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Introduction: This paper presents a comprehensive analysis of rapeseed fields
mapping using Sentinel-1 (S1) time series data. We applied a time series alignment
method to enhance the accuracy of rapeseed fields detection, even in scenarios
where reference label data are limited or not available.

Methods: To this end, for five different study sites in France and North America,
we first investigated the temporal transferability of the classifiers across several
years within the same site, specifically using the Random Forest (RF) and
InceptionTime algorithms. We then examined the spatiotemporal
transferability of the classifiers when a classifier trained on one site and year
was used to generate rapeseed fields map for another site and year. Next, we
proposed an S1 time series alignment method to improve classification accuracy
across sites and years by accounting for temporal shifts caused by differences in
agricultural practices and climatic conditions between sites.

Results and discussion: The main results demonstrated that rapeseed detection
for 1 year, using training data from another year within the same site, achieved
high accuracy, with F1 scores ranging from 85.5% to 97% for RF and from 88.2% to
98.3% for InceptionTime. When classifying using one-year training data from one
site to classify another year in a different site, F1 scores varied between 48.8% and
97.7% for both RF and InceptionTime. Using a three year training dataset fromone
site to classify rapeseed fields in another site resulted in F1 scores ranging from
82.7% to 97.8% with RF and from 88.7% to 97.1% with InceptionTime. The
proposed alignment method, designed to enhance classification using training
and test data from different sites, improved F1 scores by up to 46.7%. These
findings confirm the feasibility ofmapping rapeseedwith S1 images across various
sites and years, highlighting its potential for both national and international
agricultural monitoring initiatives.
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1 Introduction

Mapping rapeseed fields plays a crucial role in agricultural
management as rapeseed being a major source for oilseed,
protein meal, livestock feed, and industrial liquid biofuels (Baka
and Roland-Holst, 2009; Duren et al., 2015). Accurately monitoring
the distribution and characteristics of rapeseed fields enables
farmers and decision-makers to make informed decisions
regarding fertilizer application, optimize harvest dates, and
estimate yield (Zhang et al., 2022).

The extensive volume of available earth observation data,
combined with machine learning (ML) techniques, has
demonstrated a significant ability to provide accurate monitoring
of croplands (Mercier et al., 2020; Huang et al., 2022; Shorachi et al.,
2022; Sun et al., 2024). In particular, the integration of remote
sensing and machine learning algorithms offers significant
advantages for rapeseed monitoring through both after-season
and mid-season classification (Maleki et al., 2024). Most satellite-
based rapeseed fields mapping methods using optical imagery rely
on the unique optical spectral signature of rapeseed (Wang et al.,
2018; Han et al., 2021a). Specifically, the distinctive yellow color of
rapeseed during its flowering stage has been utilized in various
studies for identifying rapeseed fields (Wang et al., 2018;
d’Andrimont et al., 2020; Han et al., 2021a; Chen et al., 2022).
Based on this spectral feature, the Ratio Oilseed Rape Colorimetric
Index (RRCI) and the Normalized Rapeseed Flowering Index
(NRFI) were developed by Wang et al. (2018) and Han et al.
(2021a), respectively. Meanwhile, methods using Synthetic
Aperture Radar (SAR) images rely on the period of high SAR
backscatter during stem elongation, inflorescence emergence, and
fruit development of rapeseed (Veloso et al., 2017; Ashourloo et al.,
2019; Maleki et al., 2023; 2024). Using these spectral and SAR
features, many studies have reported high accuracy in rapeseed
detection using training and test data from the same site (Pan et al.,
2013; Sulik and Long, 2015; Zhang et al., 2022; Maleki et al., 2023).

There are several challenges in rapeseed classification. One
challenge lies in the application of spectral index thresholds to
detect rapeseed. While thresholds from specific study sites can be
helpful, they may not apply well to other areas (Han et al., 2021b).
Additionally, many rapeseed classification studies produce rapeseed
maps based on peak flowering dates (Ashourloo et al., 2019; Chen
et al., 2022), which vary by area due to differences in environmental
conditions and cultivation practices, especially over large regions
(Sulik and Long, 2015; Han et al., 2021a; Sun et al., 2024).
Furthermore, the rapeseed growth cycle can differ in duration,
with variable start and end times across different years and sites
(Maleki et al., 2023). Consequently, achieving accurate rapeseed field
mapping at fine resolutions over expansive areas remains a
substantial challenge. In addition, misclassification between
rapeseed and other crops reduces classification accuracy. Our
previous study on rapeseed detection showed that the main
misclassification occurs between rapeseed, peas, and fallow lands
(Maleki et al., 2024). Another challenge of rapeseed mapping lies in
its reliance on training samples obtained through time-consuming
and expensive field campaigns, as well as the necessity for real
ground data from various years and regions (Zhang et al., 2022).
Traditional techniques often struggle to generalize to new data from
different growing seasons or sites in the absence of training data

from the corresponding site and year. These limitations have led to
the development of models that learn from large and complex
datasets, facilitating the mapping of multiple crop types across
different years and regions (Wang et al., 2018; Zhong et al., 2019;
Vali et al., 2020). These models effectively generalize the
classification algorithms across various growing conditions,
agricultural practices, and phenological patterns (Rusňák et al.,
2023). Recent studies have further explored the application of
these models in classifying crop types in regions with limited
training data (Hao et al., 2018; Bazzi et al., 2019; Wang et al.,
2019; Luo et al., 2021) created 10-m resolution crop maps for several
major crops (maize, rapeseed, winter, and spring Triticeae crops)
across ten European Union (EU) countries by employing Random
Forest (RF) with Sentinel-2 (S2) time series and transfer learning
techniques. Using training data from England and France, they
achieved an overall accuracy exceeding 89% across the EU countries.
Wang et al. (2019) employed RF classifier and Landsat images to
map three crop classes (corn, soybean, and “other”), leveraging
abundant ground data within a specific region or year to map other
sites or years. They achieved an overall accuracy higher than 80%
using Landsat optical time series. Hao et al. (2018) employed a RF
model, initially trained on Cropland Data Layer (CDL) data using
Landsat time series, to classify crops over three distinct test sites and
reported an overall accuracy of 93%. Maleki et al. (2023) examined
the temporal transferability of RF and three neural networks
algorithms to create the rapeseed map in La Rochelle, France.
They achieved F1 scores ranging between 85.5% and 92.7% using
the S1 time series and a classification model transferred from 1 year
to another. They mentioned that low accuracies are sometimes
obtained, mainly when a significant temporal shift is observed in
the time series of radar images, due to different meteorological and
climatic conditions between the training and testing years and sites
(Maleki et al., 2023). Pandžić et al. (2024) applied temporal
transferability for mapping nine different crop types. They
employed RF and Convolutional Neural Network with highly
dense time series data from Sentinel-1(S1). The overall F1 score
achieved was between 78% and 88%. Similarly, Orynbaikyzy et al.
(2022) used transfer learning for mapping 11 crops across different
scenarios. Their results showed that RFmodel based on SAR features
achieved an overall F1 accuracy ranging from 0.79 to 0.85.

Utilizing the spatiotemporal transferability of classifiers—i.e.,
applying training data from one region to classify data in
another—remains challenging for mapping rapeseed fields, as
the detection of this crop is closely linked to its phenological
cycle. This difficulty is due to the potential variations in the
timing of the growth stages across diverse sites and years, which
complicates accurate crop detection. Moreover, previous studies
using spatiotemporal transferability of classifier have primarily
focused on optical images. The potential of using SAR images
for rapeseed mapping through spatiotemporal transferability
approach remains underexplored. Given that rapeseed is
primarily cultivated in regions with frequent cloudy days, and
its main growth cycle occurs during winter (Zhang et al., 2022),
the use of SAR time series, which are unaffected by cloudy
conditions (Maleki et al., 2020), is particularly justified.

This paper aims to improve the detection of rapeseed fields by
classifying S1 time series data, even in scenarios where reference
label data are limited or not available. In the first scenario, we
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evaluate the temporal transferability of two machine learning
classifiers across various geographical locations with different
agroclimatic features. Temporal transferability refers to
transferring an ML model from 1 year to another at the same
site. In the second scenario, we examined the spatiotemporal
transferability of classifier, where an algorithm trained using
ground data from one site (across one or several years) is used to
generate a rapeseed map for a different site. Finally, to enhance this
transferability, we propose a time series alignment approach prior to
training the ML model. This approach handles the time shift in the
S1 time series of rapeseed across regions and years due to differences
in climatic and management practices. For all scenarios two
machine learning algorithms are tested: Random Forest (RF) and
InceptionTime.

2 Materials and methods

2.1 Study area

This study covers five different study sites within the three major
rapeseed producing countries: France, United States and Canada.
France is recognized as the main contributor to rapeseed production
in Europe, accounting for a substantial 21% of the European Union’s

total rapeseed production. With a significant contribution of 24% to
total world rapeseed production, the European Union is the world
leader in rapeseed production (USDA, 2023). Canada is the world’s
second largest rapeseed producer, accounting for 21% of the world’s
total production. The United States contributes 2% to world
rapeseed production (USDA, 2023). The detailed rapeseed
production in these three countries during the study years (2018,
2019 and 2020, which are the years of this study) is presented in the
Supplementary Appendix Table A1.

In France, three specific sites have been selected, considering the
environmental conditions in the northern and southern regions of
France. These sites are La Rochelle, Tarbes and Le Mans. This
selection was made to integrate the potential differences in the
rapeseed growth cycle between the north and south of France. La
Rochelle is located in the Charente-Maritime department in western
France, Le Mans in the north-west of the country, specifically in the
Sarthe department in the Pays de la Loire region, and Tarbes, a town
in the south of France in the Hautes-Pyrénées department in the
Midi-Pyrénées region. In the United States, the study site is located
in Renville, in North Dakota, a major center for rapeseed production
in the United States. In Canada, the study site is located in
Saskatoon, in central Saskatchewan, a region known as a major
rapeseed producer in Canada (USDA, 2023). Figure 1 shows the
geographical distribution of our research sites.

FIGURE 1
Location of our five study sites and the rapeseed fields at each site.
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To consider the diverse rapeseed cultivation periods across our
study sites, we categorized the study sites into two groups based on
their growth cycle characteristics. The first group, including La
Rochelle, Tarbes, and Le Mans in France, typically has rapeseed
cultivation starting between August and September and ending
between July and August of the following year (USDA, 2023).
The second group, comprising Renville County in the
United States and Saskatoon in Canada, rapeseed planting begins
in March and ends in November (USDA, 2023).

2.2 Dataset

2.2.1 Ground data
For the French study sites, we collected field data from the RPG

(French Graphic Parcel Registry) database. This database acts as a
repository for farmers’ declarations of agricultural parcels
throughout the country. It outlines the boundaries of each
declared agricultural parcel and includes basic information such
as crop types and field sizes. The RPG database for the whole
country can be accessed and downloaded from (https://www.data.
gouv.fr/en/datasets/registre-parcellaire-graphique-rpg-contours-des-
parcelles-et-ilots-culturaux-et-leur-groupe-de-cultures-majoritaire/).
For ground data in Canada, we relied on the 30-m Annual Crop
Inventory (ACI) to extract rapeseed fields (Fisette et al., 2013). In
the United States, we used the 30-m Cropland Data Layer (CDL)
(Boryan et al., 2011). Both datasets were obtained annually for each
year of our study (2018, 2019, 2020) through the Google Earth
Engine (GEE) platform. Notably, these crop layer products were
derived from satellite imagery and incorporate a substantial
volume of training sample collections (Han et al., 2021a)

considered thus reliable source for training and validation of
our ML models.

2.2.2 SAR images
S1 ground range detected (GRD) products at a frequency of

5.405 GHz from the Sentinel 1A (S1A) and Sentinel 1B (S1B)
satellites were used in our study. These C-band SAR images,
includes both ‘ascending’ and ‘descending’ acquisitions in VV
and VH polarizations (pixel spacing 10 m). Access to these SAR
data resources is provided through the European Space Agency
(ESA) website (https://scihub.copernicus.eu/dhus/#/home).

The revisit schedule for the S1 constellation includes a 12-day
cycle for each satellite (S1A or S1B) and a 6-day cycle when
combining both satellites (S1A and S1B). Images for our study
sites in France were obtained from both satellites over three S1 orbits
(acquisitions), while the study sites in the United States and Canada
had available images in two orbits, mainly from S1B. The orbit
numbers for each study site are provided in Table 1. A dataset
consisting of images from three orbits was compiled for each French
study and two orbits for each study site in the United States and
Canada. Regardless of the S1 orbit acquisition, all acquired images
were chronologically arranged. Table 1 presents an overview of the
overall number of S1 images gathered across each study site.

2.2.3 Image preprocessing and dataset creation
Calibration of S1 images was conducted using the S1 toolbox

developed by the European Space Agency (ESA). This calibration
involved two steps: first, radiometric calibration, which converted
digital numbers into linear backscatter coefficients (σ°), and second,
geometric correction, where images were ortho-rectified using a
30 m digital elevation model from the Shuttle Radar Topography

TABLE 1 The data sets used in this study. The location of these fields is shown in Figure 1.

Study site Year Number of
agricultural

fields

Number of
rapeseed
fields

Ratio of
rapeseed
fields (%)

Number of
S1 images

Average number
of S1 images per

month

Orbit
number

La Rochelle
(France)

2018 77649 2639 3.40 77 15

2019 71485 1021 1.43 75 14 8, 30, 81

2020 96452 1519 1.57 76 15

Le Mans
(France)

2018 28602 5291 18.50 73 15

2019 30474 3722 12.21 74 14 8, 30, 81

2020 29797 4473 15.01 75 15

Tarbes (France) 2018 55580 470 0.85 75 15 8, 30, 81

2019 56105 349 0.62 75 14

2020 56114 371 0.66 74 15

Saskatoon
(Canada)

2018 2082 559 26.85 24 5 5, 107

2019 1475 507 34.37 24 5

2020 1551 477 30.75 24 5

Renville
(United States)

2018 2907 539 18.54 25 5

2019 2709 621 22.92 25 5 5, 107

2020 2858 613 21.45 24 4
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FIGURE 2
Time series of S1 average backscattering coefficients (σ°) in VV and VH polarizations for rapeseed fields in each year (2018, 2019 and 2020). The
temporal period used in this study is represented by dashed lines. (A) La Rochelle (Fr): VV, (B) La Rochelle: VH, (C) Tarbes (Fr): VV, (D) Tarbes: VH, (E) Le
Mans (Fr): VV, (F) Le Mans: VH, (G) Saskatoon (Canada): VV, (H) Saskatoon: VH, (I) Renville (United States): VV, (J) Renville: VH.
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Mission (SRTM). The average S1 backscattering coefficient at the
field scale was calculated using field boundary data. This was done
by calculating the mean of pixel values within each field for each
acquired S1 image. Subsequently, S1 time series were generated for
each field at each rapeseed cultivation year, specifically 2018, 2019,
and 2020. For classification, the backscatter coefficients (σ°) were
used on a linear scale, while for dynamic backscatter analysis, the
data were converted to decibels (dB), a logarithmic scale. Using the
logarithmic scale (dB) makes the variations in backscattering
dynamics more apparent.

The input data for our classifiers consisted of a 5-month S1 time
series in VV and VH polarizations, capturing key stages of the
rapeseed growth cycle, including stem elongation (approximately
30–40 days after germination, depending on the cultivation region),
when the stem undergoes rapid vertical growth and thickening;
inflorescence emergence (approximately 50–60 days after
germination, depending on the cultivation region), marked by the
appearance of flower buds at the top of the stem; flowering
(approximately 60–70 days after germination, depending on the
cultivation region), when an increase in the plant’s biomass and
structural complexity leads to greater radar backscatter; and fruit
development (approximately 70–80 days after germination,
depending on the cultivation region), characterized by the
formation and expansion of seed pods. A significant peak in
S1 backscatter was observed during the inflorescence emergence
and fruit development stages for both VV and VH polarizations. In
fact, in a previous study, Maleki et al. (2024) highlighted that
comparable results could be obtained by using both the entire
growth cycle’s time series or a shorter time series covering only
the aforementioned growth stages of rapeseed. The shorter time
series reduced data storage requirements, streamlined downloads,
and decreased the processing time.

Figure 2 shows the time series of S1 average backscatter
coefficients for rapeseed fields in the five study sites over the
2018, 2019 and 2020 cultivation years. The study period is
indicated by the dashed lines. During the initial portion of the
study period, which includes the stem elongation, inflorescence
emergence, and fruit development phases of rapeseed, both
S1 VV and VH polarizations gradually increase, reaching a peak
value. For the French study sites (Figures 2A–F), the S1 backscatter
begins to rise in April, peaks between −12 and −10 dB for VH
and −9 to −7 dB for VV in May. This peak is attributed to increased
biomass, the height of rapeseed plants, and the random orientation
of branches, which amplify backscatter through a double-bounce
effect (Veloso et al., 2017; Mercier et al., 2019). Afterward, as
senescence begins in June, backscatter declines, primarily due to
reduced water content in the upper layers of rapeseed and an
increased soil contribution to the S1 backscattering signal relative
to vegetation. Therefore, our study period at the French sites
included 2 months before and 1 month after this period to
account for interannual variations (1 March - 1 August).

For the North American study sites (Figures 2G–J),
S1 backscatter starts to increase in June, reaches a peak in early
August—ranging from −11 to −10 dB for VH and −6 to −5 dB for
VV—and subsequently decreases from late August to early October.
Therefore, our study period at the North American sites was chosen
to be between 1 June and 1 November.

In addition, Figures 2A–J show sometimes a temporal shift in
the S1 time series (position of the highest peak) of rapeseed fields
either between different years or among distinct study sites.

2.3 Algorithms

In this study we opted for the RF and InceptionTime
classification algorithms due to their robustness and proven
effectiveness in similar studies dealing with rapeseed classification
(Belgiu and Drăguţ, 2016; Maleki et al., 2023). In our previous study
(Maleki et al., 2023), we conducted a comprehensive evaluation of
machine learning and deep learning models specifically for rapeseed
mapping, with RF and InceptionTime yielding the best results. RF is
a popular choice known for providing reliable classification
outcomes in similar applications, making it a solid benchmark
for accuracy comparison. InceptionTime also performed
exceptionally well, achieving the highest accuracy and showing
remarkable stability with a narrow range between its minimum
and maximum accuracy metrics. However, InceptionTime requires
considerably more computational resources during the training
phase compared to the other classifiers.

The RF algorithm is a well-known ensemble learning technique
that combines the results of multiple decision trees to improve
accuracy and prevent overfitting (Inglada et al., 2015).
InceptionTime is a convolutional-based deep learning algorithm
that has achieved state-of-the art performance on time series
classification tasks (Fawaz et al., 2020). This model is designed
specifically for multivariate time series classification and consists of
five separate Convolutional Neural Networks (CNNs), each
comprising two residual blocks with three Inception modules per
block. These Inception modules utilize multiple one-dimensional
convolutional filters of varying lengths, allowing the model to
capture features at multiple temporal scales. To minimize
fluctuations in accuracy that might occur with a single network,
an ensemble of networks with distinct weight initializations is
employed. Additionally, shortcut connections between residual
blocks facilitate direct gradient flow, effectively addressing the
vanishing gradient issue often seen in deep networks (Fawaz
et al., 2020).

While in many cases model performance can be enhanced
through hyperparameter optimization, in the considered context
of model transferability, where training and test data come from
different distributions, conducting model hyperparameter
optimization on a validation set made up solely of held-out
training data might not ensure strong performance on the test
data. Therefore, we deliberately opted for default parameter
values which are usually calibrated in such a way to adapt well to
more generic settings (Fawaz et al., 2020). For RF, we used the
standard implementation provided in the Scikit-learn library with
their built-in training optimization procedure and default
hyperparameters (e.g., 100 trees in the forest and the Gini
impurity splitting criterion). The InceptionTime approach is
implemented in PyTorch using the default parameters defined by
the authors in Fawaz et al. (2020). All the models have been
implemented in Python. Our classification implementation codes
can be found at github.com/cassiofragadantas/Colza_Classif.
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For InceptionTime, training was performed via
backpropagation of the cross-entropy loss (between predicted and
true label) over 100 epochs with an Adam optimizer with learning
rate 10–5 and a weight decay of 10–6. The model obtained at the end
of the 100 epochs was employed at the inference stage. Although we
recognize that this strategy might be prone to overfitting,
performing early-stopping on a validation dataset would not be
optimal due to our unsupervised transfer setting (i.e., no labeled data
is available for the targeted test dataset) as explained previously.

2.4 Methodology

To address the challenges related to rapeseed fields mapping, we
assessed three main scenarios. Figure 3A shows the flowchart of the
method with several scenarios adopted in the study. A detailed
description of each scenario is provided in the following subsections.

2.4.1 Classification scenarios
2.4.1.1 Scenario 1: temporal transferability of the classifiers

In this scenario, the classifier (RF or InceptionTime) was trained
using the S1 time series from 1 year within the 3 years of our study
(2018, 2019, or 2020) to classify datasets from another year of the
same study site. For instance, to generate the rapeseed map for
Saskatoon in 2020, the training data from Saskatoon in 2018 or
2019 were employed. This evaluation encompassed testing
30 configurations, with 18 configurations for France and 12 for
Canada-USA.

2.4.1.2 Scenario 2: spatiotemporal transferability of the
classifiers

We evaluated the potential of rapeseed fields mapping using
training and test data collected from different study sites within the
same year (referred as spatial transferability of the classifiers), as well
as from different study sites and cultivation years (considered both
spatial and temporal transferability of the classifiers). To accomplish
this, we used training data from one specific study site to classify data
from another study site under similar climatic conditions. It is worth
noting that rapeseed’s phenological cycle exhibits a maximum delay
of 1 month between the study sites with similar climatic conditions
(Maleki et al., 2023).

To assess this spatiotemporal transferability, we tested several
combinations of datasets collected within each of our two climatic
regions: the first climatic region encompassed French study sites (La
Rochelle, Tarbes, Le Mans), while the second climatic region
featured the two study sites in North America (Saskatoon in
Canada, Renville in the United States).

We conducted this scenario according to two sub-scenarios.

2.4.1.2.1 Sub-scenario 2.1: three cultivation years training/one
cultivation year test. In our first sub-scenario, we constructed a
training dataset for each study site, consisting of S1 data from the
3 years 2018, 2019 and 2020. Each of these training datasets was then
used to classify a single year’s dataset from another study site. For
example, the La Rochelle training dataset with data from 2018,
2019 and 2020 was then used to classify the Tarbes datasets for 2018.
This approach should enhance the classifiers robustness since it

FIGURE 3
(Continued).
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encompasses a greater variety of S1 backscattering coefficients for
rapeseed, resulting from different meteorological conditions over
3 years, all of which affect the phenological cycle of rapeseed. This
sub-scenario corresponds to the practical case where observations
on a given site over many years are available and the objective is to
carry out classification on a different site where no ground truth is
available. This scenario involved testing 30 configurations of
study sites and years (24 for France and 6 for Canada -
United States).

2.4.1.2.2 Sub-scenario 2.2: one cultivation year training/one
cultivation year test. In the second sub-scenario, classification
was carried out considering a dataset from 1 year in the training site
and a dataset from 1 year in the test site. In this paper, we presented

four combinations of study sites. For the French study sites, the first
combination involved La Rochelle as the training site and Tarbes as
the test site, while the second combination used Tarbes as the training
site and Le Mans as the test site (9 configurations of years for each
combination). These site combinations showed more pronounced
shifts in the phenological cycle between French study sites. In North
America, the first combination consisted of Saskatoon as the training
site and Renville as the test site, while the second combination was
the reverse.

2.4.1.3 Scenario 3: improving spatiotemporal transferability
of the classifiers by aligning S1 time series

In this section, we introduced an alignment method to improve
the spatiotemporal transferability of the classifiers for rapeseed fields

FIGURE 3
(Continued). (A) Flow chart of the approaches that were tested in this study. (B) The flowchart of aligning S1 time series datasets based on the
temporal position of the highest peaks of rapeseed fields.
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mapping. In scenario 3, both sub-scenarios of scenario 2 were
repeated after applying the alignment method.

2.4.1.3.1 Sub-scenario 3.1: alignment of three cultivation years
training/one cultivation year test. We used our novel
alignment method to align the training dataset, which consisted
of S1 time series from 3 years of one study site, with the test dataset,
which consisted of a single year of data from another study site (with
similar combinations of sites as described in sub-scenario 2.1).
Classification was then performed on each pair of aligned
training and test datasets.

2.4.1.3.2 Sub-scenario 3.2: alignment of one cultivation year
training/one cultivation year test. The one-year training
dataset was aligned with the one-year test dataset of different
sites using alignment method (with similar combinations of sites
and years as described in sub-scenario 2.2). Classification was then
performed using each aligned training and test dataset.

2.4.1.4 Alignment method
In fact, the position of the highest peak in the S1 time series

differs between 2 years or between two study sites as shown in
Figure 2, which may likely induce lower accuracies when
transferring a classifier from one site-year to another. The
alignment of the highest peaks in the S1 time series of the
training and test datasets was achieved through a process
consisting of three steps outlined below (Figure 3B). The
implementation codes are available at https://github.com/Saeideh-
Maleki/Sentinel1-peak-alignement.

2.4.1.4.1 Calculating the mean number of timestamps before the
highest peak of rapeseed fields in the training dataset. To align
the highest peaks for rapeseed fields in S1 time series between
training and test datasets, we started by performing the following
procedures exclusively using the rapeseed fields in the
training dataset:

• The highest peak for each rapeseed field within the training
dataset was identified through a two-step process. Initially, the
S1 time series of rapeseed fields were smoothed using a
multidimensional Gaussian filter with a standard deviation
equals to 4 days. Subsequently, the highest peak of
S1 backscatter for each rapeseed field occurring during the
peak period for rapeseed fields in the S1 time series was
detected (between April 1st and July 1st for study sites in
Europe, and between June 1st and November 1st for Canada
and the United States sites). Supplementary Appendix Figure
A1, provides a visual representation of these two steps for both
VV and VH backscatter over a single rapeseed field.

• The position of the highest peak for each rapeseed field was
standardized, arbitrarily setting it at 200 (Supplementary
Appendix Figure A2). This number can be adjusted based
on the number of timestamps in the time series. Subsequently,
the number of timestamps (images) occurring before the
highest peak for each rapeseed field i (ni) was calculated,
and the mean number of timestamps before the highest peak
across all rapeseed fields in the training dataset (N)
was computed.

2.4.1.4.2 Calculating the mean number of timestamps before the
highest peak for all fields in the test dataset. The second step
involved the identification of the highest peak for each field in the
test dataset, whether it is rapeseed or not (operationally, we have no
information about the crop types in the test datasets). First, the
above-described multidimensional Gaussian smoothing process was
performed on the test dataset, encompassing all fields, as shown in
the Supplementary Appendix Figure A3. Subsequently, the position
of the highest peak for each field was determined within the time
frame where the potential rapeseed peak was logically expected to
occur (between April 1st and July 1st for European study sites, and
between June 1st and November 1st for sites in Canada and the
United States).

The position of the highest peak for each field was then
standardized by setting it to 200, as specified for the training
dataset fields. This step is illustrated in the Supplementary
Appendix Figure A4, showing the process for a single rapeseed
field and a grassland field. The number of timestamps occurring
before the highest peak for each field (mi) was calculated, and
subsequently, the mean number of timestamps before the highest
peak for all fields was computed (M).

2.4.1.4.3 Equalize the number of timestamps in the training and
test datasets. This final step consists in adding/removing
timestamps in either the training or test dataset in order to align
their peak positions. This was done in a way to maintain the initial
number of timestamps, since RF and InceptionTime algorithms
require homogeneous training and test sets in terms of input
sample dimension.

For simplicity, we suppose that the average peak position in the
test dataset is lower than in that of the training dataset, i.e., M < N.

For all fields in the test dataset with peak position (mi) smaller
than N:

1) Add (N-mi) timestamps at the beginning of the test dataset by
replicating its first timestamp (left padding) (Supplementary
Appendix Figure A5).

2) Remove the same number of timestamps (N-mi) from the end
of the test dataset (right trimming) so that the peak is now
at position N.

In the converse case (M > N), the roles of train and test datasets
in the description above are switched. Figures 4, 5 illustrate the peak
alignment procedure for the particular cases of M < N and M > N,
respectively, presenting the average S1 time series for all rapeseed
fields before (a, b) and after alignment (c, d).

It is important finally to note that since the peak was detected
within a constrained time window (comprising the period with the
highest SAR backscatter coefficient for rapeseed in the study area),
the number of duplicates (padding) was limited, with an average of
only five duplicates in a time series consisting of 65 images.
Furthermore, the duplicated data were in the early part of the
time series, unrelated to the main peak period, thus avoiding any
negative impact on the classification process. Importantly, the
smoothing process was only applied during the highest peak
detection phase, and both the training and test datasets remained
unsmoothed when timestamps were added or removed.

Summary of the peak alignment procedure.
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- Compute the average peak position in the training dataset
(considering rapeseed fields only) and test dataset (considering
all fields), as described in steps A and B.

- For the dataset with the smaller average peak position, perform
left padding (and the corresponding right trimming) on each
field so that their peak position matches the other dataset’s
average peak position, as described in step C.

2.4.2 Evaluation metrics
To assess the performance of the different classification

approaches, we evaluated the following metrics on the test
dataset: precision, recall, F1 score and Kappa coefficient
(Equations 1–4 respectively). Given the highly imbalanced nature
of the considered datasets (small proportion of positive samples) a
simple measure of accuracy would not be informative, while the
precision-recall measures are better adapted to this context.

Recall � TP

TP + FN
(1)

Precision � TP

TP + FP
(2)

F1 � 2 * Precision *Recall( )

Precision + Recall
(3)

Kappa � Po − Pe

1 − pe
(4)

• True positives (TP) represent the number of fields correctly
identified as rapeseed.

• False positives (FP) represent the number of non-rapeseed
fields classified as rapeseed.

• False negatives (FN) represent the number of rapeseed fields
misclassified as non-rapeseed.

• Observed agreement (Po): The proportion of agreement
between two raters or methods based on the actual
observed data. It is calculated as the sum of true positives
and true negatives divided by the total number of instances
(Chicco et al., 2021).

• Expected agreement (Pe): The expected agreement that occurs
by chance. It is calculated based on the marginal probabilities
of agreement for positive and negative instances (Chicco
et al., 2021).

FIGURE 4
An example of alignment for M < N: Average S1 time series of all rapeseed fields before (A, B) and after alignment (C, D). Training dataset = La
Rochelle 2018, 2019, and 2020; test dataset = Tarbes 2020. (A, C): VV polarization, (B, D) VH polarization. The graph corresponding to the test dataset
appears smoother after alignment due to the use of a different number of duplicated timestamps for each field. However, the shape of the graph for a
single field remains unchanged, with a slight temporal shift (equal to the duplicated timestamps). Ordinary timestamps indicate the sequential order
of images in the time series, starting from 0 (representing the first image) and increasing by 1 for each subsequent image.
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FIGURE 5
An example of alignment for M > N: Average S1 time series of all rapeseed fields before (A, B) and after alignment (C, D). Training dataset = Tarbes
2018, 2019, and 2020; test dataset = La Rochelle 2018. (A, C): VV polarization, (B, D) VH polarization. The graph corresponding to the training dataset
appears smoother after alignment due to the use of a different number of duplicated timestamps for each field. However, the shape of the graph for a
single field remains unchanged, with a slight temporal shift (equal to the duplicated timestamps). Ordinary timestamps indicate the sequential order
of images in the time series, starting from 0 (representing the first image) and increasing by 1 for each subsequent image.

TABLE 2 Scenario 1: Accuracy assessment of temporal transferability of the classifiers created by InceptionTimes and RF algorithms in five study sites (La
Rochelle, Tarbes, Le Mans, Saskatoon, Renville). ‘Mean’, ‘Max’, and ‘Min’ represent respectively the average value, the highest value, and the lowest value of
each metric across all combinations of years.

Study area Method F1 (%) Precision (%) Recall (%) Kappa

Mean Min Max Mean Min Max Mean Min Max Mean Min Max

La Rochelle IT 92.02 88.29 94.96 95.28 91.13 98.69 89.25 79.88 96.45 0.92 0.88 0.95

RF 89.89 78.31 93.49 98.13 97.25 99.13 83.46 64.72 90.01 0.90 0.78 0.93

Tarbes IT 93.87 91.59 96.69 97.32 95.34 99.01 90.84 85.32 96.56 0.94 0.92 0.97

RF 86.17 78.97 96.83 98.60 97.39 99.39 77.22 65.53 96.28 0.86 0.79 0.97

Le Mans IT 95.41 92.26 97.69 96.59 92.07 99.22 94.35 89.68 97.15 0.95 0.90 0.97

RF 85.51 74.60 94.99 99.21 98.93 99.37 76.02 59.73 90.99 0.84 0.72 0.94

Saskatoon IT 88.25 83.74 91.93 90.71 87.67 95.34 85.94 80.14 88.76 0.85 0.80 0.89

RF 91.52 84.06 94.36 96.88 93.44 98.88 86.81 76.39 91.82 0.89 0.80 0.93

Renville IT 98.30 96.68 99.10 99.20 98.86 99.66 97.44 93.88 99.02 0.98 0.96 0.99

RF 97.07 92.78 98.77 98.93 97.45 99.41 95.38 87.38 99.26 0.96 0.90 0.99
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3 Results

3.1 Scenario 1: temporal transferability of the
classifiers

The results of the accuracy assessment for temporal
transferability using the RF and InceptionTime methods are
shown in Table 2. The accuracy metrics for each study site are
presented as the average value (Mean), the highest (Max) and lowest
(Min) calculated from the six combinations of training and testing
years (for each site, 2018–2019, 2018–2020, 2019–2018, 2019–2020,
2020–2018, 2020–2019, the first year for training and the second
year for testing).

According to Table 2, the mean F1 and Kappa scores achieved by
the RF algorithm were consistently above 85.5% and 0.84,
respectively. When using the InceptionTime algorithm, the mean
F1 and Kappa scores exceeded 88.2% and 0.85, respectively. An
average precision of over 90% indicates that both RF and
InceptionTime have a remarkable ability to correctly label
rapeseed fields while minimizing false positives while an average
recall of over 75%, indicates that the classifiers were able to identify a
significant number of rapeseed fields.

The results in Table 2 demonstrates that using the S1 time series
of flowering and harvest (period showing the rapeseed characteristic
peak) allows both RF and InceptionTime to generate accurate
rapeseed maps across all study sites through the temporal
transferability of the classifiers. However, a comparison of

F1 scores between RF and InceptionTime shows that
InceptionTime has a narrower value range between minimum
and maximum F1 scores.

3.2 Scenario 2: spatiotemporal
transferability of the classifiers

3.2.1 Sub-scenario 2.1: three cultivation years
training/one cultivation year test

This scenario included a training dataset composed of
3 years’ time-series applied to one-year test time series of
another site sharing similar climatic conditions as the
training site. The accuracy metrics of this scenario are
summarized in Table 3, where the Mean, Max and Min
correspond respectively to the average value, the highest
value and the lowest value of each accuracy metric across all
three test years (2018, 2019, 2020). Using the RF, the mean
F1 scores ranged between 82.7% and 97.8% and the mean Kappa
scores between 0.8 and 1.0 across all testing sites/years. Slightly
higher values are also obtained using the InceptionTime with
F1 scores ranging from 88.7% to 97.1%, and mean Kappa scores
in the range of 0.9–1.0. Examining the precision and recall, the
RF algorithm achieved mean precision and recall scores greater
than 89.0% and 75.0% respectively, whereas for InceptionTime
algorithm the mean precision and recall were both
higher than 85%.

TABLE 3 Scenario 2, sub-scenario 2.1: Accuracy of rapeseed fields detection using spatiotemporal transferability of the classifiers created by RF and
InceptionTime (IT) algorithms. Evaluationwas conducted for six site combinations in France (La Rochelle–LeMans, Le Mans–La Rochelle, LeMans–Tarbes,
Tarbes–Le Mans, Tarbes–La Rochelle, La Rochelle–Tarbes), and two site combinations in North America (Saskatoon in Canada–Renville in United States,
Renville–Saskatoon). Mean, Max, and Min represent the average, highest, and lowest values of each accuracy metric across all 3 years.

Study area Method F1 Precision Recall Kappa

Train Test Mean Min Max Mean Min Max Mean Min Max Mean Min Max

La Rochelle Le Mans IT 96.70 95.12 97.78 98.41 98.13 98.93 95.09 91.59 97.43 0.96 0.95 0.97

RF 95.90 93.25 97.55 98.96 98.65 99.21 93.11 87.96 96.47 0.95 0.92 0.97

Le Mans La Rochelle IT 92.95 91.59 93.69 93.35 89.91 97.03 92.65 90.34 94.28 0.93 0.91 0.94

RF 94.56 93.82 95.23 97.27 96.97 97.62 92.01 90.30 93.55 0.94 0.94 0.95

Le Mans Tarbes IT 88.72 86.64 92.09 89.78 84.31 98.77 88.03 86.25 90.83 0.87 0.83 0.92

RF 82.70 77.92 87.89 93.37 81.24 99.46 74.60 70.21 78.72 0.82 0.75 0.88

Tarbes Le Mans IT 97.10 96.04 97.88 97.07 96.63 97.65 97.13 95.16 98.12 0.97 0.96 0.97

RF 93.47 91.12 97.35 99.13 98.83 99.34 88.58 84.26 95.91 0.93 0.90 0.97

Tarbes La Rochelle IT 92.63 90.53 94.82 89.24 85.66 92.50 96.31 95.68 97.26 0.92 0.90 0.94

RF 94.82 94.55 95.36 96.68 95.05 97.50 93.07 91.77 95.68 0.95 0.94 0.95

La Rochelle Tarbes IT 91.68 87.22 95.06 97.78 96.46 99.46 86.62 77.66 93.70 0.92 0.87 0.95

RF 89.46 81.46 96.49 98.94 98.51 99.46 80.85 69.27 94.56 0.89 0.81 0.96

Saskatoon Renville IT 91.24 86.05 94.82 88.62 83.07 92.50 94.03 89.24 97.26 0.89 0.83 0.94

RF 97.84 97.53 98.07 97.66 96.38 99.33 98.06 96.57 98.89 0.97 0.97 0.98

Renville Saskatoon IT 92.12 89.49 94.83 98.27 97.56 99.28 86.82 81.46 92.24 0.90 0.86 0.93

RF 92.65 90.83 95.64 98.59 97.37 99.55 87.43 84.02 92.03 0.91 0.88 0.94
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3.2.2 Sub-scenario 2.2: one cultivation year
training/one cultivation year test

The results of classification in this sub-scenario of
spatiotemporal transferability using 1 year training data from one
study site and 1 year test data from another site, can be found in
Table 4 for La Rochelle (LR) – Tarbes (TA) and Tarbes–Le Mans
(LM), and in Table 5 for Saskatoon (SA) – Renville (RE) and
Renville–Saskatoon. When using one-year datasets for both
training and testing for the two combinations of French study
sites (Table 4), the RF achieves F1 scores ranging from 48.8% to
97.7%. While the InceptionTime algorithm yields F1 scores from
59.2% to 97.7%. In Table 5, focusing on the North American study
sites, the F1 scores using the RF classifier vary from 49.0% to 96.6%,

while InceptionTime algorithm produces F1 scores within the range
of 58.4%–94.2%.

3.2.3 Comparison between the two sub-scenarios
of spatiotemporal transferability

Tables 4, 5 also include the results obtained on the sub-scenario
2.1 alongside with the ones obtained on sub-scenario 2.2, to allow a
comparison between both sub-scenarios. Comparing the results of
the two sub-scenarios for La Rochelle–Tarbes, Table 4 shows that
using La Rochelle’s 3 years training data for classifying Tarbes 2018,
the maximum F1 score improvement is 31.6% with RF (compared to
La Rochelle 2019 as training and Tarbes 2018 as test) and 11.5% with
InceptionTime (compared to La Rochelle 2020 as training and

TABLE 4 Scenario 2, sub-scenarios 2.1 and 2.2 (France): Comparison between F1 scores (%) obtained from the three-year training dataset (sub-scenario 2.1)
and the one-year training dataset (sub-scenario 2.2) for two combinations of French study sites: La Rochelle (LR) site as training and Tarbes (TA) as test,
Tarbes (TA) as training and Le Mans (LM) as test. The maximum difference represents the maximum difference between the F1 score obtained from sub-
scenario 2.1 and the three F1 scores obtained from sub-scenario 2.2.

Method Training year Test year

2018 2019 2020

F1 score (%): LR as training and TA as test

RF Sub-scenario 2.1
Three years training

2018 + 2019+2020 90.4 96.4 81.4

Sub-scenario 2.2
One year training

2018 90.2 94.0 63.3

2019 58.8 94.4 63.6

2020 70.2 89.7 81.3

Maximum difference
between sub-scenario 2.1 and 2.2 (%)

31.6 6.7 17.8

IT Sub-scenario 2.1
Three years training

2018 + 2019+2020 92.7 95.0 87.2

Sub-scenario 2.2
One year training

2018 91.9 92.4 73.4

2019 82.5 92.7 59.2

2020 81.2 86.2 85.6

Maximum difference
between sub- scenario 2.1 and 2.2 (%)

11.5 8.8 28.0

F1 score (%): TA as training and LM as test

RF Sub-scenario 2.1
Three years training

2018 + 2019+2020 91.9 91.1 97.3

Sub-scenario 2.2
One year training

2018 90.4 91.0 97.7

2019 90.4 91.4 96.9

2020 51.1 48.8 96.6

Maximum difference
between sub-scenario 2.1 and 2.2 (%)

40.8 42.3 0.4

IT Sub-scenario 2.1
Three years training

2018 + 2019+2020 97.9 96.0 97.4

Sub-scenario 2.2
One year training

2018 97.7 94.2 96.7

2019 96.8 96.1 97.6

2020 91.7 79.3 96.4

Maximum difference
between sub-scenario 2.1 and 2.2 (%)

6.2 16.7 1
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Tarbes 2018 as test). For the classification of Tarbes 2019, the
maximum F1 improvement is 6.7% with RF and 8.8% with
InceptionTime (compared to La Rochelle 2020 as training and
Tarbes 2019 as test for both algorithms). Tarbes 2020 achieves a
maximum F1 score increase of 17.8% with RF (compared to La
Rochelle 2018 as training and Tarbes 2020 as test) and 28.0% with
InceptionTime when using the classifier with multi-date data
(compared to La Rochelle 2019 as training and Tarbes 2020 as test).

In the case of Tarbes–Le Mans (Table 4), creating the rapeseed
map for LeMans 2018 using Tarbes’s three-year training data results
in a maximum F1 score improvement of 40.8% with RF, and 6.2%
with InceptionTime (compared to Tarbes 2020 as training and Le
Mans 2018 as test for both algorithms). For Le Mans 2019, the

maximum F1 score improvements are 42.3% with RF and 16.7%
with InceptionTime (compared to Tarbes 2020 as training and Le
Mans 2019 as test for both algorithms). The results of rapeseed
detection of Tarbes 2020 show amaximum F1 score improvement of
0.7% with RF and 1.0% with InceptionTime (compared to Tarbes
2020 as training and Le Mans 2020 as test for both algorithms) when
using the classifier with multi-date data.

Creating the rapeseed map for Renville 2018 using Saskatoon’s
multi-year training data (Table 5) resulted in a maximum F1 score
increase of 49.1% with RF and 27.6% with InceptionTime
(compared to Saskatoon 2019 as training and Renville 2018 as
test for both algorithms). For Renville 2019, using multi-year
data for training led to maximum F1 score improvements of

TABLE 5 Scenario 2, sub-scenarios 2.1 and 2.2 (North America): Comparison of F1 scores (%) using the three-years training dataset (sub -scenario 2.1) and the
single-year training dataset (sub-scenario 2.2) for two combinations of North American study sites: Saskatoon (SA) as the training set and Renville (RE) as the
test set, and vice versa. Maximumdifference represents the greatest difference between the F1 score obtained from sub-scenario 2.1 and the three F1 scores
derived from sub-scenario 2.

Method Training year Test year

2018 2019 2020

F1 score (%): SA as training and RE as test

RF Sub-scenario (1):
Three years training

2018+2019+2020 98.1 97.5 97.9

Sub-scenario (2):
One year training

2018 90.5 96.2 96.0

2019 49.0 69.6 72.9

2020 93.0 96.1 96.6

Maximum difference
between sub-scenario 1 and 2 (%)

49.1 27.9 25

IT Sub-scenario (1):
Three years training

2018+2019+2020 86.0 94.8 92.9

Sub-scenario (2):
One year training

2018 86.0 93.7 92.9

2019 58.4 86.2 82.8

2020 81.7 92.4 91.9

Maximum difference
between sub-scenario 1 and 2 (%)

27.6 8.6 10.1

F1 score (%): RE as training and SA as test

RF Sub-scenario (1):
Three years training

2018+2019+2020 91.5 90.8 95.6

Sub-scenario (2):
One year training

2018 90.6 88.6 94.4

2019 91.7 91.4 94.9

2020 91.7 91.1 92.7

Maximum difference
between sub-scenario 1 and 2 (%)

0.9 2.2 2.9

IT Sub-scenario (1):
Three years training

2018+2019+2020 92.0 92.0 94.8

Sub-scenario (2):
One year training

2018 91.6 83.1 93.8

2019 91.5 92.1 94.0

2020 91.5 88.1 94.2

Maximum difference
between sub-scenario 1 and 2 (%)

0.5 8.9 1
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TABLE 6 Scenario 3, sub-scenario 3.1 (France): Comparison of F1 scores (%) before and after alignment of training and test datasets (3 years training and one-year test) for study sites in France (LR = La Rochelle, TA =
Tarbes, LM = Le Mans). The “F1 increase” represents the difference between the F1 score after and before the alignment of the training and test datasets. The two highest increases in F1 are shown in bold. RForiginal: RF
using the datasets before alignment, RFaligned: RF using the data sets after alignment, IToriginal: InceptionTime using the data sets before alignment, ITaligned: InceptionTime using the data sets after alignment.

Train year Test year Method Train: LM
Test: TA

Train: TA
Test: LM

Train: LR
Test: LM

Train: LM
Test: LR

Train: LR
Test: TA

Train: TA
Test: LR

F1% F1
Increase
%

F1% F1
Increase
%

F1% F1
Increase
%

F1% F1
Increase
%

F1% F1
Increase
%

F1% F1
Increase
%

3 years 2018 RForiginal 82.3 1.4 91.9 2.7 96.9 0.5 93.8 0.1 90.4 0.1 94.5 0.1

RFaligned 83.7 94.6 97.4 94.0 90.5 94.6

IToriginal 86.6 1.1 97.9 0.1 97.2 0.1 93.6 0.1 92.7 0.2 92.5 0.8

ITaligned 87.7 98.0 97.3 93.7 92.9 93.3

3 years 2019 RForiginal 87.9 6.4 91.1 3.9 93.3 3.1 94.6 0.1 96.4 0.1 94.5 0.1

RFaligned 94.3 95.0 96.4 94.7 96.5 94.6

IToriginal 87.4 2.4 96.0 0.4 95.1 1.8 91.6 1.3 95.0 0.2 90.5 0.9

ITaligned 89.8 96.4 96.9 92.9 95.2 91.4

3 years 2020 RForiginal 77.9 9.9 97.3 0 97.5 0 95.2 0.4 81.5 8.0 95.3 0.1

RFaligned 87.8 97.3 97.5 95.6 89.5 95.4

IToriginal 92.1 0.6 97.4 0 97.8 0 93.7 0.1 87.2 3.7 94.8 1.7

ITaligned 92.6 97.4 97.8 93.8 90.9 96.5
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27.9% with RF and 8.6% with InceptionTime (compared to
Saskatoon 2019 as training and Renville 2019 as test for both
algorithms). In the case of Renville 2020, the use of multi-year
data resulted in maximum F1 score enhancements of 25% with RF
and 10.1% with InceptionTime (compared to Saskatoon 2019 as
training and Renville 2020 as test for both algorithms). The results
for creating the rapeseed map for Saskatoon using Renville’s multi-
year training data showed only a slight increase in the F1 score
compared to the one-year Sub-scenario.

3.3 Scenario 3: improving spatiotemporal
transferability of the classifiers by aligning
S1 time series

In this scenario, the spatial and temporal transferability analysis
previously conducted in Section 3.2 (the previous section) was
repeated by employing the alignment method for training and
test datasets.

3.3.1 Sub-scenario 3.1: alignment of three
cultivation years training/one cultivation year test

The comparison of F1 scores of our first sub-scenario (three-
years training/one-year test) before and after alignment using RF
and InceptionTime algorithms is presented in Table 6 for all
combinations of study sites and years in France, and Table 7 for
all combinations of study sites and years in North America. For the
French sites (Table7), the most notable improvement was observed
when aligning the datasets from Le Mans (3 years) as the training
dataset and Tarbes (2020) as the test dataset, resulting in a 9.9%

increase in F1 score (from 77.9% before alignment to 87.8% after
alignment using RF). Similarly, aligning the datasets from La
Rochelle (3 years) as training and Tarbes (2020) as test resulted
in an 8.0% improvement in F1 score (from 81.5% before alignment
to 89.5% after alignment using RF). Figures 2A–F which illustrate
the S1 time series of rapeseed backscatter at the French study sites,
clearly show the temporal shifts between the phenological cycle of
3 years of LeMans and Tarbes in 2020, and between the 3 years of La
Rochelle and Tarbes in 2020. Thus, aligning the position of the
highest peak in the S1 time series led to significant improvements in
F1 scores, particularly in cases where the temporal shift was most
pronounced. In North America (Table 7), alignment also improved
the results of classification using RF and InceptionTime. The highest
improvement occurred when aligning the dataset of the
United States (3 years) as training and Canada (2020) as the test,
resulting in a 3.2% increase in F1 score (from 89.1% before
alignment to 92.3% after alignment using RF). Overall, it’s worth
noting that the improvement in North America was less pronounced
compared to the results in France.

3.3.2 Sub-scenario 3.2: alignment of one
cultivation year training/one cultivation year test

Table 8 presents a comparison of F1 scores for the second sub-
scenario, which includes one-year training and one-year testing,
both before and after applying the alignment method with the RF
and the InceptionTime algorithms. This analysis focused on two
combinations of French study sites, namely, La Rochelle–Tarbes and
Tarbes–Le Mans. Meanwhile, Table 9 provides the corresponding
results for two combinations of North American study sites:
Saskatoon–Renville, and Renville–Saskatoon.

TABLE 7 Scenario 3, sub-scenario 3.1 (North America): Comparison of F1 scores (%) before and after alignment of training and test datasets (3 years training
and 1 year test) for study sites in North America (Saskatoon = SA, Renville = RE). The “F1 increase” represents the difference between the F1 score after and
before the alignment of the training and test datasets. The highest increase in F1 is shown in bold. RForiginal: RF using the datasets before alignment, RFaligned:
RF using the data sets after alignment, IToriginal: InceptionTime using the data sets before alignment, ITaligned: InceptionTime using the data sets after
alignment.

Train year Test year Method Train: SA
Test: RE

Train: RE
Test: SA

F1% F1
Increase
%

F1% F1
Increase
%

3 years 2018 RForiginal 98.1 0 91.5 0

RFaligned 98.1 91.5

IToriginal 86.0 0.1 92.0 0.1

ITaligned 86.1 92.1

3 years 2019 RForiginal 97.5 0.2 90.8 0.7

RFaligned 97.8 91.5

IToriginal 94.8 0.1 89.5 0.3

ITaligned 94.9 89.8

3 years 2020 RForiginal 97.9 0.1 95.6 0

RFaligned 98.0 95.6

IToriginal 92.9 0.4 89.1 3.2

ITaligned 93.3 92.3
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TABLE 8 Scenario 3, sub-scenario 3.2 (France). Comparison of F1 scores (%) before and after alignment of training and test datasets (one-year training and one-year test) for two combinations of study sites in France:
La Rochelle as training/Tarbes as test (LR/TA), Tarbes as training/Le Mans as test (TA/LM). “F1 increase” represents the difference between the F1 value before and after the training and test data sets were aligned. The
two highest F1 increases are shown in bold. RForiginal: RF using the data sets before alignment, RFaligned: RF using the data sets after alignment, IToriginal: InceptionTime using the data sets before alignment, ITaligned:
InceptionTime using the data sets after alignment.

Test year Method Train: LR
Test: TA

Train: TA
Test: LM

Train year 2018 Train year 2019 Train year 2020 Train year 2018 Train year 2019 Train year 2020

F1% F1
Increase

%

F1% F1
Increase

%

F1% F1
Increase

%

F1% F1
Increase

%

F1% F1
Increase

%

F1% F1
Increase

%

2018 RForiginal 90.2 0 58.8 2.4 70.2 11.4 90.4 6.4 90.4 1.9 51.1 44.7

RFaligned 90.2 61.2 81.6 96.8 92.3 95.8

IToriginal 91.9 0 82.5 0.4 81.2 4.5 97.7 0.1 96.8 0.2 91.7 5.5

ITaligned 91.9 82.9 85.7 97.8 97.0 97.2

2019 RForiginal 94.0 0 94.4 0.4 89.7 4.5 92.2 4.3 91.4 3.3 48.8 46.7

RFaligned 94.0 94.9 94.3 96.4 94.6 95.5

IToriginal 92.4 0 92.7 0.2 86.2 2.5 94.2 1.2 96.1 0.2 79.3 17.0

ITaligned 92.4 92.8 88.6 95.4 96.3 96.3

2020 RForiginal 63.6 20.9 63.6 9.9 81.3 5.4 97.7 0 96.9 0 96.6 1.0

RFaligned 84.5 73.6 86.6 97.7 96.9 97.6

IToriginal 73.4 13.7 59.2 11.4 85.6 1.1 96.7 0 97.6 0 96.4 1.3

ITaligned 87.1 70.6 86.6 96.7 97.6 97.7
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TABLE 9 Scenario 3, sub-scenario 3.2 (North America). Comparison of F1 scores (%) before and after alignment of training and test datasets (one-year training and one-year test) for study sites in North America
(Saskatoon = SA, Renville = RE). “F1 increase” represents the difference between the F1 value before and after the training and test data sets were aligned. The two highest F1 increases are shown in bold. RForiginal: RF
using the data sets before alignment, RFaligned: RF using the data sets after alignment, IToriginal: InceptionTime using the data sets before alignment, ITaligned: InceptionTime using the data sets after alignment.

Test year Method Train: SA/Test: RE Train: RE/Test: SA

Train year 2018 Train year 2019 Train year 2020 Train year 2018 Train year 2019 Train year 2020

F1% F1
Increase

%

F1% F1
Increase

%

F1% F1
Increase

%

F1% F1
Increase

%

F1% F1
Increase

%

F1% F1
Increase

%

2018 RForiginal 90.5 6.2 49.0 26.0 93.0 0.8 90.6 0.5 91.7 0.1 91.7 0.1

RFaligned 96.7 75.0 93.8 91.1 91.8 91.8

IToriginal 86.0 5.2 58.4 10.8 81.7 8.2 91.6 0.4 91.5 0.7 91.5 0.2

ITaligned 91.2 69.2 89.9 92.0 92.1 91.7

2019 RForiginal 96.2 2.2 69.6 10.7 96.1 1.4 88.6 1.3 91.4 0.3 91.1 y

RFaligned 98.4 80.3 97.5 89.9 91.7 91.4

IToriginal 93.7 3.6 86.2 1.0 92.4 1.2 83.1 2.8 92.1 0.1 88.1 0.7

ITaligned 97.3 87.2 93.5 85.9 92.2 88.8

2020 RForiginal 96.0 2.0 72.9 14.3 96.6 1.9 94.4 0.1 94.9 0.1 92.7 1.9

RFaligned 98.0 87.2 98.5 94.5 95.0 94.6

IToriginal 92.9 3.1 82.8 3.1 91.9 3.4 93.8 1.2 94.0 1 94.2 1.0

ITaligned 96.0 85.9 95.3 95.0 95.0 95.2
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For the French study sites, Table 8 clearly demonstrates that
time series alignment significantly enhances F1 scores when using
both RF and InceptionTime. The most remarkable improvements
among the results of both algorithms, were observed when
aligning the datasets of Tarbes (2020) for training and Le
Mans (2019) for testing, resulting in a 46.7% increase in
F1 score (from 48.8% before alignment to 95.5% after
alignment using RF). Similarly, aligning the datasets of Tarbes
(2020) for training and Le Mans (2018) for testing led to an
increase of 44.7% in F1 score (from 51.1% before alignment to
95.8% after alignment using RF).

In North America, as shown in Table 9, the most significant
enhancements occurred when aligning the datasets of Saskatoon
(2019) for training and Renville (2018) for testing, resulting in a
26.0% increase in F1 score (from 49.0% before alignment to 75.0%
after alignment using RF). Similarly, aligning the datasets of
Saskatoon (2019) and Renville (2020) resulted in a 14.3%

increase in F1 score (from 72.9% before alignment to 87.2% after
alignment using RF).

3.3.3 Comparison between the two sub-scenarios
of improving spatiotemporal transferability

Comparing the results between the two sub-scenarios (three-
year training/one-year test in Tables 6, 7 and one-year training/one-
year test in Tables 8, 9) reveals that the most substantial
improvement is observed in the second sub-scenario (1 year as
the training period). Specifically, the one-year training sub-scenario
experiences the highest improvement of 46.7%, in contrast to the
three-year training sub-scenario, which shows the highest
improvement of 9.9%. Notably, before alignment, the three-year
training sub-scenario outperformed the one-year training sub-
scenario, which may explain the relatively lower improvement
observed in the results of the three-year sub-scenario
after alignment.

FIGURE 6
Comparing the rapeseed fields maps of Tarbes 2020 as training and Le Mans 2019 as test before and after applying our alignment approach of
S1 time series. (A) Using RF before alignment method, (B) using InceptionTime (IT) before alignment method, (C) using RF after alignment method, (D)
using InceptionTime after alignment method. The percentage of non-rapeseed fields that are misclassified as rapeseed, shown in orange, is very low, at
only 1%, which makes it a rare occurrence.
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3.4 The rapeseed fields map

Figure 6 presents a comparison of rapeseed fields maps for a
specific case, where Tarbes 2020 serves as the training dataset, and Le
Mans 2019 as the test dataset. These maps show both before (Figures
6A, B using RF and InceptionTime, respectively) and after applying
our alignment method (Figures 6C, D using RF and InceptionTime,
respectively) to the S1 time series. The comparison is made against
the ground samples of rapeseed fields. In these figures, the correctly
classified rapeseed fields (True positives) are colored in green. In
contrast, rapeseed fields incorrectly classified as non-rapeseed (False
negatives) are indicated by empty red polygon outlines. It is worth
noting that the percentage of non-rapeseed fields misclassified as
rapeseed (False positives), marked in orange, is very low, at just 1%,
making it a rare occurrence.

As observed in Figures 6A, B, before aligning the S1 time series,
many rapeseed fields sampled from the ground (RPG) were
incorrectly classified as non-rapeseed. However, Figure 6B
demonstrates that InceptionTime outperforms RF in correctly
identifying rapeseed fields. On the other hand, Figures 6C, D
provide a view of spatiotemporal transferability of the
classifiers after applying our alignment method. These figures
highlight the high performance of the alignment method in the
spatiotemporal transfer for rapeseed classification. After alignment,
misclassifications primarily involve small-sized rapeseed fields. This
problem is due to the reduced number of S1 pixels used in the
calculation of the average backscatter coefficient, which compounds
the speckle effect. It is important to note that this type of error,
particularly in the case of smaller-sized rapeseed fields, is not a direct
consequence of the method employed but rather is linked to the
spatial resolution of S1 images.

4 Discussion

This paper addresses several challenges associated with rapeseed
fields mapping to improve the detection of this crop, particularly
when collecting new training data is limited. We proposed a
comprehensive approach to handling the complexities of field
data collection and the transferability of the classifiers. Our
approach is particularly relevant as there is a growing demand
for crop monitoring at a national or global scale, while the
availability of ground data across different regions and time
frames remains a significant challenge, as highlighted by various
studies (Johnson and Mueller, 2021; Henits et al., 2022; Lin
et al., 2022).

4.1 Temporal transferability of the classifier

The results of temporal transferability of classifiers illustrated
that, in all five study sites, both RF and InceptionTime algorithms
consistently achieved high accuracy when classifying rapeseed fields
from 1 year using the training dataset from another year (F1 and
Kappa scores consistently exceeded 85% and 0.84) (Table 2). These
high accuracy levels show that across all our five study sites, the
classifiers have the ability to effectively distinguish rapeseed fields
using training data from different years. The InceptionTime model

used in this study achieved an F1 score of over 90% using only
S1 time series, outperforming previous methods for classifying time
series data. Maleki et al. (2023) used S1 time series for rapeseed
mapping and examined temporal transferability for this task using
RF, MLP, LSTM-FCN, and InceptionTime models. They achieved
the highest mean F1 score with InceptionTime (92.7%). In another
study, Rusňák et al. (2023) applied temporal transferability using
SVM and a neural network (NN) algorithm to map seven
crops—barley, rapeseed, maize, wheat, sugar beet, sunflower, and
soybean—achieving overall accuracy ranging from 84.4% to 88.9%
with the SVM algorithm and from 81.1% to 91.9% with the NN
algorithm. Pandžić et al. (2024) achieved an overall F1 score ranging
from 78% to 88% for mapping nine crops using RF and
Convolutional Neural Network algorithms, based on highly dense
time series data from S1. Lin et al. (2022) employed a historical
threshold approach on S2 and Landsat data, achieving F1 scores
between 85% and 87% for detecting various crops. Additionally, the
InceptionTime model, which directly learns crop backscatter
patterns from satellite imagery, offers a simpler alternative to
decision boundary-based approaches (Yaramasu et al., 2020; You
and Dong, 2020). In contrast, threshold-based methods rely on
selecting crop-specific thresholds from historical samples to apply to
a target year.

Notably, InceptionTime achieved an F1 score higher than 90%
in four study sites (La Rochelle, Tarbes, Le Mans, Renville), while the
RF algorithm reached an F1 score higher than 90% in one study site
(Renville). InceptionTime also displayed a narrower range between
minimum and maximum F1 scores when compared to RF,
demonstrating greater stability in classification accuracy. Fawaz
et al. (2020) showed that InceptionTime has less variation in
accuracy thanks to its architecture composed of a series of
convolutional layers with filters of varying lengths combined with
residual connections. This suggests that InceptionTime is well suited
for rapeseed fields classification in a temporal transferability context,
providing consistent performance across different years. Transfer
learning leverages shared patterns or characteristics that exist across
different domains or datasets. For rapeseed, many of these
characteristics are tied to growth stages and phenological changes
that produce distinguishable patterns in satellite data. These patterns
allow the classifier to transfer a model trained on one dataset to
another (Nowakowski et al., 2021).

4.2 Spatiotemporal transferability of
the classifier

In the sub-scenario where 3 years of data from one study site
were used for training and 1 year of data from another study site
were used for testing, both the RF and InceptionTime algorithms
demonstrated strong spatiotemporal transferability (Table 3). The
mean F1 scores of RF ranged from 82.7% to 97.8%, withmean Kappa
scores consistently between 0.8 and 1. The InceptionTime algorithm
achieved mean F1 scores ranging from 88.7% to 97.1%, with mean
Kappa scores between 0.9 and 1. In a study by Mercier et al. (2020),
an incremental method developed by Mercier et al. (2019) was
adopted to detect rapeseed fields using only S1 time series from the
same training and test sites, resulting in a lower accuracy with a
kappa value of 0.63. (Sun et al., 2024). tested 12 models on rapeseed
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field detection, combining three convolutional neural network
(CNN) models (U-Net, PSPNet, and DeepLab V3) with four
backbone networks (ResNet-18, ResNet-34, ResNet-50, and
ResNet-101). PSPNet outperformed the others, achieving an
F1 score of 93.3% for same-year train-test scenarios. Previous
studies on rapeseed detection have often relied on optical images
alone or a combination of radar and optical images to achieve high
accuracy (Mouret et al., 2021; Woźniak et al., 2022). For instance,
Han et al. (2021a) achieved F1 scores ranging from 0.84 to 0.91 by
combining S1 and S2 data to map rapeseed fields across 33 countries
using a pixel- and phenology-based method. Compared with
previous studies, both algorithms considered in this study are
effective in classifying S1 data from different sites for training
and testing. However, a narrower range between the minimum
and maximum values of F1 scores is obtained by InceptionTime,
indicating a higher stability of this algorithm in the transfer domain.

In the sub-scenario where one-year data from a specific study
site was used for training and another one-year dataset from a
different study site was used for testing, although high F1 scores were
achieved for certain combinations (e.g., F1 of 96.6% for Canada
2019-USA 2019), both RF and InceptionTime algorithms showed
high variation between the minimum and maximum F1 scores
within the various combinations of study sites (Tables 4, 5).
F1 scores ranged from 48.8% to 97.7% with RF and from 59.2%
to 97.7% with InceptionTime in France study sites (Table 4). In
North American cases, F1 scores using RF ranged from 49.0% to
96.6%, while InceptionTime yielded scores between 58.4% and
94.2% (Table 5). Previous studies using spatiotemporal
transferability of classifier for crop mapping have also reported a
wide range of accuracy results. Belgiu et al. (2021) achieved an
overall accuracy ranging from 69% to 75% for 10 crops when
applying spatiotemporal transferability within two study sites in
the Netherlands using S2 time series and the RF algorithm.
Meanwhile, Luo et al. (2022) used training data from England
and France to produce crop maps for ten European countries
and reported an overall accuracy of 89% in crop classification
using S2 time series.

Comparing the results of our two spatiotemporal transfer sub-
scenarios (Tables 3–5), the use of multi-year training data resulted in
smaller variations in classification performance across different
combinations of sites. Cai et al. (2022), who used a 15-year
Landsat dataset to create a crop map for 2015 across the US,
showed that a larger training dataset can significantly improve
the classification performance. However, they also found that
adding more years beyond a certain range can lead to a plateau
in performance improvement.

Also, our results showed significant improvements in F1 score
when training on data from multiple years, with the most notable
enhancements observed with RF. Thus, training with multi-year
backscatter data is beneficial, in order to improve the accuracy of
classification using the spatiotemporal transferability of classifier
while minimizing the difference between minimum and maximum
accuracy. These results suggest that the use of multi-year training
data, representing various phenology cycles and environmental
conditions, enhance the accuracy and reliability of classification
models mainly for the transferability of the classifiers when the
labeled data are rare. As previous studies have mentioned that the
lack of ground data poses a significant challenge to supervised

classification methods over large study sites (Burke et al., 2021;
Nowakowski et al., 2021), our approach of transferring models
trained in one region to map larger spatial extents is of great value.

4.3 Improving spatiotemporal transferability
of the classifier

Comparing the efficacy of the proposed alignment method
between 3 years training and one-year training sub-scenarios
showed that the alignment method induces significant
improvement for one-year training cases and limited
improvement for the three-years training. These results were
expected since the three-years training included vast variation in
the S1 time series data among the 3 years allowing the classification
model to account for most of the possible cases in the training phase.
For this reason, it achieves a high F1 before applying the alignment
method. However, using one-year training dataset, the ability of the
trained model to account for changes in the S1 time series between
years was limited. Practically, the case of having 1 year of training
data is more likely to occur in operational mapping, which highlights
the significance of the proposed alignment method.

To discuss the impact of time series alignment on F1 score
enhancement, we compared between the percentage of
improvement in the F1-score after alignment and the temporal
shift in the rapeseed peak for the S1 time series (in days), between the
training and test datasets. This comparison is presented in the
Supplementary Appendix Figures A6A, B (from Tables 6, 7) for
the three-year training sub-scenario and in the Supplementary
Appendix Figures A7A, B (from Tables 8, 9) for the one-year
training sub-scenario. In these figures, the x-axis represents the
temporal shift, i.e., the difference between the date of the highest
peak in the training and test datasets. Both figures illustrate that, as
the temporal shift between the highest peak of rapeseed in the
training and test data increases, more improvement in F1 score after
the application of the alignment method is observed.

However, some low improvement cases are mainly related
to the results of the InceptionTime algorithm, showing that the
improvement achieved through the alignment with InceptionTime
may not be completely determined by the temporal shift between
training and test datasets. For instance, for two cases in the
Supplementary Appendix Figure A6A with more than 20 days’
shift, classifying Tarbes 2020 with a three-year training dataset of
Le Mans showed an improvement of 0.6% using InceptionTime and
10% using RF (Table 6). Additionally, a similar situation is present
for rapeseed detection in Le Mans 2019 with a three-year training
dataset from Tarbes, leading to an improvement of 0.4% using the
InceptionTime algorithm and 4% using RF (Table 6). Similarly, in
the Supplementary Appendix Figure A7A, in the case of
Tarbes 2020 – Le Mans 2018, with a temporal shift of 29 days,
the InceptionTime presented a 5.5% improvement, while RF
demonstrated a significant improvement of 44.7%. Furthermore,
comparing the F1 scores of the RF and InceptionTime algorithms
shows that peak alignment has a more pronounced effect on RF
compared to InceptionTime which already achieved higher
F1 scores (Tables 8, 9). These differences between the results of
RF and InceptionTime may be attributed to the structural disparities
between these two algorithms. Unlike RF, which builds independent
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decision trees that does not account for the temporal dependency
between features, InceptionTime is a time series classification
algorithm employing convolutional neural networks (CNN). It is
specifically designed to handle time series data and it uses
convolutional layers to extract meaningful features by sliding
filters over the data (Fawaz et al., 2020). This enables
InceptionTime to be on one hand robust to possible temporal
shifts and on the other hand to capture temporal patterns,
transitions, and dependencies within the time series, making it
particularly advantageous for sequential data like S1 time series
(Fawaz et al., 2020).

4.4 Factors affecting the time series
alignment method

For some train/test combinations, the F1 score of the RF remains
below 90% although there is an improvement in performance after
alignment. For instance, for Le Mans 3 years - Tarbes 2020, the
F1 score by RF increases from 77.9% to 87.8% after alignment
(Table 6). Notably, as shown in the Supplementary Appendix Figure
A8, for this combination a sudden decline in the S1 backscatter for
Tarbes is present by the end of June 2020, creating a dissimilarity in
the backscatter trend between the training and test data. However,
this decline is not reflected in the S1 backscatter data for Tarbes in
2018 and 2019 (as shown in Figure 2, S1 backscatter for our study
sites). A comparison of precipitation data for Tarbes between 2018,
2019 and 2020 shows a significant decrease in precipitation in 2020,
especially between May and July. Precipitation in 2020 decreased by
47.1% compared to 2018 and by 74.5% compared to 2019. Therefore,
low F1 value even after the alignment can be related to the
meteorological variability in the study site, as this variability may
change the SAR backscatter trend (Fieuzal et al., 2013; Han et al.,
2021a). Shorachi et al. (2022) demonstrated that drought conditions
lead to lower VV and VH backscatter values. Reduced VV and VH
backscatter during drought periods may be attributed to factors such
as dry soils, lower vegetation water content (VWC), and altered leaf
geometry. The extent of these changes, however, varies depending
on crop type, soil characteristics, and regional water management
practices (for example, irrigation). The unusual S1 backscatter
patterns, resulting from drought conditions, complicated the
alignment between the training and test time series. Cai et al.
(2022) observed that spatiotemporal transfer performance can
produce outliers during extreme climatic events, such as droughts
or unusually high precipitation years. Similarly, Rusňák et al. (2023)
found that intense drought events in specific years pose significant
challenges for spatiotemporal transfer.

5 Conclusion

This study explores the spatiotemporal transferability of RF and
InceptionTime as a solution for limited availability of reference label
data to map rapeseed fields. In addition, the paper introduced an
approach that improve the rapeseed fields mapping through
spatiotemporal transfer.

The performance of the RF and InceptionTime classifiers across
different years in five diverse study sites was evaluated. Both

algorithms consistently demonstrated strong performance,
achieving high accuracy in classifying rapeseed fields using
training data from 1 year and testing data from another year in
the same site. The F1 scores ranged between 85.0% and 97.0% for
both algorithms.

The effectiveness of the spatiotemporal transferability of
classifiers was then examined. Main results emphasized the
importance of using multi-year training data, when the training
and test sites are different. Using a three-years training dataset of a
given study site to create one-year rapeseed map of another site, the
F1 scores ranged between 82.7% and 97.8% for RF and between
88.7% and 97.1% for InceptionTime. The higher performance of
InceptionTime compared to RF could be attributed to CNN’s ability
to capture temporal patterns, transitions, and dependencies within
the time series.

To enhance the rapeseed fields detection using spatiotemporal
transferability of classifiers, an alignment method was proposed to
align the highest peaks in S1 time series data between training and
test datasets. This method proved highly effective in the case of
limited training data (1 year), resulting in a significant improvement
in the F1 score of up to 46.7%. However, lower improvements were
found for cases exhibiting extreme weather conditions, such as
droughts, in the test site/year.

Our findings provide valuable insights for agricultural
monitoring and crop classification, enhancing the efficiency
and accuracy of rapeseed field mapping across various regions
and years. When training samples are limited, the proposed
alignment method shows promise for effective rapeseed
mapping. This approach can be integrated into operational
agricultural monitoring systems to aid decision-making and
resource allocation. However, the machine learning models
used in the study might have certain biases that affect their
ability to generalize well, which could impact the transferability
results. Different algorithms may behave in ways that are not
always ideal for every dataset, and this could limit their
performance, especially under conditions involving more severe
variations across datasets. Future work should consider a broader
range of locations and crop types to validate the method’s
effectiveness. Further exploration of different deep learning
architectures, transfer learning techniques, and ensemble
learning methods is recommended for future studies.
Additionally, future work will focus on integrating additional
satellite data sources and climatic variables, such as rainfall, to
improve the accuracy of rapeseed mapping models. Furthermore,
scalability to larger geographical areas and different crop types
needs to be evaluated to ensure broader applicability.
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