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Remote sensing has enabled large-scale crop classification for understanding
agricultural ecosystems and estimating production yields. In recent years,
machine learning has become increasingly relevant for automated crop
classification. However, the existing algorithms require a huge amount of
annotated data. Self-supervised learning, which enables training on unlabeled
data, has great potential to overcome the problem of annotation. Contrastive
learning, a self-supervised approach based on instance discrimination, has shown
promising results in the field of natural as well as remote sensing images. Crop
data often consists of field parcels or sets of pixels from small spatial regions.
Additionally, one needs to account for temporal patterns to correctly label crops.
Hence, the standard approaches for landcover classification cannot be applied. In
this work, we propose two contrastive self-supervised learning approaches to
obtain a pre-trained model for crop classification without the need for labeled
data. First, we adopt the uni-modal contrastive method (SCARF) and, second, we
use a bi-modal approach based on Sentinel-2 and Planetscope data instead of
standard transformations developed for natural images to accommodate the
spectral characteristics of crop pixels. Evaluation in three regions of Germany and
France shows that crop classification with the pre-trained multi-modal model is
superior to the pre-trained uni-modal method as well as the supervised baseline
models in the majority of test cases.
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1 Introduction

Crop classification is a method of identifying agricultural plant types at particular
locations using remote sensing data. This process is crucial for optimizing farming practices,
assessing damages, and increasing yields. It relies on information from public landcover
satellite missions such as Sentinel-2 (Drusch et al., 2012) and Landsat1, which provide global
coverage at regular intervals. Crops exhibit distinct temporal signatures due to their
phenological traits, reflecting growth stages from seed to ripening (Meier et al., 2009).
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The availability of extensive satellite data facilitates large-scale crop
mapping suitable formachine learning applications. However, traditional
supervised learningmethods face significant challenges. Labeling crops is
time-consuming and requires skilled human effort, often limiting studies
to small regions with few crop fields. Conventional methods like random
forests generate good results for specific fields but fail to generalize across
different geographical properties (Račič et al., 2020) or at different time
periods (Hütt et al., 2020).

Unsupervised learning algorithms such as K-means clustering
and K-Nearest Neighbor (KNN) do not require labels but are only
effective for low-dimensional data, making them less suitable for
high-dimensional remote sensing time series. This limitation has led
to the development of advanced deep learning techniques,
particularly self-supervised learning.

tSelf-supervised learning enables pre-training of models
using large amounts of unlabeled data, with subsequent
transfer learning for related tasks with limited annotations.
This approach has shown improvements over randomly
initialized models (Yang et al., 2020). Among self-supervised
methods, contrastive learning (Liu et al., 2021) has demonstrated
promising results. Contrastive learning aims to align outputs
from different viewpoints of the data sample while pushing away
outputs from other data samples. It typically uses alternative loss
functions like InfoNCE (van den Oord et al., 2018) to avoid trivial
solutions. The method relies on data augmentation to maximize
mutual information shared between a sample and its
augmented version.

However, applying contrastive learning to remote sensing
time series data poses unique challenges. Standard image
transformations assume static images covering large spatial
neighborhoods, which is unsuitable for crop analysis
characterized by small field sizes and significant temporal
changes. Moreover, the lack of field boundary information
makes it harder to adapt the existing self-supervised approach
for crops. This can be overcome by using spectral information of
individual pixels instead of relying on crop field boundaries. This
approach is justified because the variance of spectral patterns
among pixels belonging to one field is quite low. The variance
distribution plots of spectral measurements for four field parcels
can be found in the Supplementary materials.

To address the challenges of augmentation for remote sensing
time-series data, we propose a novel bi-modal contrastive learning
approach (Yuan et al., 2021). Instead of relying on standard
augmentation techniques, our method obtains the augmented
version of Sentinel-2 data directly from another source,
specifically Planetscope. This innovative strategy serves a dual
purpose: it not only provides an alternative to traditional
augmentation but also combines the complementary strengths of
both data sources—Sentinel-2’s superior spectral resolution and
Planetscope’s finer spatial resolution. Further, it enables the
development of a bi-modal self-supervised pre-trained model that
can be applied even when only one data source is available for
downstream tasks.

In this work, we designed a strategy to develop a bi-modal self-
supervised pre-trained model, thus combining the higher spectral
resolution of Sentinel-2 with the finer spatial resolution of
Planetscope. Although both Sentinel-2 and Planetscope are used
for pre-training, the pre-trained model can be applied to problems,

where only data from one source is available. To evaluate this, we
demonstrate crop classification using only Sentinel-2 data as our
downstream tasks. In this paper, we demonstrate with our experiment
setup that the proposed bi-modal contrastive self-supervised pre-
training improves crop classification accuracy compared to the uni-
modal contrastive self-supervised model. The remainder of this paper
is structured as follows: Section 22 discusses the related work in the
field, providing context and background for existing methods. Section
3 details the methods employed in our study, explaining our approach
and techniques. Section 4 describes the datasets used in our
experiments, including their sources and characteristics. Section 5
outlines our experimental setup and procedures. Section 6 presents
the results of our experiments and analyses. Section 7 offers
conclusions drawn from our findings. Finally, Section 8 provides a
discussion of the implications of our results, limitations of the study,
and potential directions for future research.

2 Related work

Recent studies have explored contrastive self-supervised
learning in remote sensing. SeCo (Mañas et al., 2021)
demonstrated that their pre-trained model outperformed
Imagenet (Russakovsky et al., 2014) pre-trained models on
several landcover classification benchmarks. Some studies have
implemented multi-modal contrastive learning approaches in
remote sensing images, aligning optical (Sentinel-2) with radar
(Sentinel-1) images (Scheibenreif et al., 2022; Liu et al., 2022).

In the realm of time series tasks for remote sensing, limited work
has been done on contrastive learning. The work from (Yuan et al.,
2023) is one such study that focuses on developing pre-trained a
model for crop classification using only the field parcel boundaries to
identify similar pairs.

For tabular data in contrastive machine learning, there exist
methods such as SCARF (Bahri et al., 2021), SAINT (Somepalli et al.,
2021), and VIME (Yoon et al., 2020). SCARF uses random feature
corruption techniques for augmentation. SAINT modifies
Tabtransformer (Huang et al., 2020) to handle both categorical
and continuous data, using Cutmix (Yun et al., 2019) and Mixup
(Zhang et al., 2017) for augmentation. VIME is another self-
supervised method for tabular data, using feature corruption and
masking instead of contrastive learning.

When it comes to various loss functions similar to SimCLR,
there exists loss functions such as MoCo (He et al., 2019), BYOL
(Grill et al., 2020), DiNo (Caron et al., 2021), and Barlow twins
(Zbontar et al., 2021). Each has its own advantages and
disadvantages.

3 Methods

3.1 Bi-modal self-supervised learning

Figure 1 illustrates the experiment setup of our bi-modal
contrastive learning method. The most common choice for
tabular data is a fully connected network (MLP). Inspired by the
skip connection mechanism of ResNets (He et al., 2015), we use
ResMLP as our backbone. ResMLP is a standard MLP with
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additional skip connections to the previous layers. The ResMLP
employed in this work is an 8-layer network with approximately
550K parameters. Two different networks are employed for
contrastive learning. The backbone network serves as the feature
extractor, producing representations from the input data, while the
projector network is responsible for optimizing the contrastive loss
function, which aligns similar representations and separates
dissimilar ones. In the bi-modal contrastive approach, the
networks are not shared between the two modalities due to the
different input dimensions of both sources, thus two different
networks are used for each modality. In our case, we denote the
backbone network for Sentinel-2 by Es: R

12 → R256 and the
network for Planetscope by Ep: R

36 → R256. Similarly, the
projector network is denoted by Ps: R

256 → R256 and
Pp: R

256 → R256 for Sentinel-2 and Planetscope, respectively.
Here, 12 refers to 12 spectral bands of Sentinel-2, and 36 refers
to 4 spectral bands of 3 × 3 Planetscope pixels flattened to a 36-
dimensional vector. Equation 1 provides a mathematical
formulation of the SimCLR loss function (Chen et al., 2020) used
in our work. For the pre-training, we adapt the SimCLR loss to our
bi-modal setup:

lxis ,xip � −log riisp

∑N
k�1,k≠i

rikss + ∑N
m�1,m≠i

rimsp

(1a)

where

rijsp � exp
sim zis, zjp( )

τ
⎛⎝ ⎞⎠ (1b)

and

sim zis, zjp( ) � zTiszjp
zis‖ ‖ zjp

				 				. (1c)

Here, xis represents the ith Sentinel-2 data sample, and zis
represents the output obtained after passing through the encoder
and projector components of the Sentinel-2 network. Similarly,
xip represents the ith Planetscope data sample, and zip represents
the output obtained after passing through the encoder and
projector components of the Planetscope network. The
parameter τ denotes the temperature that controls the
sensitivity of the loss function. In the original SimCLR
equation (Chen et al., 2020), there is only one network and
two augmented views share the same model. In contrast, in
our bi-modal case, there are separate networks for different
views. The term rikss in the denominator of Equation 1a
denotes the cosine distance between a Sentinel-2 data sample
to other Sentinel-2 data samples in the batch, while rimsp denotes
the cosine distance between the Sentinel-2 data sample and the
other Planetscope data samples in the batch.

We employ the random feature corruption technique from
SCARF (Bahriet al., 2021) as a transformation on both sources
in our bi-modal self-supervised learning setup, illustrated in
Figure 1A. The random feature corruption, with a given
corruption rate c, randomly replaces c% of the features in the
data by the empirical marginal distribution of the corresponding
features. Figure 2 provides a schematic diagram of the random
feature corruption technique.

3.2 Downstream tasks

The downstream tasks, each slightly different from the others,
allow us to test the generalizability of the pre-trainedmodel. The first
task involves data from the same region (Brandenburg) as the pre-
training data. The second task uses data from a different region in
Brandenburg but from a distinct year. The third task encompasses
data from the Brittany region in France. In these downstream tasks,
the time series of pre-trained features is fed to a temporal network
for classification, which we call base model.

Figure 1B illustrates how the pre-trained Sentinel-2 backbone is
used for the downstream task of crop classification. For each pixel,
144 timestamps are passed through the pre-trained model to obtain
an abstract pixel representation. The time series formed with the
representations of each timestamp serves as an input to a base
model. As base models, we investigate three standard deep learning
architectures: Bi-LSTM (Cornegruta et al., 2016), inception time
(Fawaz et al., 2019), and position encoded transformers (Vaswani
et al., 2017). An overview of these models can be found in the
supplementary materials. As bi-modal pre-training implicitly learns
a mapping from Planetscope to Sentinel-2 data, it is sufficient to
input only Sentinel-2 data into the model for the downstream
classification task. Thereby, users can implicitly take advantage of
Planetscope’s finer spatial resolution.

4 Datasets

In this work, we use Sentinel-2 and Planetscope as two different
sources for bi-modal contrastive learning. Sentinel-2 is an ESA
satellite mission. Its multi-spectral instrument (MSI) consists of
12 bands, spanning from visible to thermal and infrared bands
(400 nm to 2190 nm). For Sentinel-2 with a spatial resolution of
10m, each pixel covers an area of 100m2. Data are publicly available
and can be accessed either through the Copernicus API or Google
Earth Engine (Gorelick et al., 2017). Despite the availability of cloud
masks, obtaining cloud-free images for a particular region can be
challenging. In contrast, Planetscope, a commercial satellite mission,
provides higher pixel resolution at 3m/px. The instrument takes
multiple snapshots of a particular region and uses the “best scene on
top” algorithm2. Planetscope ensures images with minimal cloud,
haze, and other disturbances. However, it has a limitation in spectral
resolution, providing only 4 channels (R, G, B, and NIR).

In this work, we utilize the training and validation sts of the
DENETHOR dataset (Kondmann et al., 2021) to create a custom
dataset for bi-modal self-supervised learning experiments.
DENETHOR is a publicly available crop type classification
dataset that provides high-resolution remote sensing data from
Planetscope, Sentinel-2, and Sentinel-1. It is developed for near
real-time monitoring of agricultural growth cycles in Northern
Germany. By leveraging multiple satellite sources, DENETHOR
enhances the data for accurate crop classification. DENETHOR
provides both training and validation sets. The dataset provides both
training and validation sets, with the latter being at different

2 https://developers.Planet.com/docs/data/visual-basemaps/
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temporal and geographical location, thereby allowing the
development of models that are robust to such variations.

DENETHOR’s training dataset covers a 24 × 24 km2 region in
the state of Brandenburg, Germany. For our work, we utilize data
from Sentinel-2 and Planetscope. The training data covers the entire
year 2018. In our work, we perform pixel-wise analysis. There are
pixels which are not associated with crops. These pixels are
discarded for our work. As the pixel resolution of Sentinel-2 is
10m/px and 3m/px for Planetscope, the dimensions of the
measurement scenes are represented as 2400 × 2400 and
8000 × 8000, respectively. The training set is used for generating
data for pre-training experiments and data for downstream task1.
For both Sentinel-2 and PlanetScope, we utilize the same
144 timestamps for each year. It is important to note that

although Sentinel-2 has a revisit time of 5 days, there are certain
areas such as the one used in DENETHORwhere two corresponding
swaths overlap. As a result, we obtain double the amount of data in
those regions. DENETHOR’s validation dataset also covers a
24 × 24 km2 in the state of Brandenburg, but from a different
region. Furthermore, the validation dataset is from
2019 and similarly, the pixels not associated to any crops are
discarded. The validation set is used to generate data for
downstream task2.

The training set comprises 2,534 field parcels, while the
validation set comprises 2064 field parcels. They are distributed
across 9 different crop types. In both sets, there are locations where
no crops are grown, and the pixels associated with these locations
are masked.

FIGURE 1
Schematic setup of our bi-modal self-supervised experiment. (A) The top part illustrates the bi-modal setup, where corresponding pixels indicated
by red bordered colored boxes are randomly selected. Sentinel-2 and Planetscope data are passed through their respective backbone and projector
networks. The outputs are aligned by optimizing the contrastive loss to attract similar and repel dissimilar pairs. Two spherical diagrams on the right side
show how the projection of the data is randomly distributed before and after training. The similar pairs get aligned simultaneously maintaining
uniformity in the latent hypersphere space. A sample of pixel collection is shown for one timestamp as an example. Similarly, data for pre-training are
collected from other timestamps. (B) The bottom part shows the training of a downstream task, where raw Sentinel-2 data is fed through the pre-trained
Sentinel-2 backbone. The output is then fed to different basemodels for conventional supervised learning, optimizing the standard cross entropy loss for
multi-class classification. (A) Setup of pre-training the network using Sentinel-2 and Planetscope data (B) Setup of downstream experiment Sentinel-
2 data.
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The use of multiple downstream tasks serves to evaluate the
generalizability of a pre-trained model. This is done by evaluation of
test data from a different time and region. Figure 3 shows a visual
representation of our splitting strategy. Subsection 4.1 details the
generation of the pre-training data and Subsection 4.2 offers an
overview of the data generated for the downstream tasks.

4.1 Data for pre-training

For pre-training, we utilize unlabeled data. To acquire this, we use
70% of the random crop fields following the 70-21-9 split. We do not
use the crop labels. For our pre-training dataset, we iterate through
each of the 144 Sentinel-2 timestamps and randomly select
100,000 pixels from the 70% split, resulting in 14,400,000 data
samples for our bi-modal self-supervised experiment. Since the
samples are randomly chosen, the pre-training dataset is not
balanced. The 14,400,000 data samples are independent. So, the
negatives for a Sentinel-2 pixel include other pixels as well as the
same pixel in the same location at a different time stamp. Given one
pixel of Sentinel-2 covers 100m2 while a Planetscope pixel covers
9m2, we align a Sentinel-2 pixel to 3 × 3 pixels of Planetscope, as
illustrated in Figure 4.

4.2 Data for downstream tasks

The pre-trained model is tested on three different sets of
Sentinel-2 data (two from DENETHOR and one from
Breizhcrop) to assess its generalizability. We establish two crop
classification downstream tasks using DENETHOR’s training and
validation dataset. For downstream task1, we use 21% and 9% of the
data, as per the given 70-21-9 split of DENETHOR’s training
dataset, to separate training and validation field parcels. To
ensure a balanced dataset, 5,000 pixels are randomly selected for
each of the 9 crop types from their field parcels. Similarly, for the
validation set of downstream task1, we create a balanced dataset by
randomly selecting 1,000 pixels for each crop from the validation
field parcels. A 70-30 split is applied on DENETHOR’s validation set
to separate training and validation field parcels for downstream
task2. We follow a similar procedure to generate a balanced dataset
for our second crop classification downstream task. Figure 3 visually
illustrates the two downstream tasks.

The downstream task 3 is added to assess the performance of the
pre-trained model in a region located further away from the region
used for pre-training. We use a subset of the Breizhcrop dataset
(Rußwurm et al., 2019), containing 2018 data from the Brittany region
in France. The dataset provides aggregated spectral measurements per

FIGURE 2
Random feature corruptionmechanism in SCARF (Bahri et al., 2021). Entries of a feature vector xi aremasked, indicated by black cells. Thesemasked
features are then replaced by features from other samples in the batch, denoted by xa, . . ., xe. This results in two corrupted feature vectors (xi′). The two
corrupted feature vectors build a positive pair.
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field parcel. We specifically use data from field parcels with spectral
measurements for more than 142 time stamps. There are 9 crop types
in the original dataset (permanent meadows, temporary meadows,
corn, wheat, rapeseed, barley, orchards, sunflower, and nuts). We
discard data from orchards, sunflowers, and nuts as there are fewer
field parcels for these crop types. We create a balanced dataset from
the remaining crop. For training subsets, we collect 9,000 data samples
from each of the six crop types, and for the validation subset, we
collect 1,000 data samples. The final task is crop classification with
54,000 training samples and 6,000 validation samples.

5 Experiments

To evaluate the performance of our new bi-modal, self-
supervised, contrastive method, we conducted supervised
experiments and uni-modal self-supervised experiments as
competitors. All experiments were performed on a 16 GB
NVIDIA Tesla V100 GPU.

5.1 Supervised experiments

We use 10 different models for each category of base models. To
obtain these 10 models, we define the range or definite sets for each

hyperparameter. We randomly generated 10 different models for
each category. This random generation of 10 models for each
category is done using Optuna hyperparameter tuner (Akiba
et al., 2019) on a defined hyperparameter grid. It is important to
note that, in this case, we do not use the tuner to find the best model
rather we use all 10 models for our analysis.

For bi-directional LSTM, the hyperparameter space is defined as
follows: dimensions of the hidden layer as one of [32,64,128,256],
number of layers between 2 and 6, and learning rate in the range
from 10−5 to 10−3. For inception time, the hyperparameter space is
specified as follows: number of layers as either 2, 4, or 8, dimension
of hidden layer as one of [128,256,512,1024], kernel size as one of
[40,80,120,136], and learning rate between 10−5 and 10−3. The
hyperparameter space for transformers is defined as follows: the
dimension of the model is either 32, 64, or 128, the number of
attention heads as one of [2,4,8], the number of layers between 2 and
6, and the learning rate ranges between 10−5 and 10−3. In all
supervised experiments, we train the network for 20 epochs. We
use the initial learning rate of 10−3 with the linear scheduler.

5.2 Uni-modal self-supervised experiments

This is our second set of experiments. With these experiments, we
intend to compare our proposed bi-modal self-supervisedmodels to the

FIGURE 3
Dataset for the bi-modal self-supervised learning experiment. The top row of the figure illustrates the splitting applied to DENETHOR’s training
dataset. The top image shows all crop fields in the training dataset, divided into three parts. The first part is used for pre-training and is represented by blue
crop fields. The blue color represents unlabeled data. The other two parts are training and validation data for our downstream task1. The bottom row
shows the validation dataset for DENETHOR. In the case of downstream task2, we split the validation data into training and validation for our
downstream task2. The downstream task2 is trained using the pre-trained model obtained from the same pre-training dataset, allowing us to assess its
performance when region and time period are changed. We refer to (Rußwurm et al., 2019) for the dataset of downstream task3.
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self-supervised models trained using one source. In this experiment
setup, we use uni-modal contrastive learning, employing only Sentinel-
2 data during pre-training. The absence of transformation processes
such as cropping, and color jittering for tabular datamakes it difficult to
obtain augmented samples for Sentinel-2. Therefore, we use the
random feature corruption technique SCARF (Bahri et al., 2021) to
facilitate contrastive learning for tabular data with a single source. The
experiment setup is illustrated in the Figure 5. In our uni-modal self-
supervised experiment setup, we obtain the pre-trained model by
applying contrastive learning on pre-training data. We run the pre-
training for 100 epochs. We use a SimCLR loss function with a
temperature of 0.07. The learning rate is set to 10−3. Given that a
contrastive loss requires a higher batch size to generalize
effectively, we opt for a batch size of 2048. We obtain two
pre-trained models, one with a random feature corruption rate
of 20% and the other with 60%.

5.3 Bi-modal self-supervised experiments

This is the new experimental setup proposed in this study. In
contrast to the uni-modal setup, the bi-modal self-supervised model
uses data from two sources i.e., Sentinel-2 and Planetscope, to obtain
pairs of matching samples.

The Sentinel-2 and Planetscope data are processed with
different networks for pre-training and the pretext task
consists of aligning the representation obtained from spectral

signatures of both input data streams. We run the pre-training
for 100 epochs. Similar to the uni-modal self-supervised
experiment setup, we set the initial learning to 10−3. The
temperature parameter for the bi-modal SimCLR loss is set to
0.07. In addition, we use the random feature corruption for each
source. Similar to the uni-modal setting, we pre-train two
models, one with a corruption rate of 20% and another one
with 60%. Experiments without corruption are also conducted,
but the models with feature corruption yield better results.
Therefore, we are reporting the results for models pre-trained
with 20% and 60% corruption rates.

For evaluating different experiments, We adopt the protocol
from SCARF (Bahri et al., 2021), which involves a win-matrix plot
and a box plot to compare different models on a number of test
datasets. In the win-matrix plot, each cell’s value represents the ratio
of experiments mentioned in the row outperforming the one in the
column, as formulated in Equation 2; where i and j are competing
methods, and N is the total number of experiments.

Wij �
∑N
i�1

I val_acci > val_accj( )
N

(2)

We provide separate results for each downstream task,
as well as a distinct evaluation for the three base models.
To evaluate the performance, we compare bi-modal self-
supervised against uni-modal pre-trained models on
the same corruption rate with corruption rates of 20%

FIGURE 4
Description of data alignment for bi-modal self-supervised learning. The top and the bottom rows display a spatial region of the same geographical
area captured by Sentinel-2 and Planetscope, respectively. For each timestamp, pixels are randomly selected from Sentinel-2. The pixel data is aligned to
3 × 3 pixels from the same corresponding region for the same timestamp from Planetscope.
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and 60%, respectively. The results are discussed in the
next section.

6 Results

For each downstream task, we use 10 different models from
each category with varying hyperparameters. For supervised
learning, we report the mean scores for these 10 models. In
order to evaluate the pre-trained model, we fed the
representation obtained from our pre-trained model to these
10 models with the same hyperparameters. We report the mean
relative gain of the self-supervised model over the corresponding
supervised model with the same architecture and training
parameters. We show our win-matrix and relative gain plot
for 20 scores (10 results each for corruption coefficient of 20%
and 60%, respectively). We report the mean gain (min and max
value inside the parenthesis) for the self-supervised models. In
some cases, the uni-modal self-supervised models show inferior
results compared to the supervised and bi-modal methods. These
are shown with negative values.

Figure 6 shows the win-matrix and relative gain box plot for
ResMLP pre-trained models on downstream task1. The bi-modal
self-supervised model outperforms uni-modal self-supervised
and supervised models. The random feature corruption
technique, which demonstrated improved results on OPENML
tabular data (Bischl et al., 2021) in the case of uni-modal
contrastive learning pre-trained models, does not yield
promising results for time-series crop classification data. Upon
comparing the bi-modal self-supervised ResMLP model with the
supervised setup for downstream task1, the win-ratios are 17/20,
19/20, and 20/20 for LSTM, inception, and transformer,
respectively. This indicates that bi-modal self-supervised
learning during the pre-training stage gains knowledge about
crops. On comparing to the uni-modal self-supervised ResMLP
model, the bi-modal self-supervised win-ratios are 19/20 for
LSTM and 20/20 for the other base models.

The mean classification accuracies of supervised models are
66.7% ± 2.53%, 25.84% ± 4.65%, and 71.39% ± 4.54% for LSTM,
inception, and transformer, respectively. The corresponding box
plot shows the range of gain over the supervised setup. For LSTM,
the mean gain over the supervised experiment is −2.26% (min:

−16.33%, max: 3.87%) for uni-modal self-supervised and 3.75%
(−9.38%, 9.14%) for bi-modal self-supervised. In the case of
inception, the mean gain is −10.43% (−14.8%, −2.87%) for uni-
modal self-supervised, while for bi-modal self-supervised, the mean
gain is 8.92% (−2.26%, 19.02%). For transformers, the mean gain is
3.36% (−18.81%, 11.76%) for uni-modal self-supervised, whereas for
bi-modal, the mean gain is 8.78% (0.66%, 17.68%).

Figure 7 presents the results for downstream task2. The objective of
downstream task2 is to assess how the models behave when they are
applied to data from a different year and at a different geographical
region with relatively similar characteristics compared to the region
used for training. We find that the uni-modal self-supervised model’s
performance is inferior for all three baseline models. Similar to
downstream task1, the bi-modal self-supervised model outperforms
the uni-model self-supervised model in all experiments. When
comparing the bi-modal self-supervised ResMLP model with the
supervised base model, the win-ratios are 20/20, 17/20, and 10/20
for LSTM, inception, and transformer, respectively. In comparison with
the uni-modal self-supervised model, the win-ratios of bi-modal self-
supervised are 17/20, 20/20, and 19/20 for LSTM, inception, and
transformer, respectively. The mean classification accuracies of the
supervised models are 59.31% ± 5.75%, 20.43% ± 3.98%, and
80.83% ± 2.69% for LSTM, inception, and transformer, respectively.
The box plots in Figure 7 show the range of gain over the supervised
experiment. For LSTM, the mean gain is −0.11% (min: −10.27%, max:
12.12%) for uni-modal self-supervised, and the mean gain is 5.62%
(0.46%, 19.18%) for bi-modal self-supervised. In the case of
inception, the mean gain is −5.78% (−9.75%, −1.01%) for uni-
modal self-supervised, whereas the mean gain is 1.77% (−1.39%,
5.62%) for bi-modal self-supervised. For transformers, the mean
gain is −4.63% (−11.56%, 3.37%) for uni-modal self-supervised,
and the mean gain is −0.25% (−6.76%, 5.82%) for bi-modal self-
supervised.

Figure 8 presents the results for downstream task3. The objective of
downstream task3 is to assess how the models behave when they are
tested on data froma region that is far away from theBrandenburg region
of Germany, from where our pre-training data is taken. The test data of
this experiment is fromBrittany, France. Consistent with the results from
the previous two downstream tasks, the bi-modal self-supervised model
outperforms the uni-model self-supervised model across all experiment
setups. When comparing the bi-modal self-supervised ResMLP model
with the basemodel, the win-ratios are 20/20, 9/20, and 18/20 for LSTM,

FIGURE 5
Uni-modal contrastive learning experiment setup.
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inception, and transformer, respectively. When bi-modal is compared
with uni-modal, the win-ratios are 20/20, 15/20, and 19/20 for LSTM,
inception, and transformer, respectively. The classification accuracies for
supervised models are 33.19% ± 5.19%, 16.15% ± 3.38%, and
19.92% ± 4.46% for LSTM, inception, and transformer, respectively.
In the case of LSTM, the mean gain is 1.4% (min: −0.17%, max: 2.78%)
for uni-modal self-supervised, and for bi-modal self-supervised, themean
gain is 3.17% (1.82%, 4.6%). For inception, the mean gain is −3.2%

(−23.59%, 11.73%) for uni-modal self-supervised, whereas for bi-modal
self-supervised, the mean gain is 0.42% (−8.88%, 11.35%). For
transformers, the mean gain is −2.09% (−10.04%, 1.47%) for uni-
modal self-supervised and 1.56% (−1.70%, 3.55%) for bi-modal self-
supervised.

Table 1 shows the supervised accuracy and gain for both uni-modal
and bi-modal self-supervised learning for all downstream tasks. We
present per-class results for 6 selected experiment sets in the Appendix.

FIGURE 6
Win-matrix and box plot for ResMLP backbone model on downstream task 1. Plots (A), (C), and (E) show the win-matrix for LSTM, inception, and
transformer, respectively. Panels (B), (D), and (F) correspond to box plots showing a relative gain for both uni-modal and bi-modal self-supervised
compared to the supervised experiments for LSTM, inception, and transformer, respectively.
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7 Conclusion

In this work, we presented a new bi-modal, self-supervised
contrastive learning method for pixel-wise crop classification
from satellite images. The method uses Sentinel-2 and
Planetscope data together with a feature corruption technique
for pre-training and employs various networks to learn the

temporal patterns of the pixel spectra of different crop types.
After the pre-training, the model can be applied with one data
source only. We compared our bi-modal contrastive learning to
uni-modal self-supervised learning using only Sentinel-2 data.
We used ResMLP as the backbone model for pre-training and
evaluated the pre-trained representation using it as input for
three different base models for crop classification, i.e., bi-

FIGURE 7
Win-matrix and box plot for ResMLP backbone model on downstream task 2. Plots (A), (C), and (E) show the win-matrix for LSTM, inception, and
transformer, respectively. Panels (B), (D), and (F) correspond to box plots showing a relative gain for both uni-modal and bi-modal self-supervised
compared to the supervised experiments for LSTM, inception, and transformer, respectively.
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directional LSTM, inception time, and position encoded
transformers.

In summary, we conclude that contrastive learning using the
feature corruption technique to generate positive sample pairs on
Sentinel-2 is unable to learn an expressive representation for crop
classification. On the other hand, when we use bi-modal contrastive
self-supervised learning with Sentinel-2 and Planetscope, we find a
relative gain in performance for most of the test cases. For the bi-

directional LSTM, we find a higher gain for all the downstream tasks.
The gains are smaller for inception in the case of downstream
task3 and for one test case, i.e., transformer network for
downstream task2, there was no positive gain. Given the
improvement found in most test cases, we can conclude that bi-
modal contrastive learning helps in learning an expressive
representation for crop classification. In the bi-modal setting, the
network has learned to take into account finer-scale features from the

FIGURE 8
Win-matrix and box plot for ResMLP backbone model on downstream task 3. Plots (A), (C), and (E) show the win-matrix for LSTM, inception, and
transformer, respectively. Panels (B), (D), and (F) correspond to box plots showing a relative gain for both uni-modal and bi-modal self-supervised
compared to the supervised experiments for LSTM, inception, and transformer, respectively.
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higher-resolution Planetscope data during pre-training. As a result,
the classification accuracy increases even when only Sentinel-2 data
are fed into the pre-trained network. All our test cases are pixel-wise
crop classification. The new method can, however, be transferred to
other downstream tasks like a prediction of crop yield or identification
of the nutritional value of the crop at a location.

8 Discussion

We have shown the benefits of our method but there are many
points to be discussed. We have already highlighted some of the
existing methods and SimCLR-like loss functions in Section 2.
Our approach differs from existing methods in several key
aspects. Unlike SeCo (Mañas et al., 2021), which used only
Sentinel-2 data and classical image transformations, we align
two optical remote sensing sources (Sentinel-2 and Planetscope)
with different properties for contrastive learning. While some
studies (Scheibenreif et al., 2022; Liu et al., 2022) have
implemented multi-modal contrastive learning approaches in
remote sensing by aligning optical (Sentinel-2) with radar
(Sentinel-1) images, our method focuses on pixel-level analysis
rather than whole images. This pixel-wise approach is
particularly beneficial for crop classification and eliminates the
need for field boundary information, making it fully self-
supervised. While SCARF (Bahri et al., 2021), SAINT
(Somepalli et al., 2021), and VIME (Yoon et al., 2020) utilize
various augmentation techniques for tabular data, our approach
employs SimCLR (Chen et al., 2020) contrastive loss on distinct
data sources. Our methods leverage the availability of multiple
sources in the field of remote sensing. Although several
competitive loss functions exist, we found that SimCLR
outperforms others like Barlow twins (Zbontar et al., 2021) in
our bi-modal setup, aligning with findings from SCARF authors
on OPENML-CC18 (Bischl et al., 2021) data. The other loss
functions, MoCo (He et al., 2019), BYOL (Grill et al., 2020; Caron
et al., 2021) are not feasible for bi-modal contrastive
experimental setups as the training with loss functions
employs two networks with similar architecture but the
weights are not shared between them. So, our proposed

method offers a novel approach to crop classification using
contrastive self-supervised learning, thereby advancing the
fields of remote sensing and agricultural monitoring.

Using a single 16 GBNVIDIA Tesla V100 GPU, we can obtain the
pre-trained model in just 6 h. The model architecture consists of an 8-
layer ResMLP, which is relatively small and allows for larger batch
sizes. This is particularly advantageous because SimCLR is not
parallelizable. However, increasing the number of layers will lead to
longer pre-training times. Once pre-trained, the model can utilize
either LSTM or transformer architectures as its base. While LSTMs are
inefficient during training due to backpropagation through time, they
run sequentially during deployment with a computational complexity
of O(1). In contrast, the attention mechanism in transformers has a
computational complexity ofO(n2). The Sentinel-2 time series data for
1 year contains a maximum of 144 timestamps, which is significantly
less than the data typically handled in generative tasks performed by
GPT models. This limited number of timestamps has minimal impact
on computational time when using modern GPUs. During training for
20 epochs, both models averaged less than 20 min for the datasets in
downstream tasks 1 and 2. When scaling to millions of pixels,
parallelization becomes necessary during deployment. Since this
application is not real-time, we find our approach to be practical in
large-scale implementations.

There are some limitations of the network architecture in our
approach. ResMLP is still not a state-of-the-art network. The recently
proposed Spectral MAMBA network (Yao et al., 2024) has shown
promising results on hyperspectral image classification. It is worth
noting the feasibility of such a model as a substitute for ResMLP. The
second limitation is that our work assumes that a landcover
classification model is available that can detect the croplands in
arbitrary satellite scenes. Pre-training on all types of landcover
might result in a representation that is less suitable for crop
classification. Furthermore, the method only considers the spectral
component and does not consider the potential information coming
from neighboring pixels. Extending our method to include the spatial
context might improve the results further. In future work, we aim to
leverage the capabilities of transformer networks like UTAE (Sainte
Fare Garnot and Landrieu, 2021) and TSViT (Tarasiou et al., 2023),
with a particular emphasis on handling remote sensing time series
data to address the aforementioned limitations.

TABLE 1 Accuracy of the supervised setup and relative gain of uni-modal and bi-modal self-supervised pre-training for the three different downstream
tasks.

Downstream
Task

Downstream
Network

Supervised accuracy
(Mean ± std)

Relative gain
For uni-modal(Mean)

Relative gain
For bi-modal (Mean)

Task1 LSTM 66.70% ± 2.53% −2.26% 3.75%

InceptionTime 25.84% ± 4.65% −10.43% 8.92%

Transformer 71.39% ± 4.54% 3.36% 8.78%

Task2 LSTM 59.31% ± 5.75% −0.11% 5.62%

InceptionTime 20.43% ± 3.98% −5.78% 1.77%

Transformer 80.83% ± 2.69% −4.63% −0.25%

Task3 LSTM 53.11% ± 1.02% 1.4% 3.17%

InceptionTime 21.99% ± 6.57% −3.20% 0.42%

Transformer 54.11% ± 2.09% −2.09% 1.56%
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