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Near-ground remote sensing image dehazing is crucial for accurately monitoring
land resources. An effective dehazing technique and a precise atmospheric
attenuation model are fundamental to acquiring real-time ground data with
high fidelity. The dark channel prior (DCP) is a widely used method for
improving visibility in hazy conditions, but it often results in reduced image
clarity and artifacts, that limit its practical utility. To address these limitations,
we propose a novel hybrid correction method, local hybrid correction (LHC),
which integrates gamma correction for high-contrast regions and logarithmic
correction for low-contrast regions within a dehazed image. We calculated the
cumulative distribution function (CDF) of Weber contrast for the dehazed image
and analyzed the impact of different contrast thresholds on the effectiveness of
improving image clarity and reducing artifacts. Our results showed that a contrast
threshold corresponding to the 90% CDF significantly improved image sharpness
and reduced artifacts compared to other thresholds. Furthermore, LHC
outperformed both gamma and logarithmic corrections in terms of image
clarity and artifact reduction, even after applying additional post-processing
methods such as multi-exposure fusion and guided filtering. The quantitative
analysis of the dehazed images, using gray-level co-occurrence matrix (GLCM)
metrics, indicated that the LHC method offered a balanced advantage in
enhancing image details, texture consistency, and structural complexity.
Specifically, images processed by LHC exhibit moderate contrast and
correlation, low homogeneity and high entropy, all these made the LHC
method a very suitable solution for near-ground remote sensing tasks that
required enhanced image detail and reduced artifacts. We also examined the
atmospheric attenuation coefficient, observing that it increased with distance,
deviating progressively from empirical values, this phenomenon underscored the
complex effects of atmospheric scattering on dehazing accuracy, especially at
extended ranges. Additionally, we refined the transmittance attenuation model
using light reflection at the 550 nm wavelength from verdant landscapes, which
improved the model’s alignment with real-world conditions. This approach was
not only effective for this wavelength but could adapt to other wavelengths in
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future studies. Overall, our research advanced the precision of remote sensing
dehazing techniques, promising improved decision-making for land resource
management and a variety of environmental applications.
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logarithmic correction, artifacts reduction, gray-level co-occurrence matrix, atmospheric
attenuation coefficient

1 Introduction

Near-ground remote sensing image dehazing occupies a vital
role in land resource monitoring, delivering precise, high-resolution
data essential for assessing land utilization, soil health, and
vegetative cover (Liang et al., 2025; Akay and Sami, 2024; Wang
D. et al., 2024; Zheng et al., 2024). This technology enables the timely
identification of land degradation (Ebrahimi et al., 2024), unlawful
land use (Liu et al., 2024), and environmental transformations (Qiao
et al., 2023; Cavalli andMaria, 2024), thereby supporting robust land
management and conservation strategies. It is imperative to pursue
approaches in near-ground remote sensing image dehazing that are
not only precise and real-time but also extensive in range and
cost-effective.

In near-ground remote sensing image dehazing, haze thickness
and distribution as well as atmospheric scattering frequently
diminish dehazed image quality, posing challenges to the effective
dehazing of remote sensing images (Singh et al., 2024; Georgeot
et al., 2024; Wei et al., 2024). Particularly in near-ground contexts,
the complexity of haze and ground scenes severely impacts the
dehazing effect and the fidelity of information extraction (Shen et al.,
2020). Thus, dehazing has emerged as a critical research area to
enhance image visibility and bolster the accuracy of object
recognition. Investigating dehazing techniques for near-ground
remote sensing imagery is of great importance not only for land
monitoring but also as an interdisciplinary focus linking computer
vision and remote sensing science. In hazy natural settings, remote
sensing images often suffer from diminished contrast and brightness
due to the scattering effects caused by airborne particles and water
vapor. This degradation not only complicates visual assessment but
also hinders the accurate extraction of ground data (Zheng et al.,
2024). To counteract these issues, researchers have developed
various dehazing algorithms, generally classified into physical
model-based approaches and image enhancement-based
approaches (Jiang et al., 2021). Physical model-based methods
employ atmospheric scattering models to restore authentic colors
and detail, typically achieving higher accuracy, albeit with
considerable computational demands (Yan and Cui, 2024). In
contrast, image enhancement-based methods improve image
visibility by modulating contrast and brightness, allowing for
faster processing but with trade-offs in maintaining natural
coloration (Zhang et al., 2023).

Physical model-based techniques rely heavily on the
atmospheric scattering model, which attributes image degradation
primarily to the combined effects of direct radiation, scattered light,
and ambient illumination (Yan and Cui, 2024). One of the most
prominent physical model-based approaches is the dark channel
prior (DCP) algorithm. The DCP method capitalizes on the
observation that, in haze-free images, some pixels have very low

intensities in at least one color channel (usually the dark channel),
which can be used as a prior to estimate the transmission map of the
image and subsequently recover the scene’s details (Fu et al., 2024a).
While DCP enhances image clarity to an extent, it encounters
limitations, such as easy-to-produce color distortion, artifacts and
unclear details, and challenges in haze images with extensive bright
regions. More refined methods have been introduced to overcome
these challenges. For instance, the color attenuation prior (CAP)
method incorporates brightness and saturation data to accurately
estimate haze density (Zhu et al., 2015). Another method based on
transparency and brightness information, leverages local statistical
data within scenes to estimate atmospheric light, thus improving
dehazing outcomes (Lei et al., 2024). Guided filtering is another key
technique in this category, which helps improve the accuracy of
atmospheric light estimation (Sun et al., 2021). It preserves the edges
while removing noise, thus enhancing the dehazing process and
overall image clarity. Despite their strong performance, physical
model-based methods face some challenges, including the reliance
on accurate parameter estimation. The effectiveness of dehazing
heavily depends on the accuracy of these parameters, and
inaccuracies can lead to suboptimal results. Furthermore, the
significant computational demands of these methods can restrict
their use in real-time applications.

In contrast to physical model-based approaches, image
enhancement techniques bypass intricate physical models and
instead refine visual quality through adjustments in histogram or
contrast. Histogram equalization (HE), one of the earliest
enhancement techniques, was celebrated for its simplicity and
computational efficiency. However, it struggled with effectively
addressing dehazing challenges, especially in images with non-
uniform haze or insufficient contrast (Huang et al., 2019). More
recent developments have drawn from the Retinex theory, which is
based on the human visual system’s ability to perceive illumination
and reflectance separately (Lu S. et al., 2024). These Retinex-inspired
methods are particularly effective in enhancing dehazing image
details, but they also face some challenges, especially in terms of
handling computational complexity, color accuracy, and noise
management. Other practical techniques are gamma and
logarithm correction, forms of contrast adjustment that modify
the image’s brightness curves, which can be useful for enhancing
visibility and improving the perceived clarity of hazy images
(Soleimany et al., 2021). But they also have limitations, especially
in high-contrast or complex scenes, where they may lead to loss of
details or image distortion. Multi-exposure fusion (MEF) is another
popular image enhancement technique where multiple images with
varying exposure levels are fused together to improve image details
and contrast (Lu S. et al., 2024). Although these techniques can
appreciably improve the visual appeal of an image, they overlook
atmospheric scattering effects, limiting their efficacy in dehazing
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compared to physical model-based approaches. The rapid
advancements in deep learning have introduced a new paradigm
in image dehazing. Convolutional neural networks (CNNs) and
generative adversarial networks (GANs) are increasingly being
utilized for dehazing tasks, offering substantial improvements
over traditional methods (Shen et al., 2024; Lu Q. et al., 2024).
These approaches transcend the need for explicit physical models,
learning instead to map features for dehazing through robust data-
driven training. The resulting techniques offer marked
improvements in both image quality and computational efficiency.

Despite significant progress in dehazing, there remain several
unresolved challenges. First, although physical model-based
methods offer high accuracy, their computational complexity is
substantial, restricting their applications in real-time processing.
Second, while image enhancement methods offer fast computation,
their dehazing performance is limited under complex haze
conditions. Additionally, deep learning methods require large
amounts of labeled data, but existing haze-related data about
near-ground remote sensing are relatively insufficient, which
impacts model generalization. To achieve efficient and practical
dehazing methods for near-ground remote sensing images, the
following aspects are worth exploring: first, combining physical
model and image enhancement techniques to achieve efficient
dehazing; second, improving the dehazing effect with as few steps
as possible; Finally, further optimizing atmospheric attenuation
model to improve the accuracy and efficiency of image dehazing.
So, in this study, we aim to develop a simple and efficient dehazing
method for near-ground remote sensing images by focusing on
several objectives: (1) investigating the impact of transmission
parameters and atmospheric light on image clarity and artifact
depth after using dark channel prior to dehazing. (2)
investigating simple and efficient methods to improve the detail
clarity and reduce artifacts in dehazed images by jointly using the
gamma and logarithmic correction; (3) employing image processing
techniques to estimate atmospheric transmittance and attenuation
coefficients under various haze conditions, supported by visibility
and distance measurements using visibility meters and laser
rangefinders; and (4) comparing empirical and experimental
values of atmospheric attenuation coefficient, and building an
optimization model aligning with real-world conditions for the
atmospheric attenuation. This work aspires to advance the
accuracy and efficiency of dehazing for near-ground remote
sensing images, paving the way for improved practical
applications in land resources monitoring, agriculture and
urban analysis.

2 Materials and methods

2.1 Data collection and processing methods

To obtain haze images under varying ground and atmospheric
conditions, we conducted a series of near-ground remote sensing
image collection experiments across multiple regions of China from
January 2022 to October 2024. These experiments employed a drone
(DJI Matrice 300 RTK, DJI Innovations Technology Co., Ltd.,
China) equipped with an onboard remote sensing camera
(Zenmuse P1, DJI Innovations Technology Co., Ltd., China).

During haze conditions, the drone was positioned at a fixed
altitude and angle to capture multiple sets of images with varying
exposure times for subsequent selection. Concurrently, a visibility
meter (PWD20, Vaisala Ltd., Finland) was used to measure
atmospheric visibility (V), and it took multiple measurements to
calculate the average value.

On clear days when the haze had dissipated, two distant green
plant sites on the ground were selected as reference points for the
study. At location A on the ground, directly beneath the drone’s
fixed filming position B, a laser rangefinder (TP320, Apresys
Shanghai Precision Optoelectronics Co., Ltd., China) was
employed to measure the distance (LAB) from point A to the
drone’s filming point B, as well as the distance (LAC) from point
A to plant site C. Using the known distances LAB and LAC, and the
angle between the straight lines AB and AC, we calculated the
distance (x) from plant site C to the drone’s filming point B. The
visibility (V) and the calculated distance (x) were then used to
compute the atmospheric attenuation coefficient (β) for
subsequent analysis.

For the dehazing of the collected near-ground remote sensing
images, we utilized Python and OpenCV for image processing.
These tools were employed for the development and execution of
several dehazing algorithms, including dark channel prior,
correlation correction, multi-exposure fusion, guided filtering,
and other post-processing techniques. Additionally, we leveraged
Python and OpenCV to compute the initial transmission maps of
the haze images. Based on these initial transmission maps, the
transmission values at 22 plant sites were calculated and used to
determine the atmospheric attenuation coefficient and optimize the
atmospheric attenuation model.

2.2 Physical model of atmospheric
attenuation of light

The image dehazing method used in this study was based on
physics-based approaches, which made it essential to
understand how light propagates through the atmosphere. In
the atmosphere, light intensity decreases exponentially with
distance due to the combined effects of absorption and
scattering by atmospheric molecules, aerosols, haze, and other
pollutants. This process of light attenuation can be described by
the Beer-Lambert Law (Motiee et al., 2024), a classical physical
model that quantifies how light intensity diminishes as it travels
through a medium. The Beer-Lambert Law is mathematically
expressed as follows:

I x( ) � I0 exp −βx( ), (1)
where I(x) is the light intensity after traveling a distance x, I0 is
the initial light intensity, and β is the attenuation coefficient,
accounting for both absorption and scattering. In atmospheric
conditions, especially under haze, the attenuation coefficient β
reflects the impact of aerosols and haze particles, which strongly
scatter and absorb light in the visible and near-infrared
spectrum, reducing visibility. To further quantify light
attenuation in hazy conditions, an empirical formula for β has
been developed, incorporating atmospheric visibility and
wavelength of light:
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β V, λ( ) � 3.91
V

×
λ

0.55
( )−q

, (2)

where β(V, λ) is the attenuation coefficient, V is the visibility of the
atmosphere, and q = 1.6 (V ≥ 10 km), 1.3(1 km ≤ V < 10 km) and
0.585V1/3 (V < 1 km) (Fayaz et al., 2024). Equations 1, 2 reflect the
increased scattering and absorption at shorter visibility distances,
which intensifies light attenuation in hazy conditions. Light
attenuation also varies with the wavelength of light, as different
wavelengths are absorbed and scattered to varying degrees. In
remote sensing applications, silicon-based sensors are typically
used to detect light in the visible and near-infrared range,
particularly from 400 to 1,200 nm. Consequently, when capturing
images in hazy conditions, these sensors are significantly affected by
wavelength-dependent attenuation, which must be accounted for to
achieve accurate image readings. Based on these insights, the
physical model describing light transport through a hazy
atmosphere can be formulated as follows:

I x( ) � I0 exp −3.91
V

×
λ

0.55
( )−q]x{ }. (3)

This expression in Equation 3 demonstrates that light
attenuation in haze is influenced by factors such as atmospheric
visibility, light wavelength, and transmission distance. To optimize
the estimation of the atmospheric attenuation coefficient under
near-ground haze conditions, the later sections of the article will
focus on calculating attenuation coefficients using both the
empirical formula (Equation 2) and those derived from dehazing
image processing techniques. This aims to refine the attenuation
coefficient model, enhancing its applicability for accurate remote
sensing in hazy environments.

The imaging process of haze images can be described using an
atmospheric transport model (Yan and Cui, 2024), which provides
the foundation for dehazing techniques aimed at recovering a
clear image:

I x( ) � J x( )t x( ) + A 1 − t x( )[ ], (4)
where I(x) is the observed hazy image, J(x) is the dehazed image,
t(x) is the transmission map, and A is the atmospheric light. While
this model represented by Equation 4 explains haze formation,
dehazing requires additional techniques to recover a clear image.
In the following sections, our approach began with dark channel
prior (DCP) dehazing, which estimated atmospheric light and
transmission by assuming that certain pixels in clear images
exhibited low intensity in at least one color channel. Although
effective in many cases, DCP may encounter limitations in scenes
with extensive bright areas or complex lighting, necessitating
additional steps. Correlation correction was then applied to
minimize sensor noise and color bias, improving alignment
between the spectral data and the real scene. Guided filtering was
used next to preserve edge details, enhancing the clarity of the
dehazed image. To further improve detail and contrast, multi-
exposure fusion (MEF) combined images with different exposure
levels, providing a more comprehensive depiction of the scene.
Finally, additional post-processing was conducted to restore
natural colors and reduce noise while preserving edge details.
These steps formed the core of our dehazing methodology,
though some steps may be omitted in certain cases to streamline

the procedure, resulting in variations of the dehazing method.
Subsequent sections will provide a detailed description of each
step and demonstrate its effectiveness in enhancing clarity and
reducing artifacts in dehazed images.

2.3 Dark channel prior dehazing

The dark channel prior (DCP) is a classical image dehazing
algorithm based on the observation that, in most natural haze-free
images, at least one color channel has a very low intensity in a local
patch (Fu et al., 2024b). This assumption holds especially well in
scenes with shadows, foliage, and textured surfaces but may
encounter limitations in images containing extensive bright
regions, such as skies or overexposed areas. By leveraging this
prior, DCP enables effective estimation of atmospheric light and
the transmission map, which are essential components in removing
haze. To calculate the dark channel image, the algorithm selects the
minimum value among the RGB channels for each pixel. For an
input image, the dark channel value at the pixel position x can be
defined as follows:

Idark x( ) � min
y∈Ω x( )

min
C∈ r,g,b{ } I

C y( )⎛⎝ ⎞⎠, (5)

where IC(y) represents the pixel value of the image I at position y in
the C color channel, Ω(x) is a local window centered at the pixel x,
min

C∈ r,g,b{ } refers to the minimum value among the three color channels

(red, green, and blue), and min
y∈Ω(x)

refers to the minimum value within

the local window (Okamoto et al., 2024).
In the first experiment of this paper, the DCP method

represented by Equation 5 was applied to dehaze two remote
sensing images: one from a field scene and the other from an
urban scene. The field scene, shown in Figure 1A, is relatively
simple, with mainly green plants and minimal variation in
brightness. The urban scene, shown in Figure 1F, is more
complex, with green plants, white high-rise buildings, and other
structures, as well as significant variation in brightness. To estimate
the transmission map, an empirical formula that adjusts
transmittance based on haze density is given as follows:

t x( ) � 1 − ω · min
y∈Ω x( )

min
C∈ r,g,b{ } IC y( )/AC( )⎛⎝ ⎞⎠, (6)

where ω is an empirical parameter, introduced to control
transmittance levels and prevent excessive dehazing. The results
of applying the DCP method to two remote sensing images are
shown in Figure 1. These images were processed using different
values for the transmittance correction parameter ω and varying
percentages (P) of the brightest pixels, selected to estimate the
atmospheric light A. The results showed that a lower ω value
(0.85) resulted in better visual quality, showing fewer artifacts,
richer colors, and increased clarity compared to a higher ω value
(0.95), and this effect became more noticeable in haze images with
complex scene, for example, the urban scene, as illustrated in
Figure 1. Changes in the percentage of brightest pixels P used to
estimate atmospheric light (ranging from 0.1% to 0.5%) had no
significant effect on image quality. Based on our visual assessment
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and the balance between clarity, color fidelity and artifact depth, we
selected ω = 0.85 and P = 0.1% as optimal values for generating the
rough transmission map (see Figure 11), for these values provided
the most satisfactory dehazing results. Further quantitative
evaluation will be discussed in the subsequent sections.

To enhance the detail clarity and reduce artifacts in dehazed
images at a microscopic level, the micro-characteristics of the
dehazed images generated by the DCP method were further
evaluated. The cumulative distribution function (CDF) of local
contrast was calculated in the dehazed images, as shown in
Figure 2 (Wu et al., 2024). The local contrast was computed
using the Weber contrast, defined as follows:

CW x, y( ) � I x, y( ) − I
m∈Ω

x, y( )
I

m∈Ω
x, y( ) , (7)

where CW (x, y) is Weber contrast at the pixel position (x, y), Ω is
the local window containing pixel (x, y), I(x, y) is the intensity at
pixel (x, y), and I

m∈Ω
(x, y) represents the average pixel value in the

local window centered at (x, y). The CDF illustrates the cumulative
frequency of Weber contrast (Equation 7) values in the dehazed
images, indicating the proportion of pixels with contrast values less
than or equal to a given level. The results show that, for the
dehazed images, higher ω and lower P values appear to make a
larger number of pixels to preserve or enhance contrast. Among
these two factors, the impact of ω appears to be more significant
than that of P, as evidenced by the CDF curves being less steep and
shifted toward higher Weber contrast values. This suggests that
increasing ω has a stronger effect on enhancing contrast compared
to lowering P. However, it is important to note that a larger
number of pixels with high local contrast does not necessarily
correlate with improved image quality. In fact, higher contrast can

sometimes be indicative of artifacts resulting from over-processing
or noise amplification. These artifacts may arise from algorithmic
issues such as insufficient noise handling or aggressive contrast
enhancement, leading to unnatural features in the image. While
many image processing techniques aim to address these artifacts
and improve the detail clarity of dehazed images after DCP
processing, they are often complex and time-consuming.
Therefore, exploring simple and effective methods to handle
these artifacts and enhance the detail clarity of dehazed images
is crucial.

2.4 Correlation correction

Remote sensing images often suffer from uneven brightness due
to sensor and environmental factors, which can introduce biases and
distort the spectral information. At the same time, DCP dehazing
methods tend to increase unevenness and image distortion due to
the formation of excessive artifacts. To address this, correlation
correction techniques are used to eliminate these biases, ensuring
that the spectral data in the image better aligns with the real-world
scene. Gamma correction is a commonly used method for applying a
non-linear transformation to pixel brightness values (Soleimany
et al., 2021). It enhances the image contrast by adjusting the intensity
of the pixels, particularly in the dark and bright areas, while also
balancing the overall brightness of the image. This transformation is
particularly useful for improving the visibility of details that may be
obscured by haze or low contrast. In this experiment, gamma
correction was applied for the images Figures 1B, G, and the
results were shown in Figure 3, which exhibited varying degrees
of brightness and contrast. The formula used for gamma
correction is:

FIGURE 1
Dark channel prior to dehazing. (A)Original image for a field scene. (F)Original image for an urban scene. Transmittance correction parameter ω and
the percent P of the brightest pixels selected to estimate the atmospheric light in the figure were as follows: (B, G) ω = 0.85, P = 0.1%; (C, H) ω = 0.85, P =
0.5%; (D, I) ω = 0.95, P = 0.1%; (E, J) ω = 0.95, P = 0.5%.
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Iout � Iin( )γ, (8)

where Iin is the input normalized pixel intensity, Iout is the corrected
output intensity, and the exponent γ is adjusted based on the
characteristics of the scene. The remote sensing images were
processed with gamma values ranging from 0.8 to 3.0 according
to the Equation 8. The processed results reveal that when γ < 1, the

dark areas of the image are brightened, resulting in an overall lighter
image (Figures 3A, C). In contrast, when γ > 1, the contrast in the
highlighted areas is reduced, and the image becomes darker than the
images before gamma correction (Figures 3B, D; Supplementary
Figure S1). These results suggest that gamma correction can enhance
the visibility of details in images with low contrast, particularly by
boosting dark regions when γ < 1. However, the choice of γ value

FIGURE 2
The curves show the cumulative distribution function (CDF) of Weber contrast values across the images after operating DCP. (A) The CDF curves for
the field scene image; (B) The CDF curves for the urban scene image. The horizontal axis represents the Weber contrast values, indicating the relative
difference between local pixel intensity and the local mean intensity normalized by the local mean. Higher values on the horizontal axis correspond to
regions with greater local contrast. The vertical axis represents the cumulative probability of pixels with Weber contrast values less than or equal to
the corresponding value on the horizontal axis.

FIGURE 3
Gamma or logarithmic correction after DCP. (A–D) and (E–H) were processed by gamma and logarithmic corrections, respectively. The γ and a
were the exponent of the gamma function and base of the logarithm function, respectively. (A, C) γ = 0.8; (B, D) γ = 1.2; (E, G) a = 2.0; (F, H) a = 3.0.
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depends on the specific characteristics of the scene, as applying
extreme values of gamma can lead to loss of detail in dark areas, as
shown in Supplementary Figures S1B, E.

To explore a more effective method of dehazing, logarithmic
correction was applied for the images in Figures 1B, G. It has a
tendency to stretch the low-brightness pixels, which can enhance the
details in dark areas and help retain more image information (Wu
et al., 2024). The logarithmic correction is defined as:

Iout � loga Iin + 1( ), (9)
where a was the base of the logarithm, which was varied in our
experiment within the range of 1.2 ≤ a ≤ 5.0. When compared to the
gamma correction, the two functions produce distinct patterns for
low input values (Iin < 0.22). Specifically, the logarithmic correction
(Equation 9) results in a stronger increase in brightness for low pixel
values compared to gamma correction, which is reflected in the fact
that the detailed areas of the image processed with logarithmic
correction are brighter, as shown in Figure 3 and Supplementary
Figure S1 (except for γ = 0.8 and a = 2, where the two methods
behave similarly because their function values are close). This
suggests that logarithmic correction can more effectively enhance
the dark regions of a dehazed image compared to gamma correction,
particularly for values of γ other than 0.8. Additionally, the
maximum output of the logarithmic correction is typically
smaller than that of the gamma correction, which implies that
the dynamic range of the logarithmic output is narrower. This
can lead to lower contrast but may allow for better detail
retention in certain image areas. However, it is important to note
that when a = 1.2, the images showed significant distortion, as the
output values exceeded the maximum intensity limit of 1, leading to
potential image artifacts (Supplementary Figure S1).

Although gamma and logarithmic corrections could make the
image clearer and reduce image distortion, the artifacts still
appeared, especially in gamma-corrected images, where the
artifacts were more pronounced (Figure 3). To address the
artifacts that affected the quality of dehazed images, a hybrid
correction approach, referred to as local hybrid correction
(LHC), was proposed. LHC applies gamma correction to high-
contrast regions and logarithmic correction to low-contrast
regions of the dehazed image. The key to LHC lies in
determining the boundary between high and low contrast, known
as the contrast threshold. In the previous analysis, the cumulative
distribution function (CDF) of Weber contrast for the dehazed

image was calculated, revealing the contrast values for the majority
of pixels. Since artifacts typically occurred in high-contrast regions,
and most pixels in dehazed images were in low-contrast regions in
near-ground remote sensing images, the contrast value
corresponding to 90% of the CDF was selected as the threshold.
In subsequent experiments, LHC was applied using this threshold
and compared with results from different contrast thresholds (such
as CDF = 82%, CDF = 90%, CDF = 95%) to demonstrate the
operational process and effects. For all images processed with LHC,
the local window size was set to 10 × 10, the gamma function
exponent was set to 1.2, and the base of the logarithmic function was
set to 3. The results of LHC with thresholds 0.27 (CDF = 82%), 0.36
(CDF = 90%) and 0.45 (CDF = 95%) were showed in Figures 4A–C,
and the results of thresholds 0.20 (CDF = 82%), 0.30 (CDF = 90%)
and 0.40 (CDF = 95%) were shown in Figures 4D–F, respectively.
The results indicated that as the threshold decreased, the images
became darker, suggesting that more pixels were affected by gamma
correction. By comparing Figure 4 with Figure 3, it was found that
artifacts in the dehazed image are notably reduced with LHC. This
suggests that LHC may help mitigate artifacts. We would
demonstrate this with subsequent operations.

2.5 Additional post-processing

In addition to the previously mentioned corrections, color
restoration techniques could adjust the image’s color distribution
to improve its appearance, making it more visually consistent with
expected color balances. Similarly, filtering techniques, such as
bilateral filtering, were used to reduce noise and artifacts, while
striving to preserve important edge details. In our experiment, white
balance correction was applied to adjust color distortions, and
bilateral filtering was used to reduce noise while maintaining
edge clarity (Mirzaee et al., 2024; Krishnaraj and Palanisamy,
2024). Subsequently, the overall brightness and contrast of the
image were fine-tuned to enhance the clarity of the dehazed
image, producing the clearest possible visual representation. The
results indicated that images processed with logarithmic correction
exhibited clearer detail compared to those processed with gamma
correction, particularly in Figure 5B. While the depth of the artifacts
was similar. However, while the white balance correction and
bilateral filtering were applied to the dehazed images after the
LHC operation, they showed negligible improvement in the

FIGURE 4
Local hybrid correction (LHC) after DCP. The gamma correction to high-contrast regions set γ = 1.2 and the logarithmic correction to low-contrast
regions set a= 3.Whenwe processed the LHCon all these images, the contrast threshold T is as follows: (A) T=0.36; (B) T=0.27; (C) T=0.45; (D) T=0.3;
(E) T = 0.2; (F) T = 0.4.
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image quality, but fine-tuning of the contrast and brightness led to a
noticeable enhancement of clarity (Figure 6). It was also observed
that images processed with LHC, using the contrast threshold
corresponding to 90% of the CDF (Figures 6A, D), were clearer
in details and exhibited lighter artifacts compared to other contrast
thresholds and those processed with gamma or logarithmic
correction. These results suggest that LHC can effectively reduce
the artifacts and improve image quality when the appropriate
threshold is applied. Subsequently, further investigation would be
carried out to understand the specific impact of LHC on artifact
reduction and clarity improvement.

2.6 Multi-exposure fusion

To examine whether the advantages of LHC in attenuating
artifacts and clarifying images persisted after subsequent image
quality optimization operations, we applied a multi-exposure
fusion (MEF) method to the dehazed images and evaluated the
results. TheMEF technique utilizes two parameters: α, which adjusts
the spatial frequency or contrast of the exposure images, and β,
which is the weight factor for adjusting exposure levels (Han H.
et al., 2024). In our experiment, we used α = 1.2 and β = 40. The
images processed with DCP (ω = 0.85 and P = 0.1%), gamma or

FIGURE 5
The results of image dehazing by combining DCP, correlation correction, white balance correction and bilateral filtering. Images (A, C) were
processed by gamma correction with γ = 1.2; (B, D)were processed by logarithmic correction with a = 3.0. The red boxes in the images mark the regions
selected for magnified observation. Themagnified white flowers and tops of the buildings in the top-left corners are used to compare the detail clarity of
different dehazed images, while the magnified boxed images in the top-right corners are used to compare the depth of artifacts in different
dehazed images.

FIGURE 6
The results of image dehazing combined with DCP, LHC and fine-tuning of the contrast and brightness. The images (A–F) were the results of
processing fine-tuning of the contrast and brightness in Figures 4A–F.
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logarithmic correction, and LHC were subjected to MEF, as shown
in Figure 7. The results showed that MEF improved image clarity.
However, images processed with logarithmic correction (Figures 7G,
I) exhibited slightly clearer details compared to gamma correction
(Figures 7A, C). This effect was observed consistently after white
balance correction and bilateral filtering, as shown in Figures 7B, D,
H, J. When comparing the LHC with gamma and logarithmic
corrections, it was found that images processed with LHC
(Figures 7E, K) exhibited more uniform brightness after MEF,
and these resulted in lighter artifacts and slightly improved detail
clarity (Figures 7F, L). These findings suggested that LHC can help
reduce the severity of artifacts while improving image quality.

2.7 Transmittance refinement

To demonstrate the advantages of the LHC method in
attenuating artifacts and enhancing image detail clarity, it will be
compared with the guided filtering method in the following sections.
In the dehazing process, the initial transmittance estimate can be
relatively coarse. To refine this, guided filtering is applied using a
grayscale image (converted from the color image) as a guide,
improving the accuracy of the transmittance estimate and thus
enhancing the quality of the dehazed image. This process helps
create a more realistic and natural image by reducing artifacts and
preserving important image details. In the experiment, guided
filtering was applied to the images after DCP (ω = 0.85 and r =
0.1%) and gamma or logarithmic correction. The formula for the
refined transmittance after guided filtering is given by:

trefined x( ) � 1
Ωk| | ∑

k∈Ωk

akIgray x( ) + bk( ), (10)

where Ωk is the local window centered at pixel k, |Ωk| is the total
number of pixels within the window, and Igray(x) is the guide
image, typically the grayscale map derived from the original haze

map. The parameters ak and bk control the linear transmittance, and
a regularization parameter ε is introduced to avoid excessive
smoothing of high-frequency details (Wang J. et al., 2024). For
the purpose of the experiment, the local window radius was set to 60,
and the regularization parameter ε = 0.001, based on prior studies
that balanced edge preservation with noise reduction. After applying
the guided filtering (Equation 10), the refined transmission maps
showed smoother edges in the grayscale images Figure 8 compared
to the rough initial transmission maps (Figure 11), while still
maintaining local structural details. The images processed with
guided filtering (as shown in Figure 9) demonstrated improved
clarity, particularly in the images processed with logarithmic
correction, which were clearer and showed more detailed
information than those processed with gamma correction.
However, they showed similar artifact depth with gamma
correction. This effect remained even after the subsequent
application of MEF, white balance correction and bilateral
filtering (Figures 9C, F, I, L). There is no significant difference in
the artifact depth and image detail clarity between the results of the
guided filtering after logarithmic correction and LHC operation
(comparison among Figures 9I, L, 7F). This suggested that the LHC
method attenuates artifacts similarly to guided filtering but with
simpler and more efficient operation.

3 Experiment results

3.1 Quantitative analysis of dehazed images

To quantitatively evaluate the advantages of the LHC method in
image dehazing, we conducted an analysis based on four key texture
metrics derived from the gray-level co-occurrence matrix (GLCM)
of the dehazed images: contrast, correlation, homogeneity, and
entropy, which were particularly suitable for the evaluation of
local features of dehazed images (Saini and Nagpal, 2024).

FIGURE 7
Dehazing processes of combining DCP, correlation correction and multi-exposure fusion (MEF). (A, C) show the results of MEF with α = 1.2 and β =
40 after gamma correction with γ= 1.2; (G, I) show the results of MEFwith α= 1.2 and β = 40 after logarithmic correction with a= 3; (E, K) show the results
of MEF with α = 1.2 and β = 40 after LHC with contrast threshold corresponding to 90% of the CDF; (B, D, H, J) show the final results after white balance
correction and bilateral filtering; (F, L) show the final results after fine-tuning the contrast and brightness.
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Contrast measures the intensity of local variations in the image, with
higher values typically indicating sharper details and more
pronounced texture (Du et al., 2024; Zhang et al., 2017).
Correlation evaluates the linear dependence between pixel values,
where higher values reflect a more structured and consistent texture.
Homogeneity quantifies the similarity of pixel pairs, with higher
values signifying smoother and more uniform regions, often
associated with less noise. Finally, Entropy measures the
complexity and uncertainty of the image content, where higher
entropy values indicate more intricate and detailed textures.

The results of the quantitative evaluation for the dehazed images
are presented in Table 1. Based on these results, Figures 6, 7F, L,
which were processed with the LHC method, exhibit a balanced
advantage in terms of the GLCM metrics. These images show
moderate contrast, which helps preserve fine image details while

avoiding the distortion that can result from over-sharpening.
Specifically, Figure 6D (contrast = 615.20) and Figure 9L
(contrast = 492.46) achieve a balance between detail retention
and preventing excessive sharpness, which prevents unwanted
artifacts. Additionally, the lower homogeneity and higher entropy
values observed in these images suggest more texture details and
greater image complexity. For example, Figure 6A has an entropy
value of 14.73, indicating that it contains more intricate texture
patterns, making it suitable for remote sensing tasks that require
high detail and complexity. But moderate correlation made the
texture keep a good consistency, and this made the artifacts less
pronounced in Figure 6A. In contrast, Figure 7C, which was
processed using gamma correction, exhibits extremely high
contrast (1,435.22) and entropy (15.72), and the lowest
homogeneity, leading to significant distortion. While higher

FIGURE 8
Refined transmission maps performed by guided filtering. (A) Refined transmission map for the field scene image; (B) Refined transmission map for
the urban scene image.

FIGURE 9
The dehazing processes of combining DCP, gamma or logarithmic correction, guided filtering, MEF, white balance correction and bilateral filtering.
(A, D) guided filtering applied after gamma correction with γ = 1.2; (G, J) guided filtering applied after logarithmic correction with a = 3; (B, E, H, K) MEF
with α = 1.2 and β = 40; (C, F, I, L) white balance correction and bilateral filtering.
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contrast can sometimes enhance image sharpness, in this case, it
causes visual artifacts that compromise the quality of the image. In
comparison, Figure 9, which was processed using guided filtering
after gamma or logarithmic correction, has lower contrast values,
higher correlation, and lower entropy, resulting in a smoother image
appearance but at the cost of a lack of sufficient detail and
complexity, which limits its applicability for analysis tasks that
require a more nuanced understanding of the image content.

Therefore, the LHC method, when used as post-processing for
dehazed images after DCP, demonstrates clear advantages in terms
of detail representation, texture consistency, and complexity. The
LHC-processed images not only preserve finer details but also
exhibit more complex and visual lighter textures, which are
crucial for tasks that demand high levels of detail and
sophistication, such as near-ground remote sensing analysis.

3.2 The attenuation coefficient of the
atmosphere

To accurately calculate the atmospheric attenuation coefficient
in haze conditions near the ground and restore the actual scene map,
it is essential to compare both the experimental and empirical values
of the attenuation coefficient of light in hazy air and to analyze the
causes of any deviations between them. In this study, we processed a
series of near-ground remote sensing haze images using the
promising method (DCP, LHC, and fine-tuning of the contrast
and brightness), based on the results of quantitative analysis. The
resulting dehazed images are shown in Figure 10. These images were
chosen to represent real-world scenes, including agricultural land,
forests, and urban environments. The results demonstrated that the
LHC method significantly improves image clarity and suppresses
noise across diverse environmental contexts, validating its practical
utility for remote sensing tasks. The rough transmission maps for
each haze image were initially calculated using appropriate
transmittance and atmospheric light parameters as defined in
Equation 6. To refine these estimates, 22 representative plant
sites were selected from the rough transmission maps for
transmittance calculation, based on visual inspection and
comparison with grayscale reference scales by image processing
software in Python (see Figure 11). The atmospheric attenuation
coefficients (βexpt) for the 22 plant sites were then calculated using
the theoretical transmittance formula t(x) � e−βx, where the
transmittance t(x) was substituted with the values derived from
the rough transmission maps. The distance (x) from the scene to the
camera was calculated as mentioned in Section 2.1. For the empirical
values, the attenuation coefficient (βemp) was determined by
substituting the measured visibility and the distance x (as
mentioned in Section 2.1) into the empirical atmospheric
attenuation equation (Equation 2).

To simplify the calculations, the wavelength of 550 nm (green
light) was chosen, as this wavelength is commonly used in
atmospheric studies and corresponds well with the reflection
properties of vegetation, which was the primary feature of
interest in our plant sites. The green plants in the images were
selected as representative of areas that primarily reflect green light.
Finally, we compared the experimental and empirical values and
calculated the deviations using error assessment methods. TheT
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results are presented in Table 2. It was found that the experimental
attenuation coefficients (βexpt) generally increased with distance (x),
and the deviations between the experimental and empirical values
also increased as distance increased. These findings suggest that

while the experimental method provides reasonable estimates, there
is a growing discrepancy with increasing distance, which could be
attributed to factors such as atmospheric scattering and
measurement limitations that need further investigation.

FIGURE 10
Dehazing of near-ground remote sensing images. (A) Original haze images; (B) Dehazing using dark channel prior (DCP); (C) Image after DCP and
LHC; (D) Image after DCP, LHC, and fine-tuning of the contrast and brightness.
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3.3 Optimization of the atmospheric
attenuation model

The mathematical relationships between the atmospheric
attenuation coefficients (both empirical and experimental)
and visibility are depicted in the scatter plots in Figure 12.
By fitting these experimental values, the optimized

transmittance attenuation curve was derived, expressed
as follows:

βexpt V( ) � 4.0879
V0.989

(11)

The coefficient of determination (R2 = 0.9874) indicates a strong
correlation between the experimental data and the optimized model.

FIGURE 11
Rough transmission maps for scenes 1 to 22. (A) Rough transmission map for the field scene image; (B) Rough transmissionmap for the urban scene
image; (C–A) Rough transmission maps for the other nine scene images.
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This suggests that the optimized Equation 11 fits the experimental
data well. However, while the model demonstrates a good fit under
specific experimental conditions, its applicability as a general
atmospheric attenuation coefficient model should be further
validated. Additional testing in diverse environmental conditions
and across different wavelengths would be necessary to assess its
robustness and generalizability.

4 Discussion

This study explored and developed a simple yet efficient
dehazing method for near-ground remote sensing images, with a

focus on improving image clarity, reducing artifacts, and preserving
fine details. The dark channel prior (DCP) method, which leverages
the principle that pixels in haze-free images typically exhibit
relatively low intensity in the dark channel, proved particularly
useful for initial haze removal. While DCP has been shown to be
effective in many studies (Han Y. et al., 2024; Suo et al., 2023), it is
important to note that its performance may degrade due to the
decrease in clarity and the formation of artifacts. Thus, while DCP is
a useful starting point for haze removal, additional methods are
often required to enhance image quality further.

To further improve the clarity of image details, gamma and
logarithmic corrections were applied. Our analysis found that
logarithmic correction was more effective than gamma correction
in enhancing dark regions of the image, which was particularly
crucial for remote sensing image analysis, where fine details in low-
light areas were often obscured by haze. However, this result differed
from those found in the studies by Suo et al. (2023) and Wang and
Yang (2022), and the discrepancy may be due to differences in haze
conditions or other environmental factors. This highlighted the need
for further investigation into how different haze conditions affect the
effectiveness of these corrections.

Despite the improvements in image clarity and distortion
reduction, both gamma and logarithmic corrections introduced
noticeable artifacts. In particular, gamma-corrected images
exhibited more pronounced artifacts, likely due to excessive
contrast enhancement, which may led to distortion in the final
images. Although other post-processing techniques, such as multi-
exposure fusion (MEF) and guided filtering, played an important
role in retaining image details, reducing artifacts and enhancing
overall image quality, they often resulted in images with lower
contrast and higher correlation (Li, 2023; Li et al., 2022; Mu
et al., 2024; Deng et al., 2021). This smoothing effect diminished
the image’s complexity and fine detail. These results indicated that
applying a uniform correction to the entire image using the gamma

TABLE 2 Comparison of the atmospheric attenuation coefficients between empirical and experimental values.

Scene 1 2 3 4 5 6 7 8 9 10 11

V(m) 1,505 1,505 1,103 1,103 1,430 1,430 1,571 1,571 1,460 1,460 1,407

βemp (/km) 2.60 2.60 3.54 3.54 2.73 2.73 2.49 2.49 2.68 2.68 2.78

x(m) 121 465 160.1 330.2 78 400.4 153 450.4 250.3 583 230.3

t(x) 0.72 0.27 0.56 0.30 0.81 0.32 0.68 0.31 0.50 0.20 0.50

βexpt (/km) 2.71 2.82 3.62 3.65 2.78 2.86 2.52 2.60 2.73 2.76 3.01

Δ(%) 4.50 8.38 2.23 2.92 1.67 4.47 1.19 4.50 2.04 3.08 8.45

Scene 12 13 14 15 16 17 18 19 20 21 22

V(m) 1,407 1,250 1,250 1,821 1,821 1,120 1,120 871 871 1,403 1,403

βemp (/km) 2.78 3.13 3.13 2.15 2.15 3.49 3.49 4.49 4.49 2.79 2.79

x(m) 470.5 105 215 52 260.3 190.2 320.6 80.1 400.2 250.4 540

t(x) 0.24 0.71 0.49 0.89 0.56 0.5 0.3 0.69 0.15 0.48 0.2

βexpt (/km) 3.04 3.26 3.32 2.24 2.30 3.65 3.76 4.64 4.74 2.94 2.98

Δ(%) 9.26 4.28 6.07 4.31 7.06 4.50 7.77 3.21 5.53 5.35 6.96

Note: the symbol Δ in the table represents deviation, calculated as Δ = (βexpt-βemp)/βemp, where βexpt is the experimental value and βemp is the empirical value.

FIGURE 12
Scatter plots showing the relationship between the atmospheric
attenuation coefficients (empirical and experimental values) and
visibility. The curves represent the optimized transmittance
attenuation model fitted to the experimental data.
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and logarithmic corrections is imperfect for detail enhancement and
artifact reduction. Localized correction methods targeting these
issues are needed. Therefore, it is crucial to strike a balance
between smoothness and detail preservation in remote sensing
image processing, a challenge that traditional dehazing methods
often struggle with.

The local hybrid correction (LHC) method, applied as a post-
processing step to the dehazed images, proved to be a promising
solution for mitigating these artifacts. Unlike gamma or logarithmic
corrections, which adjust overall sharpness and amplify some noise,
LHC applies gamma correction to high-contrast regions and
logarithmic correction to low-contrast regions of the dehazed
image. This approach effectively preserved image details while
suppressing noise. The choice of contrast threshold is a critical
factor in LHC, and our results indicated that the contrast value
corresponding to the 90% cumulative distribution function (CDF)
significantly improved image sharpness and reduced artifacts.
However, the optimal threshold may vary for different dehazed
images, and closely related to the original hazy images. While the
LHC method is primarily a post-processing correction technique
applied after DCP, its optimal threshold is indirectly influenced by
imaging conditions, such as haze intensity, camera resolution, and
spectral characteristics of the sensor. Meanwhile, its effectiveness is
also influenced by the quality of the input hazy image, which
depends on factors such as light scattering, atmospheric pressure,
humidity and aerosol concentration during image acquisition. These
factors impact the initial haze formation and optical properties of
the atmosphere, and while they are more relevant to the dehazing
process itself, their effects on the dehazed images may affect the
subsequent corrections made by LHC. We have highlighted these in
our study while also emphasizing the need for testing the LHC
method on dehazed images obtained from diverse environmental
conditions, such as urban, arid, and mountainous landscapes. So,
this study also demonstrated the effectiveness of the LHCmethod in
improving the clarity of dehazed images across a variety of real-
world scenarios, including agricultural land, forests, and urban
environments. These findings validate the practical utility of the
LHCmethod for land management, environmental monitoring, and
urban planning. Further research should focus on quickly
determining the optimal threshold for different remote sensing
images and assessing the method’s robustness under different
atmospheric conditions to maximize the performance of the LHC
method in diverse real-world applications.

Additionally, the white balance correction and bilateral filtering
applied to the dehazed images after the LHC operation showed
negligible improvement in image quality, suggesting that LHC may
have already optimized both the color and denoising aspects of the
image. This further underscored the superiority of LHC in noise
suppression and efficient correction for dehazed images. Moreover,
this study also highlighted the similarities and differences between
guided filtering and the LHCmethod. Both were capable of reducing
noise, but guided filtering sacrificed detail and contrast in the
process, limiting its application in tasks that require complex
image analysis. In contrast, the LHC method reduced noise while
better preserving image details, making it more suitable for
applications where detail retention was crucial. Therefore, these
methods are suited for different dehazing tasks: guided filtering is
more appropriate for noise reduction in relatively simple

environments, while LHC is ideal for high-quality image
enhancement in detailed analysis or remote sensing tasks.
Nevertheless, additional post-processing may still provide
marginal improvements, and further research could explore the
interactions between LHC and other post-processing techniques.

Although the LHC method significantly improves the quality of
dehazed images, evaluating its computational efficiency is essential,
particularly for real-time remote sensing applications. To assess its
efficiency, we compared the processing time of the LHC method
with that of traditional gamma and logarithmic corrections under
controlled conditions, including consistent hardware and dataset
sizes (Supplementary Tables S1, S2). Our results indicate that the
total processing time of the LHC method is generally shorter than
gamma and logarithmic corrections for images of similar size, which
suggests its relative computational advantage. However, for large-
scale remote sensing datasets, such as aerial and satellite imagery, the
processing time of the LHCmethod is expected to grow linearly with
data size, assuming no major bottlenecks. While this linear growth is
manageable for moderately sized datasets, optimizing
computational load becomes critical for real-time applications.
This could include scenarios where high-resolution images or
time-sensitive decision-making is required, such as monitoring
environmental changes or urban planning. Further research is
needed to validate the scalability of the LHC method under
diverse conditions, including varying resolutions, environmental
factors, and sensor types. Additionally, future studies should
explore strategies to enhance algorithm performance through
parallel computing, GPU-based acceleration, or other
optimization techniques. Such advancements would improve the
practicality of the LHC method for large-scale, real-world remote
sensing applications.

In our study, we also examined the behavior of the atmospheric
attenuation coefficient. We observed that the experimental
attenuation coefficient (βexpt) increased with distance, leading to
greater deviations from empirical values. This underscored the
complexity of atmospheric scattering and its significant effect on
dehazing accuracy, particularly at larger distances where haze-
induced distortions become more pronounced. These findings
were in agreement with Tian’s study (Li et al., 2024), which also
highlighted the challenges posed by atmospheric scattering in
remote sensing.

We also explored the optimization of the transmittance
attenuation model based on initial transmission maps, which was
critical for accurately modeling haze in remote sensing images.
Recent studies have focused on optimizing the transmittance
attenuation curve using various techniques such as weighted
multi-exposure fusion (Gao et al., 2019), deep learning-based
deblurring methods (Deng et al., 2021), and considering
environmental factors like visibility, relative humidity, and
aerosol particle size distribution (Peng et al., 2020; Zhang et al.,
2024). In contrast, our approach leveraged green landscapes and the
reflected 550 nm light from these landscapes to optimize the
attenuation coefficient model, offering a more realistic
representation of real-world conditions. However, we
acknowledge that its applicability to other wavelengths or non-
verdant environments remains a limitation and requires further
investigation. While this model provides promising results, future
work should evaluate its performance across various environmental
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conditions, such as urban, arid, and mountainous regions. These
diverse landscapes present unique challenges, including differences
in atmospheric scattering, aerosol concentration, and terrain
complexity. Additionally, we recognize the potential
complementarity of our method with other techniques, such as
deep learning, which could further enhance its robustness. Future
studies should also explore refining the model to optimize for other
wavelengths, which could potentially improve its performance
across a broader range of atmospheric conditions.

5 Conclusion

In this study, we proposed an efficient method to enhance the
dehazing quality of near-ground remote sensing images, improving
clarity, reducing artifacts, and preserving fine details. The local
hybrid correction (LHC) technique outperformed traditional
methods like gamma and logarithmic corrections by enhancing
sharpness and reducing artifacts, making it especially useful for
applications in land resource monitoring, agricultural analysis, and
urban planning. However, further testing under varied
environmental conditions and with diverse datasets is needed to
fully assess its robustness.

We also investigated the behavior of the atmospheric
attenuation coefficient, observing that it increased with distance
and deviated from empirical values at longer ranges. This
underscores the need to refine the transmittance attenuation
model for better dehazing. Our optimization using 550 nm
wavelength reflections from green landscapes showed promising
results, aligning well with real-world conditions. However, its
applicability to other wavelengths and non-verdant environments
requires further study.

Future research should expand the attenuation model to include
a wider range of atmospheric conditions and wavelengths, and
explore the combination of LHC with the optimized attenuation
model for improved remote sensing accuracy. Additionally,
enhancing the LHC method’s computational efficiency, especially
for large-scale datasets like aerial and satellite imagery, is crucial for
real-time applications. Optimizing processing speed through
parallel computing or GPU-based acceleration could further
improve its practicality for time-sensitive tasks. This study lays
the groundwork for future advancements in remote sensing
dehazing, with potential impacts on environmental monitoring,
land management, and urban planning.
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