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Current terrestrial snow depth mapping from space faces challenges in spatial
coverage, revisit frequency, and cost. Airborne lidar, although precise, incurs high
costs and has limited geographical coverage, thereby necessitating the
exploration of alternative, cost-effective methodologies for snow depth
estimation. The forthcoming NASA-ISRO Synthetic Aperture Radar (NISAR)
mission, with its 12-day global revisit cycle and 1.25 GHz L-band frequency,
introduces a promising avenue for cost-effective, large-scale snow depth and
snow water equivalent (SWE) estimation using L-band Interferometric SAR
(InSAR) capabilities. This study demonstrates InSAR’s potential for snow depth
estimation via machine learning. Using 3 m resolution L-band InSAR products
over Grand Mesa, Colorado, we compared the performance of three machine
learning approaches (XGBoost, ExtraTrees, and Neural Networks) across open,
vegetated, and the combined (open + vegetated) datasets using Root Mean
Square Error (RMSE), Mean Bias Error (MBE), and R2 metrics. XGBoost emerged as
the superior model, with RMSE values of 9.85 cm, 10.46 cm, and 9.88 cm for
open, vegetated, and combined regions, respectively. Validation against in situ
snowdepthmeasurements resulted in an RMSE of approximately 16 cm, similar to
in situ validation of the airborne lidar. Our findings indicate that L-band InSAR,
with its ability to penetrate clouds and cover extensive areas, coupled with
machine learning, holds promise for enhancing snow depth estimation. This
approach, especially with the upcoming NISAR launch, may enable high-
resolution (~10 m) snow depth mapping over extensive areas, provided
suitable training data are available, offering a cost-effective approach for snow
monitoring. The code and data used in this work are available at https://github.
com/cryogars/uavsar-lidar-ml-project.
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1 Introduction

Accurately measuring snow depth is critical for applications in
hydrologic science, water resource management, and climate
modeling (Lievens et al., 2022). Seasonal snowpacks act as
natural reservoirs, storing winter precipitation and gradually
releasing meltwater in spring and summer as the temperature
rises (Simpkins, 2018; Livneh and Badger, 2020; Vano, 2020;
Lievens et al., 2022). Tracking snow accumulation and melt is
instrumental in understanding how snowpack storage affects
water resources. For instance, in California, the Sierra Nevada
seasonal snowpack contributes approximately 70% of additional
water storage to supplement the existing artificial reservoir system
(Dettinger and Anderson, 2015; Hedrick et al., 2018; Henn et al.,
2020). However, monitoring snow depth, especially on a large scale,
is fraught with challenges. The diverse and rugged terrain of
mountainous regions makes it particularly difficult (Deems
et al., 2006).

Traditionally, snow depth monitoring has relied on in situ
measurements and airborne observations (Deems et al., 2013;
Marshall et al., 2015; Dong, 2018; Webb et al., 2021). However,
these methods are often limited by geographical reach, temporal
frequency, and financial resources. In situmeasurements are known
for their accuracy and reliability, as they are often conducted
manually using instruments such as snow probes, snow coring,
or through automated snow telemetry stations (SNOTEL) (Serreze
et al., 1999). However, access to mountainous regions can be difficult
during winter when snow monitoring is essential. Additionally, the
resources required for frequent and widespread in situ
measurements, including financial and human capital, can be
prohibitively high (Deems et al., 2013). Moreover, in situ
measurements have limited support (i.e.,; representativeness) and
cannot fully resolve the spatial heterogeneity of snowpack properties
(e.g.,; snow depth, snow water equivalent (SWE), and snow density)
across a landscape (Trujillo and Lehning, 2015; Bühler et al., 2016),
as snow has a spatial autocorrelation length on the order of 100 m
[e.g.,; Trujillo et al. (2009)].

Remote sensing technologies such as Light Detection and
Ranging (lidar) provide high-precision snow depth estimates, but
the high cost limits comprehensive monitoring (Deems et al., 2013).
Airborne lidar and structure-from-motion (i.e.,; photogrammetry
using aerial photography) deliver detailed snow depth maps but are
geographically limited (Harder et al., 2020; Meyer et al., 2022).
Satellite passive microwave sensors estimate basin average SWE yet
suffer from coarse resolution (~25 km) and saturate at 150 mm
SWE, preventing application in mountainous areas (Chen and
Wang, 2018; Taheri and Mohammadian, 2022). Optical remote
sensing is weather-dependent and unable to penetrate dense forest
cover (Sinha et al., 2015; Aquino et al., 2021). Additionally, while
initiatives like the Airborne Snow Observatory (ASO) are making
strides towards the broader use of lidar for snow mapping, snow
depth data is primarily collected in the western United States (US)
(Ferraz et al., 2018), leaving a significant geographical gap in global
snow monitoring. Consequently, the development of new
spaceborne capabilities to map snow depth continues to be an
active area of research.

Amid the limitations of traditional snow monitoring methods
and the challenges of lidar acquisition on a global scale, the pursuit

of alternative remote sensing technologies is imperative. The
forthcoming NASA-ISRO (NASA-Indian Space Research
Organization) Synthetic Aperture Radar (NISAR) mission,
scheduled for launch in March 2025, appears promising in this
regard. NISAR, equipped with an L-band radar, is set to observe
nearly all of Earth’s terrestrial and ice surfaces at an approximate
resolution of 10 m, with a revisit frequency of twice every 12 days
(Kellogg et al., 2020; LAL et al., 2022). Operating within the 1–2 GHz
frequency range (L-band) with wavelengths between 15 and 30 cm,
it can penetrate cloud cover and 10+ meters of snow, facilitating all-
weather, day-night snow monitoring in a wide range of conditions.

Guneriussen et al. (2001) first developed a theoretical framework
describing the relationship between the InSAR phase and changes in
SWE under dry snow conditions. They demonstrated the sensitivity
of InSAR phase to SWE changes but highlighted challenges such as
phase wrapping errors and temporal decorrelation when using
C-band frequencies due to their short wavelengths. To mitigate
these issues, the authors suggested exploring L-band frequencies,
which have longer wavelengths, to improve SWE estimation. Leinss
et al. (2015) extended the work of Guneriussen et al. (2001) by
deriving a linear relationship between phase delay and changes in
SWE that is less sensitive to temporal decorrelation and phase
wrapping errors. Their approach is optimized to determine
changes in SWE from a time series of differential interferograms
and depends minimally on snow density and stratigraphy. Deeb
et al. (2011) investigated the use of InSAR to generate time-series
SWEmaps in the Kuparuk watershed of Alaska using C-band ERS-1
data. They demonstrated that InSAR-derived SWE maps captured
spatial patterns of snow redistribution and emphasized the potential
of L-band data (e.g., PALSAR on the Advanced Land Observing
Satellite) for operational SWE retrieval due to its longer
wavelength advantage.

Further advancements have leveraged dual-polarimetric data for
snow depth estimation. Varade et al. (2020) improved snow depth
estimates in mountainous regions of Dhundi using dual-
polarimetric Sentinel-1 data with bias correction techniques.
They enhanced snow depth estimation accuracy by combining
VV and VH polarization data and applying bias corrections
based on snow-free areas. Mahmoodzada et al. (2020) extended
the work of Varade et al. (2020) by addressing snow volume
scattering effects within the DInSAR displacement framework
rather than through snow phase corrections. Feng et al. (2024)
introduced a dual-polarimetric radar snow depth estimation
framework using Sentinel-1 data in the Scandinavian Mountains.
Their method, based on the dual-polarimetric radar vegetation
index, outperformed existing techniques, achieving a 26.9%
improvement in the coefficient of determination compared to the
cross-polarization ratio method and a 20% reduction in the mean
absolute error. Palomaki and Sproles (2023) assessed L-band InSAR
snow estimation techniques over shallow and heterogeneous prairie
snowpacks in Montana, United States. While they found that
L-band InSAR is sensitive to differences in snow cover, they
noted challenges in accurately estimating SWE due to sub-pixel
snow depth variability and recommended further refinement of
InSAR-based techniques for such environments.

During 2017–2021, the NASA SnowEx Mission performed
repeat InSAR surveys with UAVSAR, with initial physics-based
retrievals showing promise (Marshall et al., 2021). A recent study by
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Hoppinen et al. (2023) employing repeat pass InSAR for monitoring
SWE over Idaho found strong correlations between retrieved SWE
changes from SAR images and both in situ and modeled results.
Tarricone et al. (2023) used repeat-pass L-band InSAR to estimate
SWE changes in an environment with both snow accumulation and
ablation, showcasing the capability of L-band InSAR for tracking
SWE changes. Studies have also shown promise in retrieving snow
depth information from InSAR coherence, phase, and incidence
angle data. Li et al. (2017) used repeat-pass InSARmeasurements for
estimating snow depth and SWE in the Northern Piedmont Region
of the Tianshan Mountains and found the snow depth estimation to
be consistent with field measurements. With the promising
capabilities of InSAR, the NISAR mission may be able to provide
high-resolution (~10–50 m) snow depth estimates over large areas if
appropriate snow depth observations are available for training
machine learning models. While physics-based retrievals have
shown promise, machine learning techniques can be
advantageous as they often require fewer assumptions about
snow conditions, such as whether the snow is dry or wet, and
can be effective in scenarios where traditional inversion methods
may be limited by data availability.

Our goal in this work is to use a pair of repeat-pass L-band
InSAR products from the 2017 NASA SnowEx campaign on Grand
Mesa to estimate total snow depth (e.g.,; bulk snowpack depth to the
ground) using Machine Learning algorithms. While previous work
has focused on physics-based retrievals, in 2017, we only had one
lidar flight measuring total snow depth, and therefore, physics-based
inversion is not possible. While InSAR is inherently more related to
changes in snow depth rather than total snow depth, snow
accumulation patterns tend to exhibit consistency. As such, snow
depth before the onset of melt displays similar patterns to snow
depth changes (Mason, 2020). Snow distribution patterns have been
shown to exhibit intra- and inter-seasonal consistency despite
differences in weather patterns and seasonal snowfall amounts
(Deems et al., 2008; Sturm and Wagner, 2010; Schirmer and
Lehning, 2011; Pflug and Lundquist, 2020). While the actual
snow depths may change, the locations of deeper and shallower
snow areas generally tend to be consistent.

Since the 1990s, machine learning algorithms have gained
prominence in environmental remote sensing (Reichstein et al.,
2019; Zhang et al., 2019; Yuan et al., 2020) and, over time, have
proliferated across various application areas such as snow depth
retrieval (Tedesco et al., 2004; Wang et al., 2019; King et al., 2022a;
Ofekeze et al., 2022; Ofekeze et al., 2023; Alabi et al., 2023), snow density
(Alabi et al., 2022; Feng et al., 2022), and SWE (Bair et al., 2018; Broxton
et al., 2019) predictions. Hu et al. (2021) conducted a study using
machine learning algorithms to fuse gridded snow depth datasets with
inputs including geolocation, topography, and in situ observations. The
Random Forest algorithm proved to be the most proficient of the three
learningmachines tested. Liang et al. (2015) applied the Support Vector
Machine (SVM) to estimate snow depth in northern Xinjiang using
data from visible and infrared surface reflectance, brightness
temperature, and auxiliary information. The SVM method
outperformed the Artificial Neural Networks (ANN) utilized in
Finland (Tedesco et al., 2004). King et al. (2022a) utilized a random
forest model trained on vertical radar reflectivity profiles from the
VertiX X-band radar instrument in Egbert, Ontario, and atmospheric
temperature estimates from the European Centre for Medium-Range

Weather Forecasts (ECMWF) Reanalysis version 5 (ERA-5) for snow
accumulation predictions resulting in a mean square error (MSE) of
~1.8 × 10−3 mm2 when compared to collocated in situ measurements.

These works and others have highlighted the potential of
machine learning in producing improved snow depth predictions.
However, a common limitation across many of these studies is the
constrained spatial coverage of validation datasets, which can be
attributed to the scarcity of global snow depth data and the
prohibitive costs associated with acquiring lidar data globally.
This study aims to develop a snow depth prediction system using
L-band InSAR (which can be deployed over large areas) products
andML algorithms. Specifically, we will compare the performance of
three machine learning algorithms: eXtreme Gradient Boosting
(XGBoost) (Chen and Guestrin, 2016), Extremely Randomized
Tress (ExtraTrees) (Geurts et al., 2006), and Artificial Neural
Networks (ANN). We will also investigate the impact of
vegetation on snow depth prediction accuracy.

The objective of this work is divided into three broad aspects:

1. To test the effectiveness of L-band InSAR products in
estimating total snow depth using ML algorithms,

2. To analyze the effect of vegetation on the performance of the
ML models, and

3. To understand the relative importance of each input feature in
snow depth estimation.

The study area is stratified into open areas and vegetated areas,
using a 0.5 m threshold on lidar vegetation height observations, to
evaluate the impact of vegetation on model performance. Machine
learning algorithms can be used to extract snow depth information
from L-band InSAR data in a robust and efficient manner.

We believe that our research has the potential to complement
existing snow monitoring practices by facilitating cost-effective, high-
resolution, and extensive snow depth estimation. Our findings could
lead to the development of a global snow depth prediction system that
provides valuable information for water resource management, flood
forecasting, and avalanche hazard assessment, provided that accurate
and representative training data is available.

2 Materials and methods

2.1 Study area

This study was conducted on Grand Mesa, a flat-topped mesa in
Western Colorado, United States (39.1°N, 107.9°W). GrandMesa is one
of the largest flat-topped mesas in the world (Chesnutt et al., 2017;
Gatebe et al., 2018), with elevations from 2,000 to 3,400 m above sea
level (Kulakowski et al., 2004). The climate is continental (Kulakowski
et al., 2004), with the coldest, warmest, and windiest months being
January, July, and June, respectively (Time and Date website, 2024:
https://www.timeanddate.com/weather/@5423575/climate).

2.2 Data

The data for our study was sourced from NASA’s 2017 SnowEx
campaign (Kim et al., 2017). The 2017 campaign aimed to evaluate
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the sensitivity of snow remote sensing techniques through a gradient
of forest densities (NSIDC: https://nsidc.org/data/snowex). This
campaign was primarily conducted in two locations in Colorado,
United States: Grand Mesa and Senator Beck Basin. Our focus is on
Grand Mesa (Figure 1). SnowEx datasets are publicly available
through the National Snow and Ice Data Center (NSIDC: https://
nsidc.org/data/snowex).

The 2017 SnowEx campaign spanned from September 2016 to
July 2017, with the Intense Observation Period (IOP) taking place
between February 6 and 25 February 2017 (Brucker et al., 2017).
During this period, a multitude of measurements were collected,
including data from cloud-absorption radar, ground-penetrating
radar, synthetic aperture radar, lidar, airborne video, Global
Navigation Satellite Systems (GNSS) measurements, and snow pit
measurements (Brucker et al., 2017; Kim et al., 2017). In this study,
we focus on the L-band InSAR products (phase change, coherence,
amplitude, incidence angle) and high-resolution airborne lidar data
collected during the campaign (snow depth, bare ground elevation,
vegetation height). Our study site within Grand Mesa spans
approximately 70 km2, and all data used in this study has a
resolution of 3 m, which was the resolution of the airborne lidar.
The InSAR products were resampled to have the same resolution
and align with the lidar raster. The details of each data type’s
collection and use are outlined in the following sections.

2.2.1 Lidar snow depth measurements
Lidar, an acronym for Light Detection and Ranging (Brucker

et al., 2017; King et al., 2022b), is a remote sensing method that uses
the travel time of a laser pulse to measure distances (Killinger, 2014;
Revuelto et al., 2014). The lidar data used in this study was collected
by the NASA Airborne Snow Observatory (ASO) as part of the

2017 SnowEx campaign on two dates: 20 September 2016, and
8 February 2017. The September 20 flight was a “snow-free” flight,
which means that the lidar data was collected before any snow had
fallen on the ground. The February 8 flight was a “snow-on” flight,
which means that the lidar data was collected when a snowpack had
developed on the ground. The initial gridded ASO lidar product has
a spatial resolution of 3 m and a vertical accuracy characterized by a
root mean square difference of 8 cm when compared to near-
coincident median values from 52 snow-probe transects (Currier
et al., 2019). Snow depths were then calculated by differencing the
two DEMs (snow-on minus snow-off). In addition to snow depth,
bare ground elevation and vegetation height to the top of the canopy
at matching 3-m resolution were produced from the lidar
data (Figure 2).

For this work, we divided the data into three categories based on
vegetation:

• Open areas: areas with no vegetation or vegetation
heights <0.5 m.

• Vegetated areas: areas with vegetation height≥0.5 m
• Combined dataset: a combination of both open and
vegetated areas.

The resulting training dataset contains 3.174 × 106 (48% of the
total samples), 2.166 × 106 (32% of the total samples), and 5.341 ×
106 (80% of the total samples) 3-m resolution snow depths for open
areas, vegetated areas, and a combination of both, respectively
(Table 1). In this work, we used 80% of the data for training the
model, 10% for tuning hyperparameters, and 10% for testing. In
machine learning, the splitting percentage depends on the size of the
dataset. Studies have shown that an 80/10/10 split is appropriate for

FIGURE 1
Study Site: Grans Mesa, Colorado. The large red rectangle outlines a 9.25 × 32 km target area that was imaged by all airborne sensors during the
2012 SnowEx Intense Observation Period (IOP). Orange circles indicate in situ depth measurement locations collected on February 8. While the orange
circlesmay appear to overlap due to themap scale (in kilometers), the actual measurement points are spaced 3m apart. The inset map shows the location
of GrandMesawithin Colorado, United States. The natural gradient of SnowWater Equivalent (SWE) increases fromwest to east, and the forest cover
also naturally varies across the region (Kim et al., 2017).
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datasets containing more than 1 million samples (Muraina, 2022).
Table 1 shows the snow depth statistics for each category in the
training data. Themean snow depth is approximately 1.06m in open
areas, which is slightly lower than that of the vegetated areas at
1.10 m. The range of snow depth across all areas is from 0 m to a
maximum of 3 m.

2.2.2 L-band InSAR products
Interferometric Synthetic Aperture Radar (InSAR) is a radar

technique that calculates changes in the distance between the radar
antenna and the ground surface by comparing the phase difference
of two or more radar images (Lu et al., 2007). Repeat-pass InSAR
uses two or more InSAR images of the same scene taken at different
times to generate an interferogram, which measures the phase shift
between the image acquisitions. InSAR can be used to measure a
variety of surface changes, including deformation, subsidence, and
ice sheet movement. More recently, repeat-pass InSAR has been
used to measure SWE changes (Tarricone et al., 2023).

The L-band InSAR frequency range is 1–2 GHz, corresponding
to a wavelength range of 15–30 cm (Ulaby et al., 1981). These longer
wavelengths allow L-band signals to penetrate clouds and penetrate
deeper into dry snow and vegetation canopies compared to higher-
frequency bands like C- or X-band. Generally, radar waves with
longer wavelengths experience less backscatter and attenuation than
shorter wavelengths (Awasthi and Varade, 2021). For dry snow,
radar backscatter primarily originates from the snow–soil interface,

as dry snow has low attenuation of radar signals at frequencies below
10 GHz (Marshall et al., 2005; Tarricone et al., 2023). As the radar
wave propagates through the snow layer, it undergoes refraction
(change in the radar propagation direction) and slows down due to
the dielectric properties of snow, which differ from those of the
atmosphere. This refraction and reduction in wave speed are
governed by the refractive index of snow, which is a function of
snow density for dry snow. The refraction results in a phase shift
relative to radar signals when less snow is present. The phase
difference between two InSAR acquisitions can be used to
estimate changes in snow depth and SWE. L-band SAR signals
are also less affected by snowfall and atmospheric conditions (e.g.,
water vapor) due to their longer wavelength, which reduces
scattering and attenuation effects compared to shorter
wavelengths like C- or X-band (Ulaby et al., 1981). This makes
L-band InSAR data more reliable under varying weather conditions.

As part of the 2017 SnowEx campaign, the NASA Jet Propulsion
Laboratory (JPL) flew the L-Band UAVSAR sensor over GrandMesa
in February and March. A total of five flights were conducted on
February 6, 22, 25, and March 8 and 31. For this work, we used the
pair of flights closest to the lidar acquisition. Since the lidar was
acquired on February 8, we used the HH polarization for February
6 and 22 as the InSAR features for ourMLmodels.We analyzed both
HH and VV polarizations to determine which provided higher
coherence over our study area. Our analysis showed that HH
polarization provided higher median coherence. In InSAR, higher

FIGURE 2
Lidar-derived products (UTMZone 13) (A–C) from the study site. (A)Vegetation height with a color range from0 to 20m, (B) Snowdepthwith a color
range from 0 to 2m. (C) Bare ground elevations with a color range spanning approximately 2,950–3,150m. (D) L-Band InSARWrapped Phase (UTM Zone
13) with a color scale ranging from -π to +π radians.
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coherence indicates greater confidence in the phase information,
which implies a more accurate retrieval. UAVSAR products come at
a native resolution of 2 m. However, we resampled the UAVSAR
features to 3 m to match the lidar resolution.

The following L-band InSAR products, all of which are
resampled to 3-m resolution, were used in this study: coherence
(CO), local incidence angle (IA), amplitude (AM), wrapped phase
(WP), and unwrapped phase (UW). For a detailed description of
these products and InSAR methodologies in general, refer to Ulaby
et al. (1981), Awasthi and Varade (2021), Marshall et al. (2021),
Hoppinen et al. (2023), and Tarricone et al. (2023).

To use InSAR for estimating total snow depth, we assume that
the total snow depth patterns before melt starts within a season are
relatively consistent (Sturm and Wagner, 2010), with the patterns of
snow depth change detected by the InSAR instrument being
representative of the distribution of total snow depth. This
assumption is generally valid, but there are instances and
locations where this may not be the case, depending on weather
patterns, landscape and vegetation changes, and other processes

affecting snow distribution. L-band InSAR data will be available
from the NISAR mission at a 12-day temporal resolution, which has
the potential to complement existing snow depth measurement
practices. In addition, with a continuously operating InSAR, 12-
day snow depth/SWE changes can be summed to estimate total
depth (Oveisgharan et al., 2024). The InSAR products used in this
work are shown in Figure 3, and their summary statistics are
included in Table 1.

2.3 Methods

Our methodology for estimating snow depth from InSAR
products using machine learning models comprised several key
steps, which are outlined below.

2.3.1 Data preprocessing
Data preprocessing was the foundational step in our

methodology, preparing the dataset for compatibility with our

TABLE 1 Summary Statistics of L-band InSAR products, lidar snow depths, bare ground elevation, and vegetation height (all at 3m resolution) in the training
set. The table provides the count, mean, standard deviation (Std), minimum (Min), 25th percentile (25%), median (50%), 75th percentile (75%), andmaximum
(Max) values for each product within open, vegetated, and the combined dataset (open + vegetated). Units are included for variables where applicable;
coherence is unitless.

Subset Product Mean Std Min 25% 50% 75% Max

Open Areas (n = 3,174,348) Amplitude (volts) 0.12 0.07 0.02 0.09 0.11 0.13 3.55

Unwrapped Phase (rad) −7.92 0.82 −15.22 −8.44 −8.01 −7.33 −0.06

Coherence 0.64 0.13 0.003 0.56 0.66 0.73 0.98

Incidence Angle (rad) 0.92 0.13 0.28 0.84 0.94 1 1.95

Wrapped Phase (rad) −1.38 0.96 −3.14 −2.06 −1.54 −0.87 3.14

Bare Earth Elevation (m) 3,048.59 57.61 2,501.13 3,023.22 3,039.78 3,081.68 3,168

Snow Depth (m) 1.06 0.30 0 0.87 1.07 1.26 3.0

Vegetated Areas (n = 2,166,210) Amplitude (volts) 0.39 0.18 0.01 0.28 0.35 0.46 6.11

Unwrapped Phase (rad) −8.73 0.81 −15.26 −9.17 −8.67 −8.23 −0.47

Coherence 0.48 0.15 0.006 0.36 0.47 0.59 0.97

Incidence Angle (rad) 0.79 0.22 0.14 0.65 0.82 0.94 1.95

Vegetation Height (m) 8.43 5.26 0.5 4.09 8.12 12.06 34.62

Wrapped Phase (rad) −1.03 1.67 −3.14 −2.26 −1.69 −0.09 3.14

Bare Earth Elevation (m) 2,969.7 153.62 2,500.16 2,883.21 3,016.08 3,088.03 3,168

Snow Depth (m) 1.11 0.28 0 0.95 1.11 1.26 3.0

Combined Dataset (n = 5,340,595) Amplitude (volts) 0.23 0.18 0.01 0.10 0.15 0.33 6.11

Unwrapped Phase (rad) −8.25 0.91 −15.26 −8.76 −8.28 −7.68 −0.06

Coherence 0.57 0.16 0.003 0.46 0.59 0.70 0.98

Incidence Angle (rad) 0.87 0.18 0.14 0.77 0.90 0.99 1.95

Vegetation Height (m) 3.47 5.30 0 0 0.18 6.35 34.62

Wrapped Phase (rad) −1.24 1.3 −3.14 −2.14 −1.59 −0.75 3.14

Bare Earth Elevation (m) 3,016.55 114.27 2,500.20 3,012.51 3,036.44 3,084.15 3,168

Snow Depth (m) 1.08 0.29 0 0.90 1.09 1.26 3.0
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Machine Learning algorithms. The raw remote sensing data spanned
numerous raster layers at a 3-m resolution. Each raster layer
represents approximately a 7 km × 10 km area on the ground,
with each pixel representing an average value over a 3 m × 3 m area.
We first restructured the raster into pixel-wise tabular data frames to
enable vector-based preprocessing. After concatenating all variables,
we inspected for noise and outliers that could potentially affect the
models’ learning.

Noise in the data was identified through pixel values coded
as −9,999, which are standard no-data flags, and these values were
dropped from the analyses. Outliers were defined based on the
physical plausibility of measurements, with snow depth values
greater than 3 m classified as outliers. This threshold was chosen
after inspecting the in situ snow depth distribution for the day
(February 8), which showed a maximum snow depth of 3 m.
Extreme values (e.g., snow depths of 13 m) were unrealistic and
likely due to errors such as the lidar laser hitting the top of vegetation
during the snow-on flight.

Nomissing value imputation was done as we have an abundance
of data points (~6.7 million observations after data cleaning).
Imputation is a process where missing data points are filled in
using various statistical methods, which can sometimes introduce
uncertainties. By avoiding imputation, we maintained dataset
integrity. These data cleaning steps resulted in a dataset of
6,675,745 usable observations.

After data cleaning, we randomly split our data into three
disjoint subsets:

• Training Set: 80% of the data was used for training the models.
• Tuning Set: 10% of the data was used for hyperparameter tuning
to optimize model performance and to prevent overfitting during
model training. Hyperparameter tuning involves adjusting the
parameters of the learning algorithm itself to find the best
configuration. This process can help improve predictive
accuracy and robustness. Overfitting occurs when a model
learns the training data too well, capturing noise and details
that do not generalize to new data. By using a tuning set, we can
ensure the model generalizes well and performs effectively on
unseen data. Note that using a tuning set for hyperparameter
optimization is an alternative to cross-validation for
large datasets.

• Testing Set: The remaining 10% of the data was used to test the
models’ performance.

We have chosen random sampling to minimize sampling bias
and ensure that the testing data is representative of the training data.
Following the partitioning, all input features were converted into a
common dimensionless scale with a mean of zero and a standard
deviation of one using the z-score standardization approach
following Equation 1. This will prevent potential domineering
effects from variables with larger raw value ranges during model
training. We have chosen the z-score standardization approach
because it ensures outliers are handled more properly (Ozdemir,
2022). The normalized version of every observation Xi,j in feature
Xj is obtained by:

FIGURE 3
L-band InSAR products from the study site (UTMZone 13): (A) Incidence angles with values from0.5 to 1.5 radians, (B)Coherencemetrics with values
from0.50 to 0.80, (C) Amplitudeswith signal intensities between 0.0 and 0.5 V, and (D)Unwrapped Phasewith phase shift values from ~ −11 to −6 radians.
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Xz
i,j �

Xi,j − μj
σj

(1)

where Xz
i,j is the standardized value, μj and σj are the mean and

standard deviation of variable Xj from the training set.
For each data stratum (open, vegetated, and their combination),

we trained three models:

• Model 1: The first model uses only bare ground elevation as
input, and this model serves as the baseline model in this work.
Mathematically, we write:

SD � f BGE( ) (2)
• Model 2: This model uses InSAR products and bare ground
elevation as input features. The model is represented
mathematically as follows:

SD � f CO, IA, BGE,WP,AM,UP( ) (3)
• Model 3: This model combines the InSAR products, bare
ground elevation, and vegetation height as features. This
configuration is used to evaluate the effect of vegetation
height on the model performance.

SD � f CO, IA, BGE,WP,AM,UP,VH( ) (4)
where f is the various learning algorithms compared, VH is the
vegetation height, BGE is the bare ground elevation, and SD is the
snow depth. Note that the open areas only havemodels 1 and 2 because,
in the open areas, vegetation height is 0 or buried under the snow
cover (<0.5 m).

2.3.2 Model selection and training
Once the data were appropriately prepared, we proceeded to the

next phase: model selection and training. We trained and compared
three machine learning algorithms: Extremely Randomized Trees
(Extra Trees), eXtreme Gradient Boosting (XGBoost), and artificial
neural networks (ANN). These models were chosen because they have
been shown to perform well on a variety of remote sensing data
(Maxwell et al., 2018; Meloche et al., 2022). For hyperparameter
tuning, we used the Optuna framework (Akiba et al., 2019). Optuna
is an open-source hyperparameter optimization framework in Python
that is designed to optimize the hyperparameters for machine learning
models. Unlike traditional grid search, Optuna utilizes a Tree-
structured Parzen Estimator (TPE) algorithm (Bergstra et al., 2011;
Bergstra et al., 2013), a Bayesian optimization algorithm, which tends to
find optimal hyperparameters faster and with fewer function
evaluations compared to grid search. This efficient search approach
proved to be especially advantageous given the large dataset involved in
our study. The details of the hyperparameters tuned for eachmodel can
be found in Supplementary Tables S1–S3 of the supplementary
material, and the flowchart illustrating the step-by-step methodology
of our model training can be found in Figure 4.

2.3.2.1 Extremely Randomized Trees
Extra Trees is an ensemble algorithm that averages predictions

across a pre-defined number of randomized decision trees to
improve accuracy and control overfitting. The “extra” in Extra
Trees stands for extremely randomized, indicating that at each
split in the learning process, the features and cut points are
chosen in a random manner, hence reducing the variance of the

FIGURE 4
A flowchart illustrating the step-by-step methodology of our model training.

Frontiers in Remote Sensing frontiersin.org08

Alabi et al. 10.3389/frsen.2024.1481848

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2024.1481848


model. Due to this extreme randomization, Extra Trees are faster
than Random Forest and hence suitable for large datasets.
Mathematically, the prediction f̂EXT(x) from an extra tree
regressor can be expressed as Equation 5:

f̂EXT x( ) � 1
T
∑
T

t�1
f̂
t
x( ) (5)

WhereT is the total number of trees in the ensemble and f̂
t(x) is the

prediction of the tth tree for the input vector x.

In our analysis, the optimal hyperparameters for the Extra Trees
model were identified using Optuna. The optimal number of trees in
the forest was found to be 150. The maximum depth of the trees was
set to None, indicating that the nodes are expanded until they
contain fewer than the minimum samples required to split, allowing
the trees to grow to their full depth. Finally, the mean squared error
(MSE) was used as the measure of split quality at each node. These
hyperparameter settings were found to provide the best performance
on the tuning set. The details of these hyperparameters can be found
in Supplementary Table S1 of the supplementary material.

FIGURE 5
Comparative performancemetrics of snow depth estimationModels on the testing set. Panel (A) displays the RMSE across all models and data strata,
illustrating the accuracy of snow depth predictions. Panel (B) presents the R2 values, and Panel (C) presents the MBE.
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2.3.2.2 eXtreme Gradient Boosting
XGBoost is another ensemble algorithm, but unlike Extra Trees,

it builds a sequence of decision trees instead of a forest of decision
trees. XGBoost operates by sequentially constructing weak learners
(decision trees), with each tree aiming to correct the errors made by
the previous one. This process of sequential error correction is
known as Boosting. At each iteration, a weak learner is trained to
approximate the gradient of the loss function (the residual errors).
Boosting is then achieved by iteratively updating the residual errors
when a new learner is added to the ensemble. This methodology of
leveraging the gradient of the loss function to guide the boosting
process is known as Gradient Boosting. XGBoost uses a variant of
the Gradient Boosting algorithm called Newton boosting, which
attaches weights to the residuals through the Hessian (second-order
derivative of the loss function). With this, observations with larger
errors have more weight. XGBoost takes Newton boosting to the
extreme by regularizing the loss functions and introducing efficient
tree learning with parallelizable implementation. This “extreme”
attribute of XGBoost makes it suitable for large datasets. Moreover,
XGBoost can also benefit from GPU (CUDA support only)
acceleration, making it suitable for large datasets.

In our analysis, the optimal hyperparameters for the XGBoost
model were identified using Optuna, as detailed in Supplementary
Table S2 of the supplementary material. The objective was set to
minimize the MSE between the predicted and true snow depth
values. We used a learning rate of 0.05 to control the step size at each
iteration while moving toward a minimum of the loss function. The
depth of the trees was set to grow unrestricted to allow the model to
learn complex relationships in the data. A total of 1,000 trees were
grown using a histogram-based training method to accelerate the
training process.

2.3.2.3 Artificial neural network
Artificial Neural Network (ANN) is an ensemble of linked

artificial neurons organized into input, hidden, and output layers.
Each neuron receives inputs, performs mathematical operations on
these inputs, and passes the output to the next layer. Every
connection between nodes has an associated weight; the optimal
weights are learned during training. The input layer holds the
features, with one node per input feature, and the output layer
holds the network’s prediction. The number of neurons in the
hidden layers is determined through hyperparameter tuning. In
this study, we employed a Feed-forward Neural Network (FNN), a
type of ANN where connections between nodes do not form a cycle.
Specifically, we chose the FNN because we converted our raster data
into a data frame, and FNN is well-suited for tabular datasets.

We designed a five-layer FNN using the PyTorch framework for
our analysis. The architecture comprises one input layer, three
densely connected hidden layers with 2048, 1,500, and
1,000 nodes, respectively, and one output layer. Rectified Linear
Unit (ReLU) activation functions were used in the hidden layers to
introduce non-linearity, while a linear activation function was
employed in the output layer for snow depth estimation. The
model was trained using the Adam (Kingma and Ba, 2015)
optimization algorithm with a learning rate of 0.0001 to
minimize the Mean Squared Error Loss (MSELoss) between the
predicted and lidar-derived snow depths. The training was
conducted over 15 epochs with a batch size of 128. We

terminated the training at 15 epochs because no substantial
improvement was noticed after this point. The hyperparameters
for the FNNmodel were optimized using Optuna, with the details of
the tuned hyperparameters presented in Supplementary Table S3 of
the supplementary material.

Model performance was evaluated using root mean squared
error (RMSE), mean bias error (MBE), and coefficient of
determination (R2). RMSE measures the average magnitude of
the errors between the predicted and observed values, providing
insight into the model’s overall accuracy. MBE assesses the average
bias in the predictions, indicating whether the model systematically
overestimates or underestimates the true values. R2 measures how
well the predicted values match the true values using a 1:1 line, with
higher values indicating a better fit. RMSE has a lower bound of zero,
with smaller values indicating better performance. MBE is
unbounded and can be positive or negative, with values closer to
zero in absolute value being preferable. Note that R2, in this case, is
not the square of the correlation coefficient; hence, it can be negative
for a bad model.

2.4 Feature importance

To quantify the contribution of individual features to snow
depth prediction, we employed two complementary methods: the
gain metric from the XGBoost model and SHapley Additive
exPlanations (SHAP) (Lundberg and Lee, 2017). The gain,
derived from the XGBoost framework, measures the average
contribution of each feature to reducing the mean squared error
loss across all trees within the model. This method offers an initial
insight into the relative importance of features based on their utility
in constructing the predictive model. However, gain-based
importance can be misleading for high cardinality (many unique
values) features and may not fully capture the nuanced interactions
between features. To address this, we also utilized SHAP values,
which provide a more comprehensive and stable measure of feature
importance by considering the contribution of each feature to every
possible combination of features in the dataset (Man and Chan,
2021). SHAP originates from concepts in cooperative game theory,
and it computes the importance of a feature by distributing the
predictive contribution among features in a model, akin to dividing
payoffs among collaborating players. Although SHAP analysis is
computationally expensive, particularly for large datasets, its ability
to offer clear and consistent interpretations of the features’ impact
on the model’s output makes it a valuable tool for in-depth feature
importance analysis.

3 Results

3.1 Snow depth estimation

Comparing the performance ofModels 1 (Equation 2), 2 (Equation
3), and 3 (Equation 4) allowed us to evaluate the incremental value of
remote sensing predictors for improving snow depth estimation beyond
using bare ground elevation alone. Across most configurations and
areas, XGBoost consistently outperformed other models (Table 2,
Figure 5). Therefore, our discussion will focus on the XGBoost results.
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The model comparison revealed distinct performance across
different model configurations. The baseline model (Model 1)
provided a foundational understanding but demonstrated limited
predictive power with R2 values ranging from 0.21 to 0.33 across the
open, vegetated, and mixed areas. However, incorporating InSAR-
derived features (Model 2) markedly increased the precision of snow
depth estimates.

Model 2 increased the R2 value from 0.33 to 0.89 in the open areas,
from 0.24 to 0.84 in the vegetated areas, and from 0.21 to 0.87 for the
combined data, with the addition of the InSAR data. This improvement
underscores the potential of InSAR data in capturing key variables
influencing snow depth. The highestR2was observed in open areas. The
performance in vegetated areas also improved, which indicates that
InSAR products contribute valuable information even in vegetated
landscapes. For the combined (open + vegetated) dataset, Model
2 attained an R2 of 0.87, which is also a substantial increase from
the baseline performance (0.21).

Introducing vegetation height as an additional predictor
alongside InSAR products in Model 3 yielded minimal

performance gains in model accuracy across vegetated and
combined areas (since open areas have no vegetation or they are
buried under the snow over). In vegetated areas, Model 3 increased
the R2 from 0.84 to 0.86, while for the combined dataset, the R2

improved from 0.87 to 0.89. Despite these incremental
improvements, the overall best performance was observed in
open areas (Model 2: RMSE = 9.85 cm, R2 = 0.894), followed
closely by the combined dataset (Model 3: RMSE = 9.88 cm,
R2 = 0.886). Vegetated areas exhibited the least performance
(Model 3: RMSE = 10.46 cm, R2 = 0.858), although still
maintaining a high level of accuracy.

Based on the performance comparison, Model 3 for the
combined dataset appears to be the optimal choice. This
model demonstrated comparable results (Table 2) to those
obtained in open areas (Model 2), effectively eliminating the
need for separate models for open and vegetated regions.
Adopting a single model approach offers several advantages,
including saving time and resources while allowing more focus
on refining and optimizing this unified model. Figures 6–8,

TABLE 2 Comparative Performance of FNN, Extra Trees, and XGBoost across Vegetated, Open, and their combination on the Held-out Test Set. The most
preferred model is highlighted in bold fonts.

Model Data Configuration RMSE (m) MBE (m) R2

FNN Open Areas Model 1 0.2493 0.0003 0.3210

Model 2 0.1646 −0.0035 0.7040

Combined Model 1 0.2613 0.0010 0.2047

Model 2 0.1738 0.0095 0.6481

Model 3 0.1617 −0.0040 0.6952

Vegetated Areas Model 1 0.2425 −0.0025 0.2368

Model 2 0.1802 −0.0094 0.5787

Model 3 0.1611 0.0071 0.6631

Extra Trees Open Areas Model 1 0.2365 0.0001 0.3891

Model 2 0.1040 0.0001 0.8818

Combined Model 1 0.2483 0.0003 0.2815

Model 2 0.1085 0.0002 0.8629

Model 3 0.1052 0.0003 0.8710

Vegetated Areas Model 1 0.2201 −0.0004 0.3712

Model 2 0.1039 0.0000 0.8441

Model 3 0.1118 0.0008 0.8379

XGBoost Open Areas Model 1 0.2483 0.0007 0.3265

Model 2 0.0985 −0.0001 0.8940

Combined Model 1 0.2606 0.0004 0.2087

Model 2 0.1040 −0.0000 0.8739

Model 3 0.0988 0.0001 0.8863

Vegetated Areas Model 1 0.2421 0.0001 0.2393

Model 2 0.1098 −0.0002 0.8436

Model 3 0.1046 0.0005 0.8579
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Figure 9B and Table 3 are based on Model 3 for the combined
dataset, as Model 3 provides a comprehensive and efficient
solution for our application.

The XGBoost modeled snow depths showed strong
correspondence with lidar snow depths at the 3-m scale
(RMSE = 9.88 cm, R2 = 0.89; Figure 6A), illustrating the model’s
ability to reproduce the observed snow depth variability. Similarly,
the residuals (i.e., lidar minus XGBoost predicted snow depth;
Figure 6B) are concentrated around zero with a mean of −7.9 ×

10−3 cm and a standard deviation of 9.9 cm, indicating minimal
errors and biases, and an error similar to that reported for
airborne lidar.

Figure 7B (predicted depths) visually appears to capture the
spatial variability observed in the lidar data (Figure 7A), suggesting
good model performance. Figure 7C quantifies the prediction error,
visually encoded to emphasize areas of underestimation or
overestimation by the model. Figure 7C indicates minimal bias
based on the color map.

FIGURE 6
XGBoost Residual Analysis (Model 3 on the combined dataset). (A)Hexbin density plot comparing lidar measured snow depths with predictions from
the XGBoost model, with each bin containing at least 2 data points. (B) Histogram of the residuals (lidar minus XGBoost predicted snow depths).

FIGURE 7
Spatial Residual Analysis. (A) Lidar-derived snow depth. (B) The XGBoost predicted snow depth. (C) The prediction error (lidar minus predicted snow
depths), with a diverging color bar (blue for positive values, white for zero, and red for negative values) to visualize over- and under-predictions. Gray
circles in the bottom right of panel A indicate in situ depth measurement locations collected on February 8.

FIGURE 8
Feature Importance for Model 3 on the combined dataset: (A) SHAP importance (B) XGBoost impurity-based importance.
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3.2 Feature importance

Using SHAP values (Figure 8A), the most influential variables
were unwrapped phase, bare ground elevation, and amplitude. Gain-
based importance (Figure 8B) also showed unwrapped phase, bare
ground elevation, and amplitude as the top 3 predictors, aligning
with SHAP. This indicates their high explanatory power for
estimating snow depth from InSAR.

When stratified into open and vegetated areas, the feature
importance ranks were the same as Figure 8 in open areas.
However, for vegetated areas, bare ground elevation was the leading
feature, highlighting the complex relationship between the topography
and snow accumulation beneath the canopy. Vegetation height also
becamemore important in forests, ranking 3rd compared to 5th overall.
Feature importance plots for forested and open areas can be found in
Supplementary Figures S1, S2 of the supplementary material.

3.3 In situ validation

To provide an independent assessment of model accuracy,
predicted snow depths were validated against in situ observations
collected as part of the 2017 NASA SnowEx campaign (Brucker
et al., 2018). Manual measurements were taken using either a
standard, handheld 3-m snow probe or a shorter GPS-equipped
1.2-m MagnaProbe. The GPS technology in the MagnaProbe
provides a position accuracy of ±2.5 m (Sturm and Holmgren,
2018). During the intense observation period (February 6–25), a
total of 27,081 snow depth measurements were taken at intervals of
approximately 3 m (Brucker et al., 2018).

Validation was done using a 3-m buffer approach, where the
average snow depth (both from lidar and our predictions) within a
3-m radius of each in situ observation was calculated. We used lidar
snow depth data from 8 February 2017, for developing our models,
so our validation focused on in situmeasurements taken on the same
date to ensure temporal consistency. Initially, we had 1777 in situ
snow depth measurements from February 8. However, the lidar data
used in this study did not cover the entire area where in situ
measurements were taken. Hence, we considered only points
where the 3-meter buffer contained lidar/modeled depths.

This spatial filtering reduced the number of usable in situ
measurements to 234, as only these points were within the lidar
swath coverage area. These 234 measurements were used for
comparison against the average of the lidar dataset and the
model predictions (training or testing) within their respective 3-
m buffers.

When compared to in situ measurements (Table 3), the lidar-
derived snow depths achieved an RMSE of 15.85 cm and R2 of 0.332,
while snow depths predicted by XGBoost achieved a slightly worse
performance (RMSE = 15.90 cm and R2 = 0.328). Overall, the in situ
validation provides confidence in the modeling framework, with
XGBoost predictions showing accuracy approaching the lidar
training data.

4 Discussion

4.1 Model performance

This study explored the potential of machine learning for snow
depth prediction using data from NASA JPL’s UAVSAR sensor,
which employs L-band radar for InSAR measurements. We
developed and compared three machine learning
algorithms–Extra Trees, XGBoost, and FNN, each selected for
their robustness in handling complex datasets and their fast
training and prediction time, with XGBoost and FNN capable of
benefiting from GPU acceleration. XGBoost consistently
outperforms other algorithms. Hence, the results are based on

FIGURE 9
Snow depth validation using in situ measurements. (A): Lidar-derived depths versus in situ depths. (B) XGBoost predicted depths versus in situ
depths. The evaluation metrics (RMSE and R2) show a comparable accuracy between the lidar-derived and the XGBoost-predicted snow depths. Both
methods exhibit a negative bias, as the in situ measurements are generally larger than the corresponding modeled snow depths.

TABLE 3 In situ validation results.

Snow depth source RMSE (m) R2

Lidar 0.1585 0.3324

XGBoost 0.1590 0.3282
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the XGBoost model. To investigate the potential differences in
model performance across open and vegetated areas and assess
the feasibility of using a single model for snow depth prediction
across the entire study area, we partitioned the study area into three
distinct categories: vegetated regions, open regions, and a
combination of both.

Within each category, we developed three distinct models: a
baseline model using only elevation data (model 1), a second model
incorporating InSAR parameters and elevation (model 2), and a
third model combining InSAR parameters, elevation, and vegetation
height (model 3). The addition of vegetation height improved model
performance for both vegetated and mixed areas (assuming open
areas have no vegetation or are buried beneath the snow cover). In
vegetated areas, including vegetation height as a feature reduced the
RMSE from 10.98 cm to 10.46 cm, while for the combined dataset,
the RMSE reduced from 10.40 cm to 9.88 cm.

These findings suggest that while vegetation height contributes
to the model’s predictive power, its impact is less pronounced
compared to the inclusion of InSAR-derived features. In open
areas, adding InSAR-derived features reduced the RMSE from
24.83 cm to 9.85 cm compared to the baseline; in vegetated
areas, the RMSE reduced from 24.21 cm to 10.98 cm; and for the
combined dataset, the RMSE reduced from 26.06 cm to 10.40 cm.
The marginal improvements in model accuracy from model 2 to
model 3 indicate that the InSAR parameters capture a larger portion
of the variability in snow depth, even in the presence of vegetation.

The model performed better in open areas than in vegetated
areas. This is likely because forests have a more complex structure
than open areas, which can scatter and attenuate the InSAR signal.
Additionally, trees can intercept snowfall, making it more difficult to
measure snow depth beneath the canopy accurately. Although our
models performed better in open areas, the results from the
vegetated areas also maintained high accuracy. For model 2, the
difference in RMSE between open and vegetated areas is 1.13 cm.
The high accuracy in vegetated areas can be attributed to the fact that
L-band data is less sensitive to the forest structure. This finding is
consistent with the work of Hosseini (Hosseini and Garestier, 2021),
where he found the L-band to be less sensitive to forest structure
than the P-band.

Considering the performance metrics across different areas,
Model 3 for the combined dataset emerges as the best choice,
offering a balance between accuracy and practicality. By
incorporating both InSAR-derived attributes and vegetation
height, Model 3 effectively captures the variability in snow depth
across open and vegetated areas, achieving an impressive R2 of
0.89 and an RMSE of 9.88 cm. This single model approach for mixed
areas eliminates the need to develop separate models for open and
vegetated regions, saving time and resources while maintaining high
predictive power. The inclusion of vegetation height in Model
3 successfully differentiates between open and vegetated areas, as
evidenced by the comparable performance metrics obtained when
the combined dataset’s predictions are divided into their respective
subsets when separate models are not trained (vegetated areas:
RMSE = 10.46 m, R2 = 0.86; open areas: RMSE = 9.5 cm, R2 =
0.90; data not shown). These results further validate the robustness
and versatility of Model 3 in estimating snow depth across vegetated
and non-vegetated areas. This enhanced performance implies the
potential of a single and robust model to reliably estimate snow

depth in both vegetated and open areas, which can enhance the
efficiency of large-scale snow monitoring efforts.

4.2 Feature importance

We conducted feature importance using SHAP and gain metrics
from XGBoost. This is because the SHAP feature importance
provides a more reliable and stable ranking, and the gain metrics
can be misleading for features with high cardinality. We found an
agreement between the importance of the feature from both SHAP’s
and XGBoost’s gain (Figure 8). Unwrapped phase, bare earth
elevation, and amplitude are the top three influential features.
Unwrapped phase emerged as the most influential predictor, as it
is a direct indicator of snow depth changes, hence its strong
influence on the model’s predictive power. The bare ground
elevation’s importance is similarly intuitive; it represents the
underlying topography, which is fundamental in understanding
snow accumulation patterns. Topography relates to snow depth
through factors like elevation, slope, and aspect (Trujillo et al., 2007;
Hojatimalekshah et al., 2021).

Higher elevations experience more snowfall, north-facing slopes
retain snowpack longer in the northern hemisphere, and leeward
areas develop drifts. The bare ground elevation provides the terrain
context to model these topological influences on snow
accumulation. Amplitude, ranking third in importance, suggests
that the backscatter intensity, which is affected by surface
characteristics, including roughness and snow density, is also an
important predictor. This aligns with findings in literature where
backscatter properties have been directly correlated with snow
depth. King et al. (2015) found a strong correlation between Ku-
band backscatter and snow depth in the tundra. The remaining
features, like incidence angle and coherence, showed lower
importance. Further analysis is warranted to fully explain the
relative feature contributions. Additionally, from a remote
sensing perspective, SAR imagery captures details about the
Earth’s surface by recording both the strength (amplitude) and
timing (phase) of the backscattered radar signal. Given the rich
information contained in the amplitude and phase components of
SAR images, it is reasonable to expect that these features would rank
high on the feature importance scale when used in various remote
sensing applications, such as snow depth estimation.

When the data was stratified by open versus vegetated areas,
some notable differences emerged in the feature importance
(Supplementary Figures S1, S2 of the supplementary material). In
open areas, unwrapped phase and bare earth elevation remained the
top two predictors, followed by incidence angle and then amplitude.
This aligns with the overall importance rankings and reinforces the
primacy of phase and topography for snow depth estimation in open
regions. However, in vegetated regions, bare earth elevation was the
top performer, followed by incidence angle and vegetation height.
Unwrapped phase dropped to fourth. The decreased ranking of the
unwrapped phase in forests is likely because dense vegetation
attenuates and scatters the radar signal, reducing the phase’s
sensitivity to snow depth variations below the canopy.
Meanwhile, vegetation height became the third most important
variable, likely because it plays a role in correcting for signal
attenuation effects in vegetated areas. These land cover-specific
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feature importance findings provide useful insights. The unwrapped
phase appears most valuable in open areas where radar penetration
is uncompromised, while bare earth elevation and vegetation
structure take precedence in forests. These results point to
potential pathways for improving InSAR snow depth retrieval
through optimal parameterization tailored to different land cover
regimes. Additionally, these results can guide future research and
data collection efforts, making them more focused, and may lead to
more sophisticated physics-based models and physics-informed
machine learning.

4.3 In situ validation

Validation against in situ snow depth measurements provides an
independent assessment of model accuracy. The lidar training data
achieved 15.9 cm RMSE versus in situ points. For the optimized
XGBoost model, we achieved 16 cm RMSE compared to in situ data.
We observe from Figures 9A, B that the lidar data and XGBoost’s
predictions generally underestimated the in situ snow depth
measurements. Currier et al. (2019) also reported this negative
bias between the lidar and in situ probe measurements. The close
alignment between lidar and ML model errors suggests that our
model effectively learned the patterns present in the lidar data.
However, this also means that the ML model inherited the biases
present in the lidar measurements (Figure 9). We observed a general
underestimation of snow depth by lidar, which was consequently
reflected in our ML predictions. This underscores a fundamental
principle inmachine learning: the model’s performance is inherently
limited by the quality of its training data.

The estimated ±5 cm uncertainty in in situ snow depth probe
measurements, arising from factors such as probe penetration into
the soil and low vegetation impacts (Sturm and Holmgren, 2018;
Currier et al., 2019), sets a practical limit on the achievable accuracy
of our model validations. Additionally, potential geolocation errors
from the probe introduce spatial discrepancies when comparing
point-based in situ measurements with grid-based lidar or model
predictions. These factors introduce a margin of error that must be
considered when interpreting the validation results.

Our findings show a larger discrepancy between lidar and in situ
snow depths compared to the work of Currier et al. (2019) on the
same dataset. While we found an RMSE of 15.9 cm, they reported a
root-mean-square difference of 8 cm between the lidar-derived snow
depths and in situ measurements. This difference in error
magnitudes can be attributed to methodological distinctions. The
difference might be due to Currier et al. (2019) comparing median
values from 52 snow-probe transects collected over 4 days (February
8, 9, 16, and 17) to near-coincident lidar data from February, while
we compared 234 individual point measurements with lidar from
February 8 alone. Their use of transect medians likely smoothed out
local variations and reduced the influence of outliers, potentially
reducing the overall error.

In summary, while the ML model successfully replicated the
patterns in the lidar data, it also replicated its biases. This serves as a
cautionary note for the application of ML in snowmonitoring: while
ML can be a powerful tool for pattern recognition and prediction, it
is not a panacea for underlying data quality issues. Enhancing the
accuracy of lidar measurements would likely improve the model’s

predictive capabilities. Addressing geolocation errors and
understanding the inherent measurement uncertainties can
further refine the validation process and the interpretation of
model performance.

4.4 Limitations, scope, and future work

This study provides initial insights into using InSAR products to
estimate snow depth. However, several limitations and assumptions
must be acknowledged to contextualize the findings.

The key assumption of our approach is that the spatial patterns
of total snow depth remain consistent between the time of snow
accumulation and the subsequent InSAR acquisition. This implies
that the snow depth change detected by the InSAR instrument is
representative of the total snow depth distribution. However,
external factors, such as strong winds from unusual directions or
melting events, could alter snow accumulation patterns during this
interval, potentially compromising the accuracy of the estimates.
Therefore, the effectiveness of this approach is influenced by the
stability of snow depth patterns between acquisitions.

This study focuses on relatively flat terrain, where the effects of
phase decorrelation and geometric distortions are minimal. While
this may be suitable for establishing a proof of concept, the method’s
transferability to rugged terrain remains untested. In mountainous
areas, terrain-induced effects on InSAR signals—such as layover,
shadowing, and foreshortening—introduce additional complexities
(Zebker and Villasenor, 1992). These effects can lead to signal
distortions and loss of coherence, affecting the accuracy of snow
depth estimations. Although previous studies (e.g., Hoppinen et al.,
2023) have shown promise in using physics-based InSAR methods
in rugged terrain, the applicability of machine learning (ML)-driven
approaches in these environments is yet to be evaluated. This work is
the first in a series of ML-based snow depth retrieval studies from
L-band data in preparation for the upcoming NISAR mission.

Our study was conducted in February, a period when snow cover
is typically stable, and other InSAR-based methods, such as physics-
based approaches, have demonstrated promising results even in
rugged terrain (Hoppinen et al., 2023; Palomaki and Sproles, 2023;
Tarricone et al., 2023; Bonnell et al., 2024). This raises the question
of how users benefit from the additional complexity of machine
learning methods, given the large amount of data required to train
them. While this is a valid consideration, physics-based InSAR
approaches (e.g., Guneriussen et al., 2001) require snow
properties, such as snowpack bulk density and permittivity, to
model the phase delay introduced by the snowpack. However,
these properties may not always be readily available in an
operational context. Additionally, physics-based methods often
require atmospheric corrections using models like the ECMWF
Reanalysis v5 (ERA5) to account for temporal and spatial variations
in radar wave propagation caused by changes in pressure,
temperature, and moisture (Hoppinen et al., 2023). While the
ML approach may potentially benefit from these corrections, our
results indicate that the ML model learned the patterns in the lidar
data without them, suggesting that it is promising without explicit
atmospheric corrections.

Physics-based approaches for InSAR-based SWE and snow
depth monitoring typically require a complete time series of SAR
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images capturing snow accumulation and ablation across the winter
season (Tarricone et al., 2023). This is due to the rapid decorrelation
in snow-covered regions, which makes single or sparse acquisitions
insufficient for robust modeling. In contrast, the machine learning
approach does not depend on a complete time series as long as there
is a coincident depth map. Instead, it directly learns patterns from
available data. Moreover, the ML approach can efficiently handle
large datasets, which is advantageous given the expected data
volumes from NISAR. ML methods offer the opportunity to
incorporate diverse input datasets and derive nuanced patterns in
snow depth distributions that physics-based approaches may not
capture. However, a key limitation of ML is its reliance on
representative and high-quality training data, which must be
carefully curated to ensure accurate predictions. This reliance
may present challenges in operational contexts, particularly in
regions with no lidar or in situ data to train the model. Future
research could focus on developing optimal strategies for generating
or acquiring quality training datasets to enhance the applicability
and scalability of ML methods. As InSAR data becomes more widely
available through missions like NISAR, the advantages of ML
methods are expected to outweigh their additional complexity
and data requirements.

Future research will focus on extending the applicability of the
proposed ML approach to more complex terrains and varying snow
conditions. Specifically, future work will:

• Evaluate Transferability to Rugged Terrain: Testing the ML
models in mountainous regions, where phase decorrelation,
shadowing, and layover effects introduce additional
challenges, will assess their robustness in the presence of
terrain-induced effects on InSAR signals.

• Validate Across Different Snow Conditions and Seasons: The
current work was conducted in a dry snow environment and
during the accumulation period of the snow season.
Expanding the temporal scope of the study to include
melting periods (e.g., post-peak SWE) and wet snow
conditions will help assess the model’s generalizability and
operational scalability.

• Incorporate Snow-Free Baseline Acquisitions for Backscatter
Ratios: Future work should include snow-free baseline
acquisitions to calculate multi-temporal backscattering
ratios. This would help reduce noise and enhance the
accuracy of snow depth retrievals by better isolating snow-
related backscatter.

• Examine the Accuracy-Resolution Trade-off: This study used
3 m spatial resolution data, which may be impractical for
operational hydrology requiring coarser scales (e.g., 10–50 m).
Future work will investigate accuracy changes as resolution
scales are adjusted to coarser levels.

• Incorporate Advanced Computer Vision Techniques: Future
iterations of this work will explore advanced computer vision
approaches, such as convolutional neural networks and
transformer-based architectures, to further enhance snow
depth estimation accuracy and efficiency.

• Incorporate Auxiliary Datasets: Future research should
include auxiliary datasets, such as snow stratigraphy,
temperature profiles, and meteorological conditions, where
available to enhance model performance.

• Explore Physics-InformedMLModels: Future research should
incorporate physical process-based knowledge into ML
models and investigate the sensitivity of the models to the
various input features to provide deeper insights into the
mechanism driving snow depth variation.

Addressing these questions will allow us to further advance the
field of machine learning-based snow depth prediction and
contribute to more accurate and reliable snow monitoring and
forecasting systems.

5 Conclusion

This study serves as a proof of concept for the potential of
machine learning to estimate snow depth using L-band InSAR data.
The XGBoost model demonstrated promising performance, and the
feature importance analysis provided insights into the relationships
between L-band InSAR features and snow depth. The upcoming
NISAR mission, with its global L-band InSAR coverage, presents a
unique opportunity to further advance this approach. With the
availability of NISAR data, we can expand the training dataset,
incorporate additional polarizations, and explore alternative
machine learning approaches, potentially leading to even more
accurate snow depth estimation. The success of the ML approach
depends on the availability of quality training data, as the accuracy of
the ML model approaches that of lidar when validated against the in
situ measurements. With sufficient, representative, and diverse
training data, machine learning models can effectively capture
the complex relationships between snow depth and its
influencing factors, enabling accurate snow depth prediction.
With the advent of NISAR and continued research efforts, we
can harness the power of machine learning to potentially
improve water resource management.
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