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Introduction: Factors such as (1) the number of satellite images available for a
specific study and (2), the applicability of these images in terms of cloud cover,
can reduce the overall accuracy of time series studies from earth observation. In
this context, the Landsat 8 dataset stands out as one of the most widely used and
versatile datasets for time series analysis, building on the strengths of its
predecessors with its advanced features. However, despite these
enhancements, there is a significant gap in the literature regarding a
comprehensive assessment of Landsat 8’s performance. Specifically, there is a
need for a detailed evaluation of image availability and cloud cover percentages
across various global paths and rows.

Methods: To address this gap, we utilized the Landsat 8 Collection 2 dataset
available through Google Earth Engine (GEE). Our approach involved filtering the
dataset to focus on Landsat 8 images captured between 2014 and 2023 across all
paths and rows. Using the Earth Engine Python API, we accessed and processed
this data, extracting key information such as the number of available images and
their associated cloud cover percentages.

Results and Discussion:Our analysis of Landsat 8 image availability revealed that
regions such as Australia, parts of Africa, the Middle East, Western Asia, and
Southern North America benefit from a higher frequency of Landsat imagery,
while Northern Asia and Northern North America have fewer images available.
Latitude-specific trends show that areas between 55 and 82 degrees receive
notably fewer images. We also found that regions like central Australia, northern
Africa, and the Middle East generally experience lower cloud cover, while central
Africa, and northern parts of Asia, Europe, and North America have higher
cloudiness. Latitudinal trends show a significant drop in cloud cover from
approximately 90% at latitudes -60 to -20 degrees to below 10%, with a rise
near the Equator. Cloud cover decreases again from 0 to 20 degrees latitude but
increases between 20 and 60 degrees. Europe has the highest average cloud
cover at 42.5%, impacting image clarity, whereas Africa has the lowest average at
23.3%, indicating clearer satellite imagery.
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Introduction

Identifying and describing alterations over time represents the
initial instinctive action in pinpointing the catalyst behind such
transformations and comprehending the process of change. Satellite
remote sensing has historically served as an effective tool for
detecting and categorizing alterations in the state of the Earth’s
surface across periods (Orusa et al., 2023a; Verbesselt et al., 2010).
Continuous Earth Observation time series provide valuable insights
into the fluctuations of vegetation over time, spanning from regional
to global scales. However, the estimation of trends relies on several
factors, including the length of the time series, its temporal and
spatial resolution, the quality of the measured data, and the
statistical method employed (Forkel et al., 2013). Ensuring the
availability of accurate and consistent datasets is a fundamental
principle in guaranteeing reliable results for vegetation monitoring
and trend analysis (Huang et al., 2021; Liu et al., 2018; Qiu et al.,
2015; Rahimi, 2024; Tian et al., 2019; Verbesselt et al., 2010;Waldner
et al., 2015).

The effectiveness of image classification is most clearly
demonstrated by using multiple images of the same region
acquired over time. Numerous studies have highlighted the value
of multi-temporal satellite images in improving the accuracy of
classifying various types of vegetation (Lasaponara and Lanorte,
2012; Orusa et al., 2024a; b; Verbesselt et al., 2010). Different
vegetation types exhibit distinct phenologies, meaning they have
different life cycles. As a result, vegetation can be more easily
distinguished when using multi-temporal satellite images
compared to analyzing a single image (Guyet and Nicolas, 2016).
Over the past decades, satellite image series have been captured
either with high temporal resolution (daily coverage at a kilometer-
scale spatial resolution) or with high spatial resolution (weekly
coverage at a meter-scale spatial resolution) (Petitjean et al.,
2012; Simoes et al., 2021).

However, land cover mapping in regions with frequent rain and
cloud cover, presents significant challenges, particularly when
dealing with small agricultural parcels. Clouds and their shadows
often reduce the effectiveness of optical satellite imagery and
complicate time series analysis (Hu et al., 2020; Hu et al., 2019;
Jain et al., 2013; Rahimi, 2024; Rahimi and Jung, 2024). Detecting
and removing clouds has long been a critical concern in remote
sensing image processing. Earlier methods for cloud removal
primarily focused on individual or small-scale images,
constrained by limited data availability and less accurate cloud
detection techniques (Hu et al., 2020; Li et al., 2019; Rahimi
et al., 2021; Zhao et al., 2022). Detecting clouds is, therefore, one
of the initial challenges faced when attempting to automatically
process optical remote sensing data.

In a global analysis, King et al. (2013) collected cloud data from
the Moderate Resolution Imaging Spectroradiometer (MODIS) over
12 years from Terra and over 9 years from Aqua. They found that
MODIS estimated the cloud fraction at approximately 67%, with a
slightly higher cloud coverage over land in the afternoon and less
over the ocean during the same period globally. There was a minimal
difference in global cloud cover between the Terra and Aqua
satellites. Specifically, the cloud fraction over land averaged
around 55% and exhibited a distinct seasonal pattern, while
ocean cloudiness was notably higher at about 72% with less

seasonal variation. Both Aqua and Terra showed similar zonal
cloud top pressures. Therefore, in optical remote sensing studies
based on time series analysis, we encounter two primary challenges:
1) the availability of data, or simply the number of satellite images
for the study area, and 2) the usability of these images, which is often
impacted by cloud cover or the presence of clouds.

Landsat holds the distinction of being the longest-running Earth
observation satellite program at medium resolution, with its first
images captured in 1972. The Landsat series offers the most
extensive temporal record of space-based surface observations,
with data collected from most land areas at least once per year
since 1972. The release of the Landsat archive by the United States
Geological Survey (USGS) in 2008 significantly increased the
scientific use of Landsat data. However, Landsat missions are
designed to revisit the same location every 16 days, and various
factors like weather conditions and satellite-related issues can
impact data collection (Orusa et al., 2023b; Rahimi et al., 2022;
Tolnai et al., 2016; Zhang et al., 2022).

Landsat-8 was successfully launched on 11 February 2013. The
satellite is equipped with the Operational Land Imager (OLI) and
Thermal Infrared Sensors (TIRS). Landsat 8 builds upon the
impressive 40-year legacy of the Landsat program, offering
advanced features such as new spectral bands for blue and cirrus
cloud detection, two thermal bands, enhanced sensor signal-to-noise
ratio, improved radiometric resolution, and an optimized duty cycle
that enables the collection of a substantially higher number of
images each day (Loveland and Irons, 2016; Lymburner et al.,
2016; Roy et al., 2014). Notably, Band 9, designed to assess
reflectance from cirrus clouds, is included. Band 9 displays the
smallest range, but it’s one of the most intriguing aspects of Landsat
8. It spans a very narrow wavelength band: just 1370 ± 10 nm. It
provides information about cloud presence or absence (Shen
et al., 2015).

However, there is a gap in the literature regarding the assessment
of Landsat 8’s applicability in terms of the number of available
images and the percentage of cloud cover for each scene across all
paths and rows globally. To date, several studies have focused on
using Landsat data for time series analysis, specifically examining the
impact of clouds on its effectiveness at smaller scales. For instance,
Holden Holden and Woodcock (2016) investigated Landsat 7 and
Landsat 8 data in their analysis of time series, assessing differences in
surface reflectance and cirrus cloud characteristics to determine how
substitutable Landsat 8 observations are within the long-term
archive. Their results revealed that although Landsat 8 provides
improved radiometric resolution, better cloud detection, and
enhanced geometric accuracy, any discrepancies in reflectance
between the two sensors in the current Landsat Climate Data
Record (CDR) need to be addressed or clarified in time series
analyses to avoid adverse effects.

Xu et al. (2022) also, examined and compared the performance
of three satellite sensors—PROBA-V, Landsat 8 OLI, and Sentinel-2
MSI—in tracking land cover change (LCC). Their analysis utilized a
unique dataset that included 4 years of global reference data
spanning from 2015 to 2018. The results revealed that, for
general global LCC monitoring, Landsat 8 OLI slightly
outperformed Sentinel-2, while PROBA-V was found to be the
least effective. The performance differences among the sensors
were consistent and were influenced by variations in data
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availability and the spectral regions observed. Specifically, Landsat
8 demonstrated greater accuracy in monitoring forested areas,
herbaceous vegetation, and water bodies, whereas Sentinel-2 was
particularly effective in monitoring wetlands.

This study aims to address a critical gap in understanding the
availability and cloud cover of the Landsat 8 dataset from 2014 to
2023 on a global scale, specifically for each path and row of the
satellite’s imagery. To achieve this, we systematically downloaded
two key pieces of information for every Landsat path and row each
year: 1) the total number of available images in the Landsat
8 Collection 2, and 2) the percentage of cloud cover associated
with each image, as indicated in the image metadata. By compiling
this data, we generated 20 shapefiles for each year, which illustrate
both the number of available images and their corresponding cloud
cover percentages for the various Landsat paths and rows. These
shapefiles serve as valuable resources for researchers, enabling them
to efficiently access essential information regarding any location on
Earth before initiating their studies.

Methods

Landsat 8 collection 2

This study used the “LANDSAT/LC08/C02/T1_L2” dataset
available in Google Earth Engine (GEE), which provides
atmospherically corrected Landsat 8 Level 2, Collection 2, Tier
1 surface reflectance and surface temperature data. This
collection uses data captured by the Operational Land Imager
(OLI) and the Thermal Infrared Sensor (TIRS) on board the
Landsat 8 satellite. The atmospheric corrections applied during
Level 2 processing remove effects such as haze and atmospheric
scattering from the Top of Atmosphere (TOA) reflectance, while
the surface temperature retrieval algorithm provides temperature
values from thermal bands. This preprocessing allows the dataset
to closely represent actual surface conditions, making it ideal for
applications like land cover classification, monitoring landscape
changes over time, and conducting time series analyses
(Crawford et al., 2023).

Belonging to the USGS Landsat Collection 2, the dataset has
undergone significant enhancements, including better
geolocation accuracy and refined radiometric calibration,
ensuring high consistency and reliability across all images.
This dataset spans the entire globe and has captured images
regularly since the launch of Landsat 8 in 2013, offering
researchers a robust foundation for examining environmental,
agricultural, and urban landscapes across various timeframes and
spatial scales. Given its Tier 1 classification, it meets stringent
standards for calibration and georeferencing, making it the
highest-quality option within the Landsat Collection 2, and
thus suitable for detailed environmental assessments and other
applications where precision is critical. However, users should
note a known limitation in the surface temperature data, where
potential inaccuracies related to cloud cover and cloud shadows
can affect the thermal bands. These issues, documented by
Crawford et al. (2023), are worth considering when
conducting analyses involving thermal measurements,
especially in regions prone to frequent cloud cover. The

quality and accuracy of this dataset enable its effective use in
complex analyses, providing insights into diverse surface
conditions worldwide.

Linking python to Google Earth Engine

To work with Google Earth Engine (GEE) within Python, we
use libraries like ‘geemap’ or the Earth Engine Python API (‘ee’),
which facilitate a seamless connection between Python and GEE’s
extensive geospatial datasets (Viani et al., 2024). The process
begins by installing the Earth Engine API and authenticating
access, setting up a secure link to GEE’s resources. Once
connected, we initialize the library in Python, which grants
access to GEE’s vast archives, including datasets like Landsat,
Sentinel, and MODIS. This integration allows us to interact with
these datasets directly in Python, enabling powerful geospatial
analyses across large temporal and spatial scales without the need
to store data locally.

Counting landsat 8 images and extracting
cloud cover information

To assess the availability of Landsat 8 imagery for specific
geographic coordinates (path and row) from 2014 to 2023, we
leveraged Google Earth Engine (GEE) and Python. First, we
accessed the entire Landsat 8 collection using the
‘ee.ImageCollection’ function, a method that allows us to filter
images based on multiple criteria, including date range and
location. By specifying our study period (2014–2023) and
defining the area of interest through path and row coordinates,
we isolated all relevant images in the Landsat 8 dataset. After
filtering the collection to include only images within our defined
spatial and temporal boundaries, we employed the `.size ()` function
to count the number of images that met these criteria. This function
provided a straightforward way to quantify image availability for
each path and row, offering insights into data consistency and
density over the specified time frame.

Each image in the Landsat 8 collection includes a set of
metadata properties, such as the percentage of cloud cover
over the area, stored in the ‘CLOUD_COVER’ attribute. This
information is crucial for evaluating image quality, as higher
cloud cover can limit the usefulness of the imagery for analysis.
We extracted the cloud cover metadata for each filtered image,
providing a way to assess image quality over time. In addition to
cloud cover, each image’s acquisition time (or timestamp) was
recorded. This allowed us to create a timeline of images,
capturing seasonal and annual variations in coverage that
could inform our study. Finally, to facilitate further analysis,
we organized the results into a structured dataset that included
the total image count, cloud cover percentages, and acquisition
dates. This dataset was exported as a CSV file, enabling easy
access, sharing, and use for subsequent analyses or project
documentation. By structuring the data this way, we ensured
it was ready for in-depth analysis, such as temporal studies of
cloud cover patterns or evaluating the frequency and distribution
of clear-sky images across the study area.
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Global landsat 8 data availability

To analyze global Landsat 8 data availability, we first compiled
relevantmetadata for each Landsat 8 image from [USGS LandsatWRS-
2 Scene Boundaries] (https://www.usgs.gov/media/files/landsat-wrs-2-
scene-boundaries-kml-file). This included gathering information on
cloud cover and acquisition dates, whichwe accessed through theUSGS
Landsat WRS-2 Scene Boundaries, available in a downloadable KML
file containing path and row identifiers for each scene globally with a
reference system ofWGS1984. Using these identifiers, we calculated the
total number of available images in each path and row on an annual
basis from 2014 to 2023. Additionally, we computed the average cloud
cover percentage per year for each path and row, providing insights into
image quality and availability across different regions and times.

We then integrated this calculated data with a shapefile representing
global Landsat path and row boundaries, aligning the metadata for each
path and row with its corresponding geographic boundaries. From this
enriched dataset, we created two types of visualizations: (1) a global map

displaying the number of Landsat 8 images available per path and row
and (2) a second map illustrating the average cloud cover percentage for
each path and row globally. These maps highlight regions with the most
extensive data coverage and areas where high cloud cover might limit
data usability. Finally, to explore trends related to latitude, we plotted
both the number of available images and average cloud cover percentages
across various latitudes, helping us understand how global image
availability and cloud cover vary geographically. This analysis allows
for identifying optimal data sources by region, improving our approach
for selecting cloud-free Landsat imagery for various applications.

Results

Global number and cloud percentage

Figure 1 illustrates the number of Landsat 8 images per path and
row for the year 2023 across different world regions: (a) Africa,

FIGURE 1
Number of Landsat 8 images per path and row in (A) Africa, Europe, and Asia, and (B)North America in the year 2023. Themap legend indicates that
certain paths and rows contain as many as 23 available images (blue). For the paths and rows highlighted in yellow, we observe that they have the
minimum number of images available.

Frontiers in Remote Sensing frontiersin.org04

Rahimi and Jung 10.3389/frsen.2024.1492534

https://www.usgs.gov/media/files/landsat-wrs-2-scene-boundaries-kml-file
https://www.usgs.gov/media/files/landsat-wrs-2-scene-boundaries-kml-file
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2024.1492534


Europe, and Asia, and (b) North America. The figure indicates that
up to 23 Landsat images can be expected annually for each path and
row, given that Landsat has a 16-day revisit period. The map legend
shows that some paths and rows indeed have up to 23 images. This
distribution highlights that certain regions, including Australia,
parts of Africa, the Middle East, Western Asia, and Southern
North America, receive a high frequency of Landsat imagery.
Conversely, Northern Asia and Northern North America
experience fewer Landsat images, indicating lower image
availability in these areas.

Figure 2 displays the cloud cover percentage of Landsat 8 images
per path and row for the year 2023, with separate panels for (a)
Africa, Europe, and Asia, and (b) North America. The cloud cover
percentage is categorized into 10 distinct classes. The figure reveals
that certain regions, such as central Australia, northern Africa, and
the Middle East, experience lower cloud coverage. Additionally, a
few paths and rows in southern South America also show relatively

low cloud cover. Conversely, areas with higher cloud coverage are
evident in regions like central Africa, as well as countries such as
Thailand and Indonesia. Northern parts of Asia, Europe, and North
America also exhibit increased cloud coverage.

Figure 3 provides an insightful look into the global distribution
of Landsat 8 imagery and cloud cover percentages relative to latitude
for the year 2023. Figure 3A shows a radar plot displaying the
number of Landsat 8 images available at various latitudes. The plot
ranges from −55–82° latitude, with the circle’s circumference
representing these latitudinal values and the radial distance from
the center indicating the frequency of imagery. The data reveal that
areas within latitudes of 55–82° receive a notably lower number of
Landsat images compared to other latitudinal zones.

Figure 3B presents the average cloud cover percentage of
Landsat images as a function of latitude. This plot demonstrates
several distinct patterns in cloud coverage across different latitudinal
zones. Between latitudes −60 and −20, there is a marked decrease in

FIGURE 2
Cloud cover percentage of Landsat 8 images per path and row in (A) Africa, Europe, and Asia, and (B) North America in the year 2023. The map
legend indicates that certain paths and rows, marked in red, have cloud cover percentages ranging from 0% to 9% in the images. The paths and rows
highlighted in blue exhibit the highest cloud cover percentages, falling between 60% and 90%.
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cloud cover percentage, dropping from approximately 90% to less
than 10%. This significant reduction indicates that Southern
Hemisphere mid-latitudes generally experience clearer skies
compared to more equatorial regions. Conversely, from −20 to 0°

latitude, the average cloud cover percentage increases, suggesting

that as one approaches the Equator, cloudiness becomes more
prevalent, likely due to higher moisture levels and conducive
atmospheric conditions for cloud formation.

Further, from latitudes 0–20°, there is a decrease in cloud cover
percentage, reflecting a reduction in cloudiness as one moves away

FIGURE 3
Global distribution of (A) Landsat 8 images and (B) Cloud cover percentage against latitude in the year 2023.
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from the Equator towards subtropical regions. This pattern might be
influenced by seasonal and climatic factors that affect cloud
formation. Finally, between latitudes 20 and 60°, there is a rise in
cloud cover percentage, indicating that as one moves towards higher
latitudes in the Northern Hemisphere, cloudiness increases. This
trend could be related to the influence of mid-latitude weather
systems and changing climatic conditions.

Table 1 provides an in-depth analysis of Landsat 8 imagery from
2014 to 2023, presenting three key metrics for each continent: the
mean number of images per path and row, the total number of
images, and the average cloud cover percentage. Overall, Table 1
illustrates significant regional variations in the availability and
quality of Landsat 8 imagery. The mean number of images and
the total count reflect the extent and frequency of satellite
observations, while the average cloud cover percentages provide
insights into the imaging conditions encountered across different
continents.

In terms of the mean number of Landsat 8 images per path and
row, Asia exhibits the highest value at 4372 images. This substantial
number underscores Asia’s extensive monitoring coverage and high
frequency of satellite passes, reflecting the continent’s large size and
diverse environmental conditions. In stark contrast, Australia shows
the lowest mean of 401 images per path and row, consistent with its
smaller land area and fewer paths covered by the satellite.

The total number of images further highlights these differences.
Asia leads with a total of 43,723 images, which is indicative of its vast
geographic coverage and high frequency of observations. This total
mirrors Asia’s high mean count per path and row. North America
follows with 25,574 images, showing significant data availability but
still less than Asia. South America has a total of 9,924 images,
reflecting a moderate level of imagery data. Europe accumulates
11,094 images, while Africa has 19,670 images, indicating substantial
but variable imagery coverage across different regions.

When examining average cloud cover percentages, Europe
stands out with the highest average at 42.5%. This suggests that a
significant portion of Landsat 8 images in Europe is affected by cloud
cover, which may impact the clarity of the data. Conversely, Africa
has the lowest average cloud cover percentage at 23.3%, indicating
relatively clearer conditions during satellite passes, which could
result in higher-quality imagery. South America follows with an
average cloud cover of 39.8%, while Asia and North America report
averages of 37.2% and 38.2%, respectively. Australia has a lower
average cloud cover percentage of 20.4%, reflecting relatively
favorable imaging conditions.

Discussion

This study successfully evaluated the applicability of Landsat
8 Collection Level 2 for time series analysis and identified two major
concerns: first, the number of available images, and second, the
percentage of cloud cover for each image per path and row over a
decade. First, we discuss the availability of Landsat 8 images per path
and row per year, which can reach a maximum of 23 images per path
and row. However, due to spatial overlap between Landsat paths and
rows, users can access more images if their study area falls within
these overlapping regions. Our analysis of Landsat 8 image
availability revealed varying patterns across different regions of
the world, including (a) Africa, Europe, and Asia, and (b) North
America. This distribution highlights that certain regions, such as
Australia, parts of Africa, the Middle East, Western Asia, and
Southern North America, receive a higher frequency of
Landsat imagery.

In contrast, Northern Asia and Northern North America
experience fewer Landsat images, indicating lower image
availability in these areas. Additionally, when examining the
number of Landsat 8 images available across various latitudes, we
observe that regions within latitudes 55–82° receive significantly
fewer images compared to other latitudinal zones. Consequently, in
certain regions of the world, there may be insufficient Landsat
8 images for time series analysis, even if all available images are
cloud-free and atmospherically corrected. Asia has the highest mean
number of Landsat 8 images per path and row, with 4,372 images,
highlighting its extensive monitoring and frequent satellite passes
due to its large size and diverse environments. In contrast, Australia
has the lowest mean of 401 images, aligning with its smaller land
area and fewer satellite paths. The total number of images reinforces
these differences: Asia leads with 43,723 images, reflecting its vast
coverage and high observation frequency, followed by North
America with 25,574 images. South America has 9,924 images,
Europe 11,094 images, and Africa 19,670 images, indicating
varying levels of data coverage across these regions.

The analysis of Landsat 8 image availability across different regions
reveals important challenges and opportunities for remote sensing
applications. While some regions benefit from a high frequency of
satellite imagery due to spatial overlap in the paths and rows, others face
significant limitations. This uneven distribution of images underscores
the difficulty in applying uniform remote sensing techniques globally, as
regions with lower image availability might lack the necessary data
density for robust analysis. Additionally, the differences in the total

TABLE 1 Mean number of Landsat 8 images per path and row, total number of images, and average cloud cover percentage from 2014 to 2023 for each
continent.

Continent Mean Num. P/S Sum of images Average cloud percentage

Africa 1967 (1) 19,670 23.3 (0.2)

Asia 4372 (6) 43,723 37.2 (0.4)

Australia 401 (2) 4016 20.4 (1.6)

Europe 1109 (3) 11,094 42.5 (1.3)

North America 2557 (12) 25,574 38.2 (1)

South America 992 (1) 9924 39.8 (1.1)
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number of images between continents, with Asia receiving the highest
number and Australia the least, highlight the varying levels of
monitoring intensity. This disparity may lead to gaps in
environmental monitoring and resource management, particularly in
regions with fewer images, thereby affecting the accuracy and reliability
of remote sensing studies in those areas. Overall, these findings
emphasize the need for tailored approaches in remote sensing that
account for regional differences in data availability and highlight the
importance of optimizing satellite data usage in
underrepresented regions.

Upon examining cloud cover percentages across different regions,
distinct patterns emerge. In regions such as central Australia, northern
Africa, and the Middle East, cloud cover tends to be lower, resulting in
clearer skies. Some areas in southern SouthAmerica also show relatively
minimal cloudiness. Conversely, higher cloud cover is noted in central
Africa, as well as in countries like Thailand and Indonesia. Northern
regions of Asia, Europe, and North America also experience increased
cloudiness. Our analysis also reveals clear latitudinal trends in cloud
cover. Between latitudes −60 and −20°, there is a significant drop in
cloud cover from approximately 90% to below 10%, indicating that
mid-latitudes in the Southern Hemisphere generally have clearer skies
compared to equatorial zones. As latitude shifts from −20 to 0°, cloud
cover rises, reflecting increased cloudiness near the Equator due to
higher humidity and conducive conditions for cloud formation.Moving
from 0 to 20° latitude, cloud cover decreases, suggesting clearer
conditions in subtropical regions. Finally, between latitudes 20 and
60°, cloud cover increases again, which may be associated with mid-
latitude weather systems and varying climatic conditions.

Regarding average cloud cover percentages, Europe has the
highest average at 42.5%, indicating frequent cloud cover that
may affect image clarity. Conversely, Africa has the lowest
average at 23.3%, suggesting clearer satellite imagery. South
America has a moderate average of 39.8% cloud cover, while
Asia and North America report averages of 37.2% and 38.2%,
respectively. Australia, with the lowest average cloud cover of
20.4%, offers the best conditions for clear imaging, reducing the
likelihood of cloud obstruction in satellite observations. The
examination of cloud cover percentages across various regions
and latitudinal zones reveals significant challenges for remote
sensing using Landsat 8 imagery. Cloud cover, a critical factor
affecting the quality of satellite data, varies considerably by
region and latitude, presenting both opportunities and limitations
for effective monitoring and analysis. Regions with lower cloud
cover, offer clearer imaging conditions. This reduced cloudiness is
beneficial for detailed observation and analysis, facilitating more
accurate environmental monitoring and change detection. However,
even within these regions, variability exists, and certain areas may
still experience intermittent cloud cover that could affect image
quality. In contrast, regions with higher cloud cover, face more
challenges. Persistent cloudiness in these areas can obscure satellite
observations, leading to gaps in data and potential inaccuracies in
analysis. This can be particularly problematic for studies requiring
continuous time series data, as frequent cloud cover may hinder the
acquisition of useable images.

Latitudinal trends further complicate the situation. The notable
decrease in cloud cover from latitudes −60 to −20 indicates clearer
skies in mid-latitude regions of the Southern Hemisphere, which can
be advantageous for satellite observations. Conversely, the increase

in cloud cover near the Equator (from −20 to 0° latitude) suggests
that tropical and subtropical regions experience more frequent
cloudiness due to higher humidity and conducive atmospheric
conditions. This trend may limit the effectiveness of remote
sensing in these regions, requiring careful planning and
potentially additional data processing to account for cloud
interference. The reduction in cloud cover from 0 to 20° latitude,
followed by an increase between 20 and 60° latitude in the Northern
Hemisphere, highlights the complex interplay of seasonal and
climatic factors influencing cloudiness. Mid-latitude weather
systems and varying climatic conditions contribute to increased
cloud cover in these higher latitudes, affecting the availability and
quality of satellite imagery. Overall, the variability in cloud cover
across different regions and latitudes underscores the need for
strategic planning in remote sensing projects.

Researchers must consider cloud cover when selecting study areas
and interpreting satellite imagery, as excessive cloudiness can
significantly degrade image quality and usability. To tackle these
challenges, advancements in cloud detection, image processing, and
the integration of supplementary data sources are essential for enhancing
satellite-based monitoring and analysis. One notable development is the
United States Geological Survey’s (USGS) Landsat Analysis Ready Data
(ARD), which aims to facilitate time series analysis. Qiu et al. (2018)
assessed the temporal consistency of this dataset and proposed several
processing improvements, focusing on data resampling, cloud and
shadow detection, Bidirectional Reflectance Distribution Function
(BRDF) correction, and topographic correction. Their findings
indicated that the updated cloud and shadow detection method (e.g.,
Fmask 4.0 versus version 3.3) moderately improved data consistency.

Additionally, Zhu and Helmer (2018) introduced Automatic Time-
Series Analysis (ATSA), a method for detecting clouds and cloud
shadows in multi-temporal optical imagery. The ATSA process
involves five key steps: (1) calculating cloud and shadow indices for
enhanced detection; (2) generating an initial cloud mask through
unsupervised classification; (3) refining the mask by analyzing the
time series of the cloud index; (4) estimating a potential shadow
mask based on geometric relationships; and (5) further refining the
shadow mask using the time series of the shadow index. This method
was validated with Landsat-8 OLI, Landsat-4 MSS, and Sentinel-2
imagery across three sites, comparing results to the established
Function of Mask (Fmask) technique used by the USGS.

Qiu et al. (2020) also developed a Cmask (Cirrus CloudMask) to
detect cirrus clouds in Landsat 8 imagery using time series data from
the Cirrus Band (1.36–1.39 μm). This algorithm identifies pixels
influenced by cirrus clouds by comparing model predictions to
actual Top-Of-Atmosphere (TOA) reflectance data. The study
aimed to clarify the definition of cirrus clouds within Landsat
observations, establishing criteria for classifying pixels affected by
cirrus clouds, which can significantly impact reflectance in other
spectral bands. The Cmask algorithm demonstrated a significant
reduction in errors, achieving an 8% error rate in distinguishing
cirrus clouds from clear observations, compared to 15% with prior
methods. Cao et al. (2020) introduced the AutoRegression to
Remove Clouds (ARRC) method, which innovatively utilizes the
autocorrelation present in Landsat time-series data. This technique
employs multi-year Landsat images, including partially cloud-
contaminated ones, during the cloud-removal process. ARRC
effectively addresses situations where substantial land cover
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changes over several years could negatively affect the autocorrelation
in Landsat time series data.

Conclusion

This study provides a comprehensive evaluation of the Landsat
8 Collection Level 2 data for time series analysis, revealing key insights
into image availability and cloud cover issues. Our findings highlight
two primary concerns that affect the utility of Landsat 8 imagery: the
number of available images and the percentage of cloud cover. We
found an uneven distribution in the number of available images which
poses challenges for comprehensive global monitoring, especially in
regions with lower image availability, potentially leading to gaps in
environmental data and analysis. Our analysis shows that certain
regions, experience relatively high cloud cover, complicating having
clearer satellite observations. Latitudinal patterns further complicate this
issue, with notable variations in cloud cover from the Southern
Hemisphere to the Northern Hemisphere. This study underscores
the importance of considering both image availability and cloud
cover in remote sensing applications. Tailoring remote sensing
approaches to account for regional differences and optimizing the
use of satellite data is crucial for improving the accuracy and
reliability of environmental monitoring and analysis. Improved
cloud detection methods and integration with other data sources
can help mitigate the impact of cloud cover and enhance the
effectiveness of Landsat 8 imagery for time series studies.
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