 M); focal length, 15 mm.
Simultaneously with image data acquisition, surface scanning was
performed by the 3D LiDAR system MAPPER LITE 2, with weight
up to 2.2 kg and automatic operation up to 1 h, and the navigation
systems are GPS, GLONASS, Beidou, Galileo1, and SBAS.

The flight height depends on the size of the image pixel on the
area—ground sample distance (GSD), the camera sensor size, and focal
length (Enterprise, 2022). When each pixel on the ground is not
perfectly square, the GSD is calculated with the following Equation 2:

GSDh,w � Flight height × Sensor size in height/width( ), mm( )
Focal length × Image size in height/width( ), px.( ) .

(2)
When planning the UAV flight over the experimental area, the

GSD of size 1.5 cm was specified considering the required accuracy of
aerial mapping production. The flight height (aerial ground level) was
fixed at 60 m. The GSD of 1.5 cm was specified based on the desired
level of accuracy required for this study’s topographic mapping and is
consistent with industry standards for similar aerial mapping projects.
A GSD of this size ensures that the individual details of the terrain,
particularly features of the Olandian hat with its steep slopes, are
captured with sufficient resolution for effective analysis. According to
McGlone (2013), a typical GSD for high-accuracy aerial surveys ranges
from 1 cm to 5 cm, depending on factors such as the UAV’s sensor
resolution, flight altitude, and the specific requirements of the terrain
being mapped. This choice of GSD is within the recommended range
for photogrammetric surveys of challenging topographies. It balances
the need for high spatial resolution while optimizing the number of
images that can be processed within the operational constraints of the
UAV (Žabota and Kobal, 2021). A higher-resolution GSD would have
resulted in diminishing returns in terms of accuracy as the gain in detail
would be outweighed by the limitations in UAV capabilities, such as its
flight time and payload capacity. The decision to set a GSD of 1.5 cm for

FIGURE 3
UAV with equipment (camera, LiDAR, and GPNS) used for
collection of topographic data.
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this study was based on the desired accuracy for detailed topographical
mapping and terrain representation in this specific study area. AGSDof
1.5 cm ensures that the spatial resolution of the images is sufficiently
high for creating accurate 3Dmodels and DTMs without excessive data
volume, which could hinder processing efficiency (Zeybek et al., 2023).
This threshold is consistent with industry standards for UAV-based
mapping in areas with moderate-to-steep topographies, where fine
details such as surface elevation and small landform variations are
essential for precise analysis (McGlone, 2013; Sanz-Ablanedo et al.,
2018). It ensures that the accuracy of the aerial mapping products meets
the project’s requirements for precision while maintaining the balance
between image quality and data management.

The photogrammetric network was created for the external
orientation of images. Before taking images, 10 ground control
points (GCPs) were well-distributed and marked on the territory by
standard marks (targets of size 40 × 40 cm) (Figure 4). The fixing of
targets on the ground was complicated because of the unstable surface
and significant slope. After aerial photography, these marks are clearly
visible in high-resolution images. The planimetric coordinates of the
targets were determined by the GPS in the Lithuanian (LKS94)
coordinate system using the LitPOS network with an accuracy of
5–8 cm. The planimetric projection system is transverse cylindrical
Mercator projection (UTM) for the territory of Lithuania, with an axial
meridian L0 = 24° and a scale at the axial meridian m0 = 0.9998. The
reference system used for planimetric coordinates—Lithuanian
coordinate system (LKS 94)—is based on the GRS 80 ellipsoid, and
the origin of the planimetric coordinates coincides with the intersection
point of the axial 24° meridian and the equator. LitPOS consists of a
network of permanently operating GPNS stations, which are evenly
distributed throughout the territory of Lithuania. The Lithuanian state
height system LAS07 (ellipsoidal altitudes) uses the European height.
Using RTK GPS, the measuring time of the 10 GCPs includes
approximately 5 h considering the unique location of the points.

GPNS equipped at theUAV offers geographical coordinates of each
image projection center in coordinate systemWGS 84 (geoid–EGM96).

3.2.2 Image processing
Employing digital photogrammetric software Pix4Dmapper, the

orthophoto map and 3D model (DSM) of the study area have been
generated (Figure 5). The scale of the orthophoto map is 1:50, and
the altitudes range is from 1.5 m up to 21.5 m.

Three photogrammetric data blocks were processed: 1) images were
collected when the photography axis was at a horizontal
position—vertical projection line; 2) photography axis was tilted at
approximately 50°—inclined projection line; 3) combining both
images’ data sets.

Georeferencing of images was obtained with an accuracy of RMSE
0.014 m. The following generalized rule was applied for the accuracy of
images’ exterior orientation—the precision of planimetric coordinates
must be 2 × GSD higher, the altitudes three times.

The point cloud from LiDAR scanning was processed using
software application TerraScan and Terrasolid. Figure 6 presents
DTM generated from laser scanning data.

4 Analysis of aerial mapping results and
accuracy assessment

The verified information from the study area (Olandian hat)
image processing outputs (from the first dataset, when the
projection line was at a vertical position) includes the following
key details: the average GSD is 1.45 cm, with 245 out of 289 images
calibrated (84%). Camera optimization showed a 2.4% relative
difference between the initial camera parameters, which is below
the 5% threshold. The georeferencing accuracy, as determined by the
RMSE of the 10 GCPs (3D), is 0.014 m (Table 1). This result satisfies
the accuracy requirements, with RMSE being below 0.0435 m (3 ×
GSD in general). The acceptable accuracy in aerial mapping results is
typically defined based on the specific application and industry
standards for precision. In this study, an RMSE of 0.014 m for the
10 GCPs falls well within the typical requirements for high-quality
geospatial data collection, where RMSE values under 3 × GSD are
generally deemed acceptable for most topographic applications
(McGlone, 2013; Žabota and Kobal, 2021). The accuracy in the
horizontal (X, Y) directions, with an RMSE of 0.013 m and 0.009 m,
respectively, demonstrates high reliability, while the vertical
accuracy (Z direction) presents a slightly higher RMSE of
0.023 m, which is still considered acceptable within industry
standards for the generation of DTMs in areas with moderate to
high relief (Vaze et al., 2010).

The evaluation of geolocation accuracy across three
directions (X, Y, and Z) based on manually measured and

FIGURE 4
GCP target visible on the image and initial images positions with distributed GCPs.

Frontiers in Remote Sensing frontiersin.org07

Ruzgienė et al. 10.3389/frsen.2025.1397513

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1397513


marked GCPs is presented in Table 2. The maximal errors in the
easting (X), northing (Y), and height (Z) directions are as
follows: 0.022 m, 0.016 m, and 0.042 m, respectively. The

RMSE values are 0.013 m, 0.009 m, and 0.023 m for the X, Y,
and Z directions, respectively, with the least precise marking
occurring in the Z direction (RMSE = 0.023 m). The reduced

FIGURE 5
Aerial mapping products generated by the use of software Pix4Dmapper: orthophoto map of the test site and digital surface model (DSM).
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precision in the Z direction (RMSE = 0.023 m) has potential
implications for terrain modeling, particularly when generating
accurate DEMs or DTMs. The Z direction represents the vertical

component of the data, which is critical for capturing the true
surface elevation of the study area, particularly in areas with
steep slopes or pronounced relief, such as the Olandian hat.
Inaccuracies in the Z direction can lead to errors in surface
representation, potentially affecting analyses such as slope
stability, drainage modeling, or landform classification. As
the Z-direction errors may accumulate in areas of significant
elevation change, this could impact the accuracy of the DTMs in
representing the precise terrain shape, particularly in steep
areas (Szypuła, 2024). However, the RMSE of 0.023 m is
within acceptable limits for many standard topographic
applications, and this minor reduction in precision is
unlikely to significantly affect the overall quality of the
terrain model for the purposes of this study. Moreover, the
combination of UAV photogrammetry and LiDAR data can
help mitigate this issue. LiDAR, with its superior accuracy in
vertical measurements, can complement photogrammetry by
providing more accurate elevation data, especially for areas
where the photogrammetry may struggle due to reduced
visibility or surface texture (Oniga et al., 2024). Applying the
generalized rule for accuracy evaluation in exterior orientation
(in X, Y directions: 2 × GSD, and in Z direction: 3 × GSD), the
exterior orientation of images meets the accuracy requirements,
i.e., is below 29 cm in planimetric coordinates and 43.5 cm
in elevation.

The evaluation of geolocation accuracy for the images with
the projection ray tilted at approximately 50° shows that
combining both horizontal and tilted image datasets does not
significantly change the results compared to the results using the
first dataset.

Overlap between images is another critical parameter affecting
the quality of aerial cartographic products. As shown in Figure 7,
images were overlapped to generate an orthophoto mosaic of the
study area. Approximately 95% of the study area was covered by
overlapped images, meeting the recommended overlap guidelines.
Areas with insufficient overlap (shown in red or yellow) might lead
to poor results.

A sample of 25 reference (check) points was created for the
accuracy evaluation of aerial mapping products. These points,
located on the cut-slope area, were measured using geodetic
methods with the GeoMax Zoom25 total station. For each check
point, accuracy assessment (in X, Y, and Z directions) was
performed by comparing the measured coordinates with the
point coordinates determined in the dense point cloud generated
after processing the photogrammetric images. The RMSE was
calculated according to Equation 1.

Recent studies have shown that LiDAR and photogrammetry
are both excellent methods for mapping objects with varied

FIGURE 6
DTMof the experimental area generated from LiDAR point cloud:
colors represent the relief (in LAS-07 height system). Altitudes range
from 2.5 m up to 22.8 m.

TABLE 1 Quality check—summary of the quality report for the first dataset using software Pix4Dmapper.

Images Median of 55,467 key points per image

Dataset A total of 245 out of 289 images calibrated (84%), all images enabled, two blocks

Camera optimization A relative difference of 2.4% between initial and optimized internal camera parameters

Matching Median of 15,722 matches per calibrated image

Georeferencing Yes, 10 GCPs (10 3D); mean RMSE error = 0.014 m
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topography. While photogrammetry, using UAVs, provides
high-resolution images for accurate terrain mapping, it often
faces challenges in areas with complex surface features such as
dense vegetation or steep slopes. On the other hand, LiDAR’s
ability to penetrate through vegetation and capture precise
terrain data makes it highly effective for areas with extreme
topography (Demoulin et al., 2007; Jakovljevic et al., 2019;
Kanostrevac et al., 2019). The work by Li et al. (2020)
provides a detailed analysis comparing UAVs equipped with
photogrammetry and LiDAR for the evolution of ice
morphology. This study reinforces the idea that integrating
these technologies can enhance the accuracy and reliability of
spatial models, particularly in extreme topographic conditions, as
observed in this research (T. Li et al., 2020).

The following criteria were applied for the accuracy evaluation
of aerial mapping products: mean and maximum errors of
planimetric coordinates should be within 1.0 × GSD and 1.6 ×
GSD, respectively; for elevations, the accuracy should be within 1.6 ×
GSD and 2.5 × GSD.

LiDAR data typically result in higher accuracy in the Z
direction, especially when used in combination with
photogrammetry, as seen in the combined dataset where the
RMSE for X, Y, and Z directions was 0.049 m, 0.056 m, and
0.040 m, respectively. This combination is ideal for modeling
surfaces with extreme topography, such as cut slopes, where the
accuracy is critical. LiDAR’s dense point cloud offers superior
performance in accurately representing terrain surfaces, leading to
better extraction of terrain parameters and more reliable models
for monitoring land conditions, as seen in the following sources
(Demoulin et al., 2007; Jakovljevic et al., 2019; Kanostrevac et al.,
2019; Kovanič et al., 2023; Sharma et al., 2021). LiDAR datasets are
particularly recommended for generating DEMs in areas with

steep terrain, providing detailed information for terrain
analysis, such as landslide risk assessment or terrain restoration
(Demoulin et al., 2007). The accuracy in Z direction from LiDAR
data is approximately twice as high as the accuracy of planimetric
coordinates, highlighting its strength in capturing vertical features.

In terms of statistical analysis, additional methods such as
paired t-tests or analysis of variance (ANOVA) could be
employed to evaluate the significance of the differences
between the datasets obtained from UAV-based
photogrammetry and traditional geodetic techniques (e.g.,
RTK GPS) (Fisher, 1992). Paired t-tests would be particularly
useful for comparing the accuracy of georeferencing results
between the two methods, allowing for the assessment of
whether there are statistically significant differences in the
positioning accuracy between UAV and conventional
techniques (McGlone, 2013). ANOVA could be used if more
than two datasets or methods are compared, such as comparing
various UAV configurations, flight heights, or sensor types
(Furby and Akhavian, 2024). These analyses would not only
improve the scientific rigor of the findings but also provide a
clearer understanding of the variability in accuracy between
UAV-based methods and traditional surveying techniques.
Such statistical tests would help quantify the extent to which
UAV-based methods improve or deviate from established
geodetic practices, providing a more robust evaluation of the
accuracy and efficiency of UAV technology for mapping
challenging topographies. Furthermore, these analyses would
be valuable in highlighting specific conditions under which
UAVs may be preferable or less effective than traditional
methods (Giordan et al., 2020). This would ultimately
contribute to a more nuanced and evidence-based conclusion
about the potential of UAVs in geospatial data collection.

TABLE 2 Geolocation accuracy—summary of the quality report for the first dataset.

GCP name Accuracy XY/Z [m] Error X [m] Error Y [m] Error Z [m]

2 (3D) 0.020/0.020 0.022 −0.014 −0.005

3 (3D) 0.020/0.020 −0.012 0.016 0.024

5 (3D) 0.020/0.020 0.016 0.000 −0.026

7 (3D) 0.020/0.020 −0.007 0.011 −0.012

11 (3D) 0.020/0.020 −0.000 −0.000 −0.002

14 (3D) 0.020/0.020 −0.006 −0.007 −0.003

15 (3D) 0.020/0.020 0.008 −0.006 0.042

16 (3D) 0.020/0.020 0.006 −0.005 0.008

17 (3D) 0.020/0.020 −0.004 −0.002 −0.041

18 (3D) 0.020/0.020 −0.022 0.006 0.017

Mean [m] −0.000079 −0.000125 0.000349

Sigma [m] 0.012583 0.008634 0.022761

RMSE [m] 0.012583 0.008635 0.022764
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5 Conclusions

The proposed technique aims to be efficient for the
reconstruction of surfaces with extreme topography, such as a
parabolic dune drifted on a moraine crest, which is severely
eroded by the sea and rain. This technique is essential for
obtaining reliable data for users involved in the monitoring
and preservation of unique cultural objects (Nunes et al.,
2020). Potential end-users of the data obtained from this
study include conservationists, archaeologists, urban planners,
landscape architects, and engineers. These professionals rely on
accurate topographic data for monitoring and preserving cultural
and natural sites. The high-resolution 3D models and DEMs
generated by this study are especially useful for conservation and
restoration efforts, allowing users to track changes in the terrain
and detect issues such as erosion or structural shifts (Caciora
et al., 2024). For urban planners and engineers working in
challenging environments, such as flood-prone or steep areas,
these DEMs enable better land-use planning and infrastructure
development. The integration of these models into GIS allows for

precise analyses, such as slope stability and flood risk assessment,
which are essential for optimizing project design in complex
terrains (Oniga et al., 2024). This methodology also provides real-
time data processing, allowing continuous monitoring of terrain
changes, which is critical for ongoing preservation and
management projects. By integrating UAV photogrammetry
and LiDAR data, this approach offers a powerful tool for
professionals working in areas with difficult topography,
facilitating more informed decision-making in conservation,
restoration, and urban planning (Khelifi et al., 2021; McGlone,
2013).The research is based on collecting images during UAV
flights, with the camera axis set perpendicular to the
experimental surface and tilted at approximately 50°, while
simultaneously scanning with LiDAR. Using classical
surveying technologies and instruments, such as GPS,
terrestrial laser scanners, or total stations, is not suitable for
measurements in this case due to the complicated cut-slope
topography (Lague et al., 2013).

The evaluation of aerial mapping and cartographic products
shows that the best accuracy was achieved with products derived
from the combined image set, with a mean RMSE of 0.048 m (in X,
Y, and Z directions). Correct representation of DEMs was not
possible using only image data from horizontally oriented
cameras. This limitation is particularly evident when generating
DEMs from point clouds produced by standard software. In such
cases, the geometry of the terrain might not be accurately
represented, leading to potential errors in surface height.
Therefore, correcting the height information using additional
data, such as LiDAR, is advisable (Kinzel et al., 2021). LiDAR
scanning from low altitudes has proven to be more accurate in
capturing vertical information, and when combined with
photogrammetry, it provides a more comprehensive and reliable
representation of the terrain, especially in extreme topographical
conditions (such as field evaluation of a compact, polarizing topo-
bathymetric LiDAR across a range of river conditions) (Kinzel
et al., 2021).

The spatial model generated from LiDAR data is more
accurate in the Z direction. The point cloud density derived
from the combined UAV photogrammetry and LiDAR datasets
allows for an accurate representation of the terrain, facilitating
the preparation of cross-sections necessary for planning special
purpose works on such terrain (Costa et al., 2009; Glira et al.,
2016). The mesh with a GSD of 1 cm was defined as sufficient for
obtaining an accurate relief representation. Surveying work
measuring GCPs in such complex terrain should focus on
improving the distribution of GCPs, which directly impacts
the accuracy of the cartographic products.

Looking ahead, there are several avenues to enhance the
robustness and applicability of the proposed methodology. One
promising direction is the integration of additional data sources,
such as multispectral or hyperspectral imagery, which could provide
more detailed information on surface materials and vegetation.
Coupling these data with LiDAR and photogrammetric data
could improve the model’s ability to represent complex terrains,
especially in areas with varied vegetation and surface textures.
Moreover, the use of real-time data processing techniques, such
as edge computing, could significantly reduce the time required for
large-scale mapping, offering near-instantaneous results that are

FIGURE 7
Image overlap analysis for the study area (approx. 95% overlap).
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crucial for time-sensitive preservation and monitoring projects
(Columbro et al., 2022; Ikeda et al., 2024).

In addition to these technological advancements, the
methodology could be further refined for applications in
diverse environments. For example, expanding its use to
different types of cultural heritage sites with varying
topographical challenges would demonstrate its flexibility and
robustness. Integrating this workflow with the existing GIS could
offer an even deeper level of analysis, facilitating more effective
management and conservation efforts. As the technology
continues to evolve, future studies could explore the potential
for autonomous UAVs and mobile platforms to further improve
data collection in hard-to-reach areas, ensuring that complex
terrain and cultural assets are preserved with high accuracy and
minimal human intervention (Kemarau et al., 2024).

The study acknowledges certain limitations, particularly
regarding the impact of climate conditions on the data
collection process. For instance, the research area, situated
along the Baltic Sea coast, is subject to coastal erosion and
seasonal weather variations that can influence UAV flight
stability and the accuracy of collected data. Strong winds or
rain can limit UAV operational capacity, affecting image overlap
and the quality of the data gathered, particularly in areas with
steep topography (Linder, 2009). Future research should explore
ways to mitigate the effects of such environmental conditions,
including the use of UAVs with enhanced stability features and
weather-resistant technologies. Additionally, further studies
could examine how seasonal changes in vegetation or terrain
may affect the quality of photogrammetric models, which are
critical for accurate terrain representation.

Looking ahead, it is also crucial to establish clearer research
directions for improving the existing methodology. This could
involve investigating advanced sensor fusion techniques, the
integration of additional environmental data, and exploring the
potential for autonomous UAV systems that can operate in harsh
conditions with minimal human intervention (Kemarau et al.,
2024). These developments would further strengthen the capacity
for high-quality mapping in challenging topographies, particularly
in regions prone to rapid environmental changes.
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