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Despite the importance of soil moisture (SM) in various applications and the need
to validate satellite SM products, the current in situ SM network is still inadequate,
even for developed country such as the United States. Recently, SM2RAIN (Soil
Moisture to Rain) algorithm has prominently emerged as a bottom-up approach
to derive rainfall data from SM. In this study, we evaluated whether SM2RAIN
algorithm and rain gauges, which are more abundant and readily available than in
situ SM, can be used to validate satellite-based SMAP SM estimates. Since errors in
SMAP SM propagate to SMAP-derived rainfall, the skills of SM2RAINmight be able
to provide insights on the accuracy of SMAP SM observations. While the
correlation between SM2RAIN skills and SMAP SM skills was found to be
statistically significant, the strength of the correlation varied among different
climate zones and annual rainfall classes. Specifically, weaker correlations were
observed in arid and lower rainfall regions (median R value of 0.12), while stronger
correlations were found in temperate and higher rainfall regions (median R value
of 0.54). In term of over/under-estimation tendencies, 56% of the stations had the
same tendencies (SM2RAIN skills and satellite SM skills both have positive or
negative PBIAS value).
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1 Introduction

Soil moisture (SM) is a key variable of the land-atmosphere interactions and provides
valuable information for flood and drought monitoring (Lakshmi et al., 2023; Mishra et al.,
2017; Sheffield et al., 2004), water resources management (López et al., 2017; Robinson et al.,
2008; Vereecken et al., 2008), and agriculture applications (Hanson et al., 2000; Lawston
et al., 2017). Over the past decades, satellite-based SM retrievals have been widely developed
and utilized in numerous applications. These include SM retrieval from optical and thermal
remote sensing instruments (e.g., Landsat, Moderate Resolution Imaging
Spectroradiometer—MODIS) (Petropoulos et al., 2015), or from active/passive
microwave instruments (e.g., Advanced Microwave Scanning Radiometer 2 (AMSR2)
(Parinussa et al., 2015), Soil Moisture and Ocean Salinity (SMOS) (Kerr et al., 2012),
and Soil Moisture Active Passive (SMAP) (Entekhabi et al., 2010). Additionally, other
notable SM products are based on amerging scheme of multiple SM retrievals (Gruber et al.,
2017; van der Schalie et al., 2017) or from assimilation of SM observations into hydrological
or land surface model (Martens et al., 2017; Reichle et al., 2016).
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Numerous studies have validated different SM products using in
situ SM measurement on both global and regional scale (Al-Yaari
et al., 2019; Beck et al., 2021; Fang et al., 2020; Zhang et al., 2019a).
These studies typically use the global network of SM measurement
stations International Soil Moisture Network (ISMN) (Dorigo et al.,
2011) The ISMN initiative is collaborative mechanism aimed at
sharing and standardizing in situ SM data among worldwide
researchers and organizations (Dorigo et al., 2011; Dorigo et al.,
2021). However, the lack of in situ soil moisture data, especially in
certain regions in the world, is primarily due to the higher costs
associated with installing and maintaining SM stations compared to
rain gauges (Du et al., 2022; Hrachowitz et al., 2013; Naeimi et al.,
2013). Figure 1 shows the stations that have been included in the
ISMN as of 2023. While certain areas such as Europe and the
contiguous United States (CONUS) have dense and extensive
networks of ground stations, regions like Southeast Asia, South
America, and Africa have very few monitoring sites. Additionally,
there is also a discrepancy in climate classes in ISMN datasets, with
dominating number of stations and arid and cold region and limited
number of stations in tropical and polar region (Beck et al., 2021).

Triple collocation (Stoffelen, 1998), which can estimate the error
variances of three or more geophysical measurement, has also been
widely used to evaluate the relative uncertainties of SM products for
global studies or for ungauged regions (Chen et al., 2018; Gruber
et al., 2016; Xu et al., 2021). However, the assumptions of triple
collocation (i.e., linearity, stationarity, error orthogonality, and zero
cross-correlation) do not always hold true in practice (Gruber et al.,
2016) and also generally underestimate the true random error of SM
products (Yilmaz and Crow, 2014). Other notable approaches have
relied on variables that have high correlations to SM such as
remotely sensed vegetation greenness data (Tian et al., 2019) and
evapotranspiration (Naeimi et al., 2013) for evaluation.

Among hydrological variables that can be used as proxy for SM
evaluation, precipitation has been often used for indirect SM
evaluation. Rain gauges, which are more affordable to set up and
are received more attention than SM gauges, have been established
for a longer time with better coverage across the globe (Menne et al.,
2012a). Therefore, using rain gauge data can help with satellite SM
evaluation in regions like South America or Southeast Asia where
there are no or limited available in situ SM (Figure 1). While these
regions are generally geopolitically ungauged or have a sparing
network if in-situ data for both precipitation and SM, the lack of
SM gauges is much more severe than that of rain gauges.
Additionally, in data-rich regions like the CONUS and Europe,
dense system of rain gauges can provide better evaluation for
downscaled high-resolution SM products (Crow et al., 2022;
Reichle et al., 2023). Past studies leveraged the inherent
relationship between SM and rainfall to indirectly evaluate
satellite SM. Notably, Crow (2007) and Crow et al. (2010) used
the added value of SM assimilation for satellite precipitation
correction to derive a linear proxy for true correlation.
Additionally, Tuttle & Salvucci (2014) and Karthikeyan & Kumar
(2016) used the natural sigmoidal relationship between SM and
precipitation to derive mutual information which can be used to
choose better SM products.

Additionally, another “bottom-up” approach called Soil
Moisture to Rain (SM2RAIN) has been established to derive
precipitation from satellite SM (Brocca et al., 2014; Brocca et al.,
2015). As the soil can be considered a natural reservoir for
measuring the amount of rainfall, SM2RAIN uses the soil water
balance equation to estimate the rainfall rate from the changes in SM
(Brocca et al., 2014). The method was applied to numerous satellite
SM products such as Advanced SCATterometer (ASCAT) (Brocca
et al., 2019) and SMAP (Koster et al., 2016) to derive continental- or

FIGURE 1
Distribution of in situ stations in the International Soil Moisture Network (ISMN).
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global-scaled precipitation products. Nevertheless, to the best of our
knowledge, no studies have utilized SM2RAIN for the evaluation of
satellite SM. There existed studies that applied SM2RAIN to
multiple sets of satellite SM products for the purpose of
evaluating SM products’ skill in rainfall estimation and rainfall
merging (Tarpanelli et al., 2017). However, these studies do not
focus on the usage of SM2RAIN for satellite SM evaluation. From
the past SM2RAIN studies, SM-derived rainfall provide good result
in areas where SM retrievals are expected to be accurate (i.e., the skill
of SM2RAIN is significantly dictated by the accuracy of SM
retrieval) (Brocca et al., 2014).

In this study, we examined whether the relationship between
SM2RAIN performance skill scores and satellite SM accuracy can be
leveraged for evaluation of satellite SM without relying on in situ
data. We chose CONUS as our study area due to the availability of in
situ SM and rain gauges. SMAP Enhanced L2 Radiometer Half-
Orbit 9 km SM product was chosen as satellite observations to
evaluate. Additionally, while SM2RAIN algorithm has been
extensively evaluated, most of the studies evaluated SM2RAIN
with satellite SM (Brocca et al., 2019; Ciabatta et al., 2018; Koster
et al., 2016). SM2RAIN studies using in-situ SM to validate the
assumptions and inherent skills of the algorithm were only
conducted in other region of the world (Brocca et al., 2015; Lai
et al., 2022; Miao et al., 2023). In this study, we also focused on
evaluating the skills of SM2RAIN algorithm using both in situ SM
and satellite SM over the CONUS.

2 Data and methods

2.1 SMAP SM product

We used SMAP Enhanced L2 Radiometer Half-Orbit 9 km
(SMAP_L2_SM_P_E) Version 3 SM as the satellite SM for
evaluation in this study (ONeill et al., 2019). The SMAP
mission from NASA, launched in 2015, is the first SM mission
that contains both L-band radiometer and radar to combine active
and passive microwave observations for high spatiotemporal
resolution surface SM. Unfortunately, the active radar sensor on
the SMAP satellite ceased operations a few months after its launch
due to a component failure. Since then, various techniques have
been developed to use multi-source data merging schemes to
downscale SMAP SM observations to higher resolution (Brocca
et al., 2023; Peng et al., 2017; Sabaghy et al., 2020). The SMAP_L2_
SM_P_E product provides volumetric surface SM (0–5 cm) that is
derived from SMAP brightness temperature (TB) measurements.
The product relies on the Backus-Gilbert interpolation method
(Backus and Gilbert, 1967) to oversample SMAP TB for higher
spatial resolution and better accuracy. Downscaled SM is then
derived from applying radiative transfer model to the downscaled
9-km TB grid map (Chan et al., 2018). Before applying SM2RAIN
to SMAP Enhanced Level 2 product, we filled the temporal gap in
SM to obtain daily SMAP SM by discrete cosine transform and
penalized least square regression (DCT-PLS) algorithm (Garcia,
2010). The algorithm has been widely used in other SM2RAIN
studies for satellite SM gap filling (Miao et al., 2023; Saeedi et al.,
2022). Both SMAP morning/descending (D) and afternoon/
ascending (A) orbit retrievals, which have a temporal resolution

of 2–3 days, were gap-filled and averaged to represent SMAP SM
retrievals.

2.2 In situ SM measurements

We used in situ SM measurements (m3m−3) from the ISMN
archive. ISMN is a global initiative dedicated to the collection,
archiving, and dissemination of SM data for the purpose of
scientific research and modelling (Dorigo et al., 2011; Dorigo
et al., 2021). Different SM networks use different types of sensors
[e.g., time domain-reflectometry, infrared thermometers, and
capacitance censors (Vereecken et al., 2014; Walker et al., 2004)]
and varying systems to measure and record observations. To
standardize and insure the quality of SM records, the ISMN
removes dubious and inconsistent SM observations and
harmonizes data from different networks and organizations into
the same time zone and measurement units (Dorigo et al., 2013). In
addition to SM observations, some stations and networks also have
soil and air temperature, precipitation, and snow water
equivalent records.

In this study, in situ SM was obtained to both calibrate
SM2RAIN parameters and evaluate satellite SM as benchmark for
evaluation using SM2RAIN and rain gauge. We selected 775 stations
(Figure 2) across the CONUS that contained at least 2 years of daily
record length during either the SM2RAIN calibration (2011–2016)
or the SM evaluation period (2017–2022). To calibrate and evaluate
remote sensing SMwhich usually penetrate up to ~5 cm of soil depth
(Owe & Van De Griend, 1998), in situ SM measurements were
selected only from sensors at a depth of 5 cm (± 2 cm) (Albergel
et al., 2012; Beck et al., 2021; Wu et al., 2016). We also resampled SM
records in the ISMN archive from their original hourly resolution to
daily resolution. Along with SM records, the corresponding
Koppen-Geiger climate classification and land cover of each
station were provided by ISMN dataset. Information about in
situ SM networks and stations selected in this study is
summarized in Supplementary Table S1.

2.3 Daymet dataset

We obtained in situ precipitation and temperature from the
Daymet Version 3 data (accessed at https://daymet.ornl.gov/)
(Thornton et al., 2016). Daymet dataset provides 1-km high
resolution gridded daily surface weather data (e.g., precipitation,
minimum and maximum temperature, vapor pressure) for North
America from 1980 to present. The gridded output data is
interpolated from in situ weather station data from the Global
Historical Climatology Network-Daily (GHCN-Daily) (Menne
et al., 2012b) by iterative estimation of local station density
using the spatial convolution of a truncated Gaussian filter
(Thornton et al., 1997).

2.4 SM2RAIN algorithm

Conventional methods for space-based rainfall estimation
primarily rely on instantaneous data obtained from microwave

Frontiers in Remote Sensing frontiersin.org03

Do et al. 10.3389/frsen.2024.1474088

https://daymet.ornl.gov/
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2024.1474088


radiometers, radars, and infrared sensor and use inversion
techniques to correlate radiation with surface precipitation rates-a
paradigm (Kidd and Levizzani, 2011). Such approaches, which can
be referred to as “top-down,” require the merging of instantaneous
rainfall measurements from multiple sensors. Therefore, the failure
of one of the sensors may imply a significant degradation in the
accuracy of the accumulated rainfall estimate due to the high
temporal variability of rainfall (Trenberth and Asrar, 2012).
Brocca et al. (2013) proposed a new “bottom-up” approach to
quantify the rainfall estimates by observing the variation in time
of the SM state called Soil Moisture To Rain (SM2RAIN).While top-
down method might miss the peak precipitation event that occurs
between satellite observations, SM2RAIN uses the soil as a natural
gauge to indicate peak precipitation event (Saeedi et al., 2022). The
algorithm was evaluated using in situ measurements (Brocca et al.,
2014), and was applied to global satellite SM datasets and performed
good results (Brocca et al., 2019; Filippucci et al., 2022; Koster et al.,
2016). More information about SM2RAIN is available at http://
hydrology.irpi.cnr.it/download-area/sm2rain-data-sets/and the
code used in this study for SM2RAIN is found at https://github.
com/IRPIhydrology/sm2rain.

The SM2RAIN algorithm has been formed based on the
inversion of the soil water balance equation to estimate rainfall
(Kirchner, 2009). The soil acts as a natural rain gauge, recording the
quantity of rainfall that has fallen into the ground in which the
expression of the equation is established as follows:

nZ
ds t( )
dt

� p t( ) − g t( ) − r t( ) − e t( ) (1)

with n represents the soil porosity, Z is the depth of soil layer
with unit length L (mm), s(t) is the relative saturation of the soil

layer or relative SM, and p(t), g(t), r(t), e(t) are precipitation,
drainage, surface runoff, and evapotranspiration rate for each
timestep t of unit T (mm/day), respectively. SM2RAIN assumes
that during a rainfall event, evapotranspiration rate is negligible
(i.e., e(t) � 0) and that all precipitation infiltrates into soil
(i.e., r(t) � 0) (Brocca et al., 2013). Surface runoff r(t), drainage
g(t), and evapotranspiration rate e(t) can be expressed as a function
of precipitation p(t) and SM s(t) as followed:

r t( ) � p t( ) s t( )c (2)
g t( ) � a s t( )b (3)

e t( ) � ETpot t( )s t( ) (4)
ETpot t( ) � −2 + 1.26 ξ 0.46Ta t( ) + 8.13( )[ ] (5)

where a (L/T), b (−), and c (−) are the empirical parameters for
calibration, and ETpot(t) is the potential evapotranspiration that
depends on air temperature Ta(t) (°C) and ξ that represents the
percentage of total daytime hours for the chosen period (daily or
monthly) out of the entire daytime hours in a year (Brocca et al.,
2015; Massari et al., 2017). To derive precipitation at each time step
p(t) from SM s(t), Equation 1 can be arranged as:

p t( ) � Z*ds t( )
dt + as t( )b + ETpot t( ) s t( )

1 − s t( )c (6)

where Z* is another parameter that represents soil layer water
capacity that represents soil porosity n and soil depth layer Z.
With the assumption of negligible evapotranspiration and runoff,
rainfall estimation can be simplified as:

p t( ) � Z*
ds t( )
dt

+ as t( )b . (7)

FIGURE 2
ISMN in situ SM networks and stations and the underlaying annual precipitation (Source: DAYMET) in CONUS. Darker blue color represents higher
precipitation intensity.
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Generally, SM2RAIN parameters are often calibrated with
satellite SM and interpolated and gridded in situ or satellite
rainfall data using the simplified SM2RAIN equation assuming
negligible runoff and evapotranspiration (Equation 7). In this
study, we instead calibrated SM2RAIN parameters with point-
based in situ SM to derive SM2RAIN parameters that can be
applied to multiple satellite SM products, instead of deriving the
parameters from satellite SM. As this study only focuses on
exploring the capability of the novel idea of using SM2RAIN for
SM evaluation, we only used one single SM product (i.,e., 9-km
SMAP observation) for the evaluation. For future application
however, with one single set of parameters calibrated using in-
situ SM, SM2RAIN can be applied to multiple SM products to
evaluate their observations’ accuracy. Additionally, to reduce noises
and errors in satellite SM, exponential filtering is usually applied to
SM data and introduces new parameters Tbase and Tpot to SM2RAIN
(Brocca et al., 2019; Wagner et al., 1999). Because we calibrated
SM2RAIN on in situ SM, only three parameters (Z, a, b) in Equation
7 were considered in this study.

2.5 Evaluate satellite SM using SM2RAIN and
rain gauge

Essentially, since the SM2RAIN parameters were calibrated
from in situ SM and precipitation data, we wanted to investigate
whether the deviation of satellite SM-derived rainfall from in situ
precipitation is primarily a result of differences between in situ and
satellite SM measurements. To assess this assumption, we evaluated
SMAP Level 2 9 km SM in two different ways: (1) direct evaluation
using in situ SM, and (2) proxy evaluation of SM by comparing
rainfall derived from SM2RAIN to rain gauge.

Figure 3 shows the framework of this study to evaluate SMAP
SM through SM2RAIN. In situ SM records were divided into two
periods: the calibration period from 2011 to 2016 and the satellite
SM proxy evaluation period from 2017 to 2022. A total of 788 and
607 stations were selected for the calibration and satellite SM
evaluation periods respectively. Similar to previous SM2RAIN

studies, we divided the in situ stations into six classes based on
annual rainfall (Brocca et al., 2014) and calibrated a set of SM2RAIN
parameters for each group (Table 1). The rain classes are determined
so that there is a relatively equal number of stations in each class.
Though a majority of stations overlapped between the two periods,
the SM2RAIN parameters were calibrated for a group of stations’
data records within the same annual rainfall class, instead of for each
single station. Air temperature from Daymet was obtained to
exclude winter freezing period (Ta < 0°C) whereas the physical
relationship between SM and precipitation is unrealistic due to
thawing and freezing (Tuttle and Salvucci, 2014). Similar to
previous studies (Brocca et al., 2014; Koster et al., 2016), SM data
at each station was normalized between 0 and 1 to address the
difference in ranges and SM minima at different locations.
Additionally, two daily records with a 5-day gap were also
excluded to maintain the consistency in the relationship between
SM change and precipitation in SM2RAIN. Because of the
unrealistic behavior of SM and precipitation at some stations, we
performed SM2RAIN calibration on each single station to determine
its compatibility with SM2RAIN. For each annual rainfall class, only
half of the stations with better SM2RAIN simulation results would
be selected for SM2RAIN calibration for the class.

As the study focuses on whether errors in SM2RAIN simulations
can represent errors in satellite soil moisture (SM) data, we did not
employ similar calibration approaches used in recent SM2RAIN
studies that focus on producing the best SM-based rainfall estimates.
In other studies, pixel-to-pixel calibration using satellite SM instead
of annual rainfall classification was found to result in better rainfall
estimates results (Filippucci et al., 2021; 2022). Nevertheless, as the
study uses in-situ SM for calibration, pixel-to-pixel was not suitable
and annual rainfall classification was selected.

We derived SM2RAIN SMAP precipitation during the
evaluation period (2017–2022) by applying the rainfall class-
specific calibrated SM2RAIN parameter values (Z, a, and b) to
SMAP SM observations. Because SM2RAIN parameters were
calibrated with daily in situ data, SMAP SM time series were also
gap filled to daily temporal resolution using DCT-PLS algorithm.
Daily rainfall simulations that were derived from SMAP SM using

FIGURE 3
Proposed framework of evaluating SMAP SM using SM2RAIN and in situ precipitation (P). The actual skills of SMAP SM from using in situ SM are also
obtained (green line). On the other hand, the skills of SMAP-derived P by applying SM2RAIN to SMAP SM is also derived (orange line). We investigate
whether the skills of SMAP-derived P (orange box) can provide comparable performance on satellite SM skills (green box).
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SM2RAIN algorithm (also known as SMAP-derived rainfall) were
evaluated using daily DAYMET in situ precipitation at 607 available
ISMN stations during the evaluation period (Table 1). Similar to the
configuration for the calibration period, we excluded results at
timesteps that have a gap of more than 5 days from the previous
timestep and at timesteps with negative mean air temperatures (Tair

from Daymet <0°C for the timestep). Additionally, because we
wanted to use the evaluation of SMAP-derived rainfall as a
potential substitute for in situ SM in validating satellite SM, two
additional conditions were added to limit the inherent limitation of
SM2RAIN and maximize the impacts of satellite SM accuracy on
SMAP-derived rainfall’s skills. Firstly, precipitation simulations
were aggregated by 3 days (i.e., the actual temporal resolution of
SMAP SM) to minimize the errors and uncertainties in interpolated
SMAP SM and SM2RAIN algorithm (Koster et al., 2016; Miao et al.,
2023). Secondly, since SM2RAIN is known to underpredict the
maximum rainfall after the soil is saturated, we excluded timesteps
when in situ precipitation exceeds the maximum amount that
SMAP-derived rainfall can simulate. The pair of in situ SM/
SMAP SM and in situ precipitation/SMAP-derived precipitation
were then evaluated separately. Finally, the results from the two
evaluations were compared to assess whether the proxy evaluation
using SM2RAIN rainfall can provide similar insights into SMAP SM
performance as the direct evaluation using in situ SM.

We used three metrics in this study, including Pearson
coefficient correlation (R), normalized Root Mean Square Error
(NRMSE), and percent bias (PIBAS). The coefficient of correlation
(R), ranging from −1 (perfect negative correlation) to 1 (perfect
positive correlation), measures the strength and direction of the
linear relationship between two variables and indicates how well the
in situ data and simulation align in terms of temporal variability.
The metric is widely used in both studies that evaluate satellite SM
based on in situ records (Beck et al., 2021; Fang et al., 2020; Gruber
et al., 2020) and studies that evaluate satellite precipitation and
SM2RAIN rainfall products (Beck et al., 2017; Brocca et al., 2019).
NRMSE is a metric that quantifies the magnitude differences
between predicted and observed values, scaled to the range of
observed values. This normalization allows for easy comparison
of model performance across different datasets, providing a relative
measure of prediction accuracy. Because SM and precipitation at
different stations have varying ranges and distributions, RMSE must
be normalized for evaluation across the CONUS. Additionally,
because the errors from comparing SM to SM and precipitation
to precipitation were being evaluated, the RMSE values from both
evaluation methods needed to be normalized. Lastly, PBIAS
quantifies the average tendency of predicted values to differ from
observed values, expressed as a percentage, with positive values

indicating overestimation and negative values indicating
underestimation. Three metrics R, NRMSE, and PBIAS were
used for both the calibration and SM proxy evaluation steps. In
the calibration step, we used the mentioned metrics to evaluate
SM2RAIN calibration and its skill. In the proxy evaluation, the
metrics for both evaluation methods (i.e., from in situ SM, and from
SM2RAIN SMAP-derived precipitation) were calculated and
then compared.

3 Results and discussion

3.1 Evaluation of SM2RAIN model
performance at each single station

Before recalibrating the parameters for six annual precipitation
groups using only half of the stations with better performance, we
applied SM2RAIN to daily SM records at each station that have at
least 2 years of daily records during the 2011–2016 calibration
period. Across 788 stations, the median R, NRMSE, and PBIAS
of daily SM2RAIN simulations and observed precipitation are 0.54,
2.48, and −10%. The median correlation coefficient R is similar to
that of previous studies that applied SM2RAIN on satellite SM for
daily precipitation (Brocca et al., 2019; Ciabatta et al., 2016). Other
studies that use in situ SM for SM2RAIN achieved higher R value by
calibrating the parameters pixel-by-pixel wise with hourly SM and
temporally aggregating rainfall simulation to daily timestep (Brocca
et al., 2015; Miao et al., 2023). Nevertheless, since the SM2RAIN
parameters would be then applied to daily satellite SM, we focused
on the evaluation of SM2RAIN capacity on daily SM to daily
precipitation timestep. The median PBIAS of −10% suggests that
SM2RAIN generally underestimates rainfall amount. In theory, this
could be due to the fact that at saturation, SM remains constant
regardless of the rainfall event. Therefore, SM changes at saturation
cannot capture the full amount of rainfall and generally
underestimate precipitation (Brocca et al., 2014; Brocca et al.,
2019). However, we found that the number of days that SM is
saturated (higher than the 99.5% percentile) for consecutive days
were minimal to make substantial impacts. Similar to previous
studies (Brocca et al., 2019), for both in-situ and satellite SM
data, we found the median number of consecutive days with
saturated soil across all stations in a 6-year period (2017–2022) is
2 days across all stations. The underestimation of SM2RAIN is likely
due to the noisy and volatile nature of SM when the soil is close to
dry. When the parameters try to compensate for these durations
(which occur more often than high rainfall event), it is difficult for
SM2RAIN to simulate high rainfall rates.

TABLE 1 Number of stations in each annual rainfall classification for calibration period (2011–2016) and evaluation period (2017–2022).

Annual rainfall classes (mm/year)

0–443 443–593 593–657 657–798 798–1,132 >1,132

Num of stations (2011–2016) 103 137 118 138 137 155

Num of stations (2017–2012) 93 121 56 112 112 113

For each annual rain class, only half of the stations that produce the best SM2RAIN rainfall simulation (highest R value) are chosen to re-calibrate the SM2RAIN parameters that are used during

the evaluation period.
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We further divided the evaluation based on SM networks,
climate classification, and annual rainfall class (Figure 4).
Compared to the other selected SM networks, the Snow
Telemetry (SNOTEL) Network (Leavesley et al., 2008) has a
considerably lower median R value of 0.43. This could be the
effect of rain gauges underestimating snowfall by up to 90%
because of wind-induced undercatch in mountainous and snow-
dominated regions (Beck et al., 2020; Rasmussen et al., 2012).
Therefore, rainfall measurements at SNOTEL stations, which are
located in remote, high-elevation mountain watersheds, can suffer

from gauge undercatch and orographic effects, resulting in a
discrepancy between SM and the rainfall records. Additionally,
for these cold mountainous stations, snowmelt can significantly
impact the skills of SM2RAIN estimates. After snow melts, SM
increases, leading to false rainfall estimate by SM2RAIN. While
timesteps with negative air temperatures were already excluded from
the study, SM2RAIN performance following winter conditions can
worsen due to snowmelt. On the other hand, Texas Soil Observation
Network (TxSON) (Caldwell et al., 2019) presents the best R value
(median R = 0.74) with low variance. However, this could also be due

FIGURE 4
Violin plots of correlation coefficients (R) for SM2RAIN rainfall at each single station during the calibration period (2011–2016) for different networks,
climate zones, and annual rainfall classes.
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to the lower number of stations (n = 38) in the network during the
calibration period. In terms of climate classification, SM2RAIN
performs relatively better in temperate climate with median R of
0.64. This aligns with past studies’ findings, which could be ascribed
to lower variations of SM in temperate climate resulting in better
inversion of data through SM2RAIN algorithms (Brocca et al.,
2015). Besides, SM2RAIN performance does not differ
significantly among different annual rainfall classes. For all
distributions of R values, we observed a long and narrow lower
tail (i.e., extremely low correlation), indicating that there were a few
stations where SM2RAIN could not capture the relationship
between SM and precipitation or where there are significant
issues with the reliability of in-situ SM data (e.g., missing data,
sudden and drastic rise/drop in SM).

Figure 5 shows the spatial distribution of SM2RAIN skill
metrics. Stations at temperate and cold climate regions in the
east side of the U.S. achieved satisfactory results with good R
value and low NRMSE. More variations in R and NRMSE
metrics could be observed in the western U.S. due to more
complex climate patterns and mountain ranges. Stations with the
lowest R values could be observed along the Cascade and Sierra
Mountain ranges and the Rocky Mountain ranges, which could be
the result of high mountain rain gauge undercatch and the effect of
snow on SM data quality (Ciabatta et al., 2016). We also noted that

the stations with exceptionally high NRMSE (>5) at the Sierra
Nevada mountain ranges near the southeastern border of
California were mainly due to the very low annual precipitation
at these stations (from 50 to 231 mm/year) and high elevation gauge
undercatch. In terms of PBIAS, substantial underestimation of
rainfall (negative PBIAS) was also observed at the mountain
ranges. In addition, the majority of stations where SM2RAIN
overestimated (positive PBIAS) could be observed mainly in
temperate regions near the coast.

To investigate the stations where bad SM2RAIN results were
achieved, we looked at the behavior between SM and precipitation.
The relationship between two variable is expressed as E[P|SM], or the
conditional expected value of precipitation given SM. From past
studies, the expected value of mean precipitation based on SM
should follow a steep, convex-concave shape of sigmoidal
behavior with a convex shape at low SM and a concave shape at
high SM (Karthikeyan & Kumar, 2016; Tuttle and Salvucci, 2014).
This behavior is attributed to the cumulative effects of exponential
growth curve dependence of evapotranspiration and surface runoff
on SM. This behavior, consistent with the SM2RAIN soil water
balance equation (Equations 1–6), was also observed when
comparing the differences in the SM-precipitation relationship at
stations where SM2RAIN performed well versus those where
it did not.

FIGURE 5
Spatial distribution of (A) correlation coefficient (R), (B) normalized root mean squared error (NRMSE), and (C) percent bias (PBIAS) for SM2RAIN
rainfall at each single station during the calibration period (2011–2016). The stations are represented by their climate zone classification.
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Figure 6 shows the stations-wide average of mean-
normalized precipitation conditionally averaged according
to SM cumulative distribution at 50 stations with the highest
R values and the 50 stations with the lowest R values of
SM2RAIN calibration. The grey shading, which represents
one standard error of the estimated mean precipitation at
each SM percentile, is calculated as σPrecip

��

N
√ , where N is the

number of observations at each percentile). At the stations
with good SM2RAIN results, the E[P|SM] curve follows the
sigmoidal curve with minimal uncertainties, showing that
SM-precipitation relationships follow the expected behavior,
and that representation of evapotranspiration and runoff can be
estimated by the exponential growth of SM. At these stations,
the changes in SM are well represented by precipitation. On the
other hand, at the 50 stations with the worst R values for
SM2RAIN, we observed substantially more uncertainty and
unrealistic SM-precipitation relationships. Though the steep
convex-concave curve was still presented at high SM, changes
in SM in the middle of the curve are shown to not be
well represented by precipitation. This could be due to errors
in in-situ SM data, especially in long-term and decade-old
monitoring records. The in-situ SM records, which are less
reliable than rainfall records due to the additional
complexities in measuring SM, may suffer from incorrect
instrument calibration, missing data, sudden record jumps,
and unstable seasonal variability. While great efforts were
made in ISMN’s quality control assurance (Dorigo et al.,
2013; Dorigo et al., 2021), the potential errors from
measurement and missing data can lead to unrealistic
relationship between SM and precipitation records. The
uncertainty and unrealistic behavior in SM-precipitation
relationships could also be the results of high mountain rain
gauge undercatch and snow effect.

3.2 SM2RAIN calibration and SMAP-derived
precipitation

To exclude stations with unrealistic SM-precipitation behavior
and record errors, we only selected half of the stations of each annual
rainfall class with the best R value for SM2RAIN calibration. Then,
the SM2RAIN parameters were recalibrated using in-situ SM (from
ISMN) and precipitation (from Daymet) during the
2011–2016 period. Table 2 shows the SM2RAIN parameter
values (Z, a, and b) obtained from the recalibration using only
the “better half” of the stations. The values of parameters Z and a
generally increase with annual rainfall, which is expected since SM is
normalized between 0 and 1. The value of parameter b, on the other
hand, ranges from 1.15 to 3.93 depending on different rainfall
classes. Similar to previous studies (Brocca et al., 2014), the
values of a and b were obtained anomalously high for the lowest
annual rainfall class, which are likely due to the smaller magnitude
change in SM in these areas.

These parameters were then applied to SMAP SM during the
evaluation period (2017–2022) to derive daily SMAP-derived
precipitation. The median R, NRMSE, and PBIAS of daily
SMAP-derived rainfall using SM2RAIN were 0.43, 2.74,
and −16%, respectively, during the 2017–2022 period
(Supplementary Figure S1). Compared to the SM2RAIN during
calibration period (2011–2016) using in-situ SM, SM2RAIN during
the evaluation period (2017–2022) using SMAP SM also has
tendency to underestimate rainfall (negative PBIAS) but generally
performs worse. The increase in errors of SMAP-derived SM2RAIN
rainfall may come from many factors. Firstly, the spatial resolution
mismatch during evaluation period (9 km SMAP SM versus point-
scale in situ SM and 1 km DAYMET precipitation) can have
substantial effects due to the spatial heterogeneity of SM
(Grayson et al., 1997; Lei et al., 2014; Wang et al., 2016).

FIGURE 6
Station-wide average of all mean-normalized precipitation conditionally averaged according to soil moisture percentile E[P|SM] for 50 best stations
with highest SM2RAIN R values (green line) and for 50 worst stations with lowest SM2RAIN R values. SM was transformed into 0–100 percentile (x-axis)
and the curve represents the average expected value of precipitation across all stations (y-axis) for each SM percentile. The grey shading represents one
standard error of the E[P|SM] at each percentile.
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Secondly, although SMAP SMwas interpolated to daily timestep, the
DCT-PLS gap filling could not fully capture the temporal variability
of SM, leading to uncertainties that could propagate into SM2RAIN
errors. Thirdly, the deviations of SMAP SM from in situ SM
contributed to the deviation of SMAP-derived rainfall from in
situ precipitation. In this study, we aimed to investigate whether
these deviations of satellite SM from in situ SM had a substantial
impact on SM2RAIN’s simulation accuracy. Our goal was to
determine if evaluating satellite SM-derived precipitation could
provide a reliable indication of the performance of satellite SM.

To alleviate the effects of DCT-PLS interpolation and SM2RAIN
inherent limitation (e.g., underestimation of rainfall peak after soil is
saturated), SMAP-derived simulated and observed precipitation
were aggregated by 3 days and timesteps where in situ rainfall
exceeded the SMAP-derived maximum rainfall were excluded (an
average of less than 1% of timesteps excluded across all stations).
The median R, NRMSE, and PBIAS of 3-day aggregated SMAP-
derived rainfall with simulated maximum rainfall exclusion were
0.55, 1.65, and +7%. With the timestep aggregation, the errors in
SM2RAIN and SMAP SM interpolation were reduced (Lai et al.,
2022). More importantly, SMAP-derived rainfall simulations’ skill
became more dependent on the accuracy of satellite SM. After
excluding records that exceeded the maximum amount
SM2RAIN could predict, the remaining SMAP-derived rainfall
simulations were shown to have overestimation tendencies
(positive PBIAS). These are more in line with SMAP SM’s
overestimation trend when being compared to in situ SM (shown
in Section 3.3). Figure 7 shows the violin plot of SMAP-derived
rainfall R metrics when being compared to in situ precipitation
(NRMSE and PBIAS metrics plots are shown in the
Supplementary Material).

Long narrow tail for SCAN, SNOTEL, and USCRN networks
suggest that even with the 3-day aggregation, there are some
anomalous stations where it is extremely difficult to derive
precipitation from SM. Better metrics and smaller variances
among stations were observed for the ARM and TxSON
networks; however, this could be due to the smaller sample sizes
of stations in these two networks.While SM2RAIN performed better
for temperate climate when using in situ SM, we observed better R
value and less variances in skills in arid climate stations compared to
stations in temperate and cold climates for SMAP-derived rainfall.
This aligns with past studies that found SM2RAIN products (that
use global satellite SM) performed better than other precipitation
datasets in arid/semi-arid and low rainfall regions (Tran et al., 2023).
However, slightly better NRMSE and PBIAS metrics were obtained
for stations with temperate climates. In cold climate regions, we

observed higher positive PBIAS (median PBIAS of +5%), which is
likely the result of gauge undercatch in cold mountainous stations
and the effect of snowmelt leading to false positive rainfall estimates.
In terms of annual rainfall classes, lower rainfall classes (which
mostly reside in arid climate) have better R value but have the
tendencies to underestimate rainfall. On the other hand, SMAP-
derived rainfall at stations in the highest annual rainfall classes
(>800 mm/year) were found to have the worst R values and
tendencies to overestimate.

Compared to the SM2RAIN results during the
2011–2016 period using in-situ SM (Figure 5 in Section 3.1), the
SM2RAIN results using SMAP SM during the 2017–2022 period (3-
day aggregated and simulated maximum rainfall exclusion) had
better R value at high mountainous regions (Figure 8A). However,
SM2RAIN simulation for stations in the cold climate eastern and
northeastern CONUS which performed well during the calibration
period had noticeably worse R and NRMSE values when we used
SMAP SM during the evaluation period (Figures 8A, B). For
evaluation period, we also observed anomalously high NRMSE
values for stations near the border of California, which were
likely due to both the limitations of SM2RAIN and the errors of
SMAP observations in desert areas that simulated erroneous rainfall
when observations are much lower (Brocca et al., 2014). In terms of
PBIAS, as we excluded timesteps when observed rainfall was higher
than the maximum rainfall SM2RAIN could simulate (to minimize
the underestimation of SM2RAIN due to dry soil noisiness and soil
saturation constraint), the majority of SMAP-derived rainfall was
found to overestimate rather than underestimate (Figure 8C).
Though many rainfall simulations were still found to
underestimate (negative PBIAS), the shift from negative to
positive PBIAS was prevalent, especially in regions with high
annual rainfall like the western and southeastern CONUS (Figure 2).

3.3 SMAP SM retrieval validation against in
situ SM

We also evaluated daily interpolated SMAP SM data from
SMAP 9 km Level 2 product using ISMN in situ records as a
basis for actual SMAP SM performance. Since this evaluation using
in situ SM was to be compared to the evaluation using SMAP-
derived rainfall, we also excluded timesteps with negative air
temperatures (Ta < 0°C) for consistency. The median R, NRMSE,
and PBIAS for SMAP SM at 607 ISMN stations during the
evaluation period (2017–2022) are 0.67, 0.55, and +6.4%,
respectively. SMAP SM achieved better results for temperate

TABLE 2 SM2RAIN parameters Z, a, and b for different annual rainfall class that were calibrated using in situ SM and precipitation during the calibration
period (2011–2016).

Annual rainfall classes (mm/year)

0–443 443–593 593–657 657–798 798–1,132 >1,132

Z (mm) 29.03 36.79 45.20 56.44 73.13 90.01

a (mm/d) 8.59 3.19 2.92 5.74 7.38 9.75

b (−) 3.93 1.38 1.15 2.45 2.65 2.64

For each rainfall class, we calibrated the parameters using only half of the stations with better SM2RAIN R value.
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climate (Supplementary Figure S4) than arid and cold area (median
R/NMRSE for temperate, arid, and cold climates are 0.76/0.33, 0.65/
0.61, 0.65/0.55). This aligns with previous evaluation studies on
SMAP and other satellite SM observations (Beck et al., 2021; Fang
et al., 2020; Liu et al., 2018; Zhang et al., 2019b). Among the three
climates, SMAP SM had moderate positive bias for temperate
climate (median PBIAS of +3.19%), substantial positive bias for
cold climate (median PBIAS of +8.68%). The superior performance
of satellite SM in temperate regions and skill deterioration in cold
regions are tied to vegetation effect, with lower vegetation

attenuation in temperate climate region. For cold climate zones,
the seasonally correlated trends of SM and vegetation density have
substantial effects on the SMAP SM skills (Gruhier et al., 2008; Liu
et al., 2018). The impacts of vegetation density are also illustrated by
the skill differences among land cover/land type with much better
metrics for stations with grassland land cover (median R and
NRMSE of 0.75 and 0.41) than those with tree cover land cover
(median R and NRMSE of 0.58 and 0.67) (Supplementary Figure
S5). Figure 8 shows SMAP SM skills across the CONUS. Coefficient
correlation R are generally good across the country with the

FIGURE 7
Violin plots of correlation coefficients (R) for 3-day aggregated and simulated maximum rainfall exclusion SMAP-derived precipitation for different
networks, climate zones, and annual rainfall classes.
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exceptions of low R values in cold mountainous regions at the
Cascade and Sierra Mountain ranges, Rocky Mountain ranges, and
Coastal ranges in the northwestern region. More overestimations of
SMAP SM observations can be seen in the eastern and western
regions with the characteristics of higher precipitation rate/
temperate climate or cold climate. In these regions, the
overestimation can either be the effects of snowmelt (for cold
climate) or the effects of wet canopy interfering with the
observation. On the other hand, stations where SMAP SM was

found to underestimate are located mostly in the central CONUS,
with heavy underestimation tendencies at stations in arid climate.

3.4 Comparison of in situ SM evaluation and
SMAP-derived rainfall

Figure 8 shows the R, NRMSE, and PBIAS metrics of SMAP-
derived rainfall versus in situ precipitation (SM2RAIN skills) and

FIGURE 8
Spatial distribution of metrics for SM2RAIN skills (A–C) (i.e., SMAP-derived P (precipitation) versus in-situ P and for satellite SM skills (D–F) (i.e., SMAP
SM versus in-situ SM). The stations are represented by their climate zone classification.
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SMAP SM versus in situ SM (satellite SM skills) side-by-side. We
observed evident resemblance and correlation between the metrics
of two evaluations. For correlation coefficient, both metrics have
fairly good R values (>0.5) spreading across the CONUS, with a
lower magnitude range of R for SM2RAIN skills (Figures 8A, D).
However, differences exist between SM2RAIN skills and satellite SM
skills at certain areas and stations. In the northeastern region, the R
values of SMAP-derived rainfall deteriorated while SMAP-SM skills
remained relatively good. As mentioned, SMAP SM was found to
underperform cold mountainous regions at the central and western
CONUS mountain ranges. We also observed similar patterns for
SM2RAIN during the calibration period using in situ SM (Figure 5)
and during the evaluation period using SMAP SM (Supplementary
Figure S1) for daily rainfall simulation. With the 3-day aggregation
and exclusion of timesteps when observed rainfall is higher than
SM2RAIN can predict, SMAP-derived rainfall R values across the
CONUS were significantly increased (Figure 8A). This brought the
overall R value of SM2RAIN skills closer to those of satellite SM
skills, especially in the eastern area. However, this improvement led
to differences in skill at cold mountainous stations where SMAP SM
showed bad R values (R < 0.2) while SMAP-derived rainfall showed
higher correlation to in situ precipitation.

In terms of NRMSE, SMAP-derived rainfall generally has higher
NRMSE value compared to SMAP SM (median NRMSE of
1.65 versus 0.55). This is mainly due to the high range of rainfall
peaks and greater temporal variability in precipitation data, which
leads to more errors in rainfall simulation. This can be seen in
Figures 8B, E as higher NRMSE for SM2RAIN skills than for satellite
SM skills was seen across the CONUS. For both metrics, stations
with anomalously high errors (very high NRMSE) were observed at
the Sierra Nevada mountain ranges. The two changes made to the
evaluation of SMAP-derived rainfall to maximize the effects of
SMAP SM accuracy on SM2RAIN skills were reflected most
clearly in the PBIAS metrics. Without the changes, SM2RAIN

was shown to significantly underestimate rainfall (Figure 5C;
Supplementary Figure S1); however, PBIAS from SM2RAIN skills
and satellite SM skills (Figures 8C, F) clearly had more resemblance
and agreement after two proposed changes. Among 607 stations
during evaluation period, 56% of the stations (343 stations) had the
same over/under-estimation tendencies (SM2RAIN skills and
satellite SM skills both have positive or negative PBIAS value).
For the remaining stations, roughly half (133 stations) have
SM2RAIN PBIAS skills being false negative (i.e., negative PBIAS
for SMAP-derived rainfall but positive PBIAS for SMAP SM) and
the other half (131 stations) have false positive SM2RAIN PBIAS
skills (i.e., positive SMAP-derived rainfall PBIAS and negative
SMAP SM PBIAS) (Figure 9). No clear distinction was found
among annual rainfall, climate, or network class in relation to
whether SM2RAIN PBIAS and satellite SM PBIAS skills match.
However, we also observed differences in whether PBIAS skills agree
for stations that are close together (e.g., clusters of SM stations in the
central western CONUS). This is perhaps due to the high spatial
variation for both precipitation and SM, while there is spatial
resolution mismatch among satellite SM (9 km), in situ SM
(point-based), and in situ precipitation (1 km).

Table 3 shows the Pearson correlation coefficient and p-value
between SM2RAIN metrics and satellite SM metrics, as well as the
mean absolute error (MAE) and bias error (MBE) of SM2RAIN
metrics compared to satellite SM metrics. We used both MAE and
MBE to quantify the magnitude and direction of differences between
two evaluations. Overall, the three metrics R, NRMSE, and PBIAS of
the two skills have statistically significant correlations (p-value <
0.05), but the strength of the correlations is relatively weak (R value
between 0.34 and 0.36). Among the climate zone and annual rainfall
class however, there are clear distinctions in the correlation strength
of SM2RAIN and satellite SM skills. We observed the strongest
correlation between two evaluations for temperate climate and for
higher rainfall classes (>657 mm/year). Moderately weak correlation

FIGURE 9
PBIAS direction correlation between SM2RAIN skills and satellite SM skills. True (green) stations have both PBIAS values indicating the same negative/
positive direction. False negative (red) stations have negative SM2RAIN PBIAS and positive satellite SM PBIAS. False positive (blue) stations have positive
SM2RAIN PBIAS and negative satellite SM PBIAS.
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was obtained for cold climate while very weak correlation with some
statistically insignificant correlation (p-value > 0.05) was obtained
for arid climate and for low annual rainfall classes.

The MAE andMBE between SM2RAIN R values and SMAP SM
R values are 0.16 and −0.06, respectively, suggesting R values from
SM2RAIN are generally lower than those from satellite SM (Figures
8A, C). The errors were consistent across different climate zone and
annual rainfall class, with slightly higher MAE observed in
temperate climate and for the highest annual rainfall class
(>1,132 mm/year). This is likely due to the high variability in
precipitation along with the remaining effects of soi saturation
and dry soil compensation on SM2RAIN skills.

Compared to R values, MAE and MBE for NRMSE values is
generally similar. This suggests a consistent systematic bias of
approximately +1 between SM2RAIN NRMSE values and satellite
SM NRMSE values. For PBIAS, there are 56% of stations where both
PBIAS values agree on the direction, 22% where SM2RAIN PBIAS
values are false negatives, and 22% where SM2RAIN PBIAS values
are false positives. In term of magnitude, the high MAE and MBE
values in PBIAS were largely attributed to the range differences
between SM2RAIN and SMAP SM PBIAS values. Due to the small
range magnitude of SM, significantly larger PBIAS values could exist
for satellite SM skills. Indeed, if the PBIAS values of two evaluations
were normalized to the range of −100%–100%, the MAE and MBE
were reduced to 22.81% and +2.42%.

Many factors could contribute to the relatively weak correlation
and contradictory results at certain stations of SM2RAIN skills and
satellite SM skills. The most substantial reason is the fact that
SM2RAIN skills were influenced by other aspects than just the
accuracy of satellite SM. Even though we attempted to maximize the
impacts of SMAP SM skills by aggregating SMAP-derived rainfall by
3 days and excluding timesteps when observed rainfall is higher than
SM2RAIN can predict, we still observed the impacts of SM2RAIN
and rain gauge inherent limitations (e.g., soil saturation during
extreme rainfall event, noisy SM during dry period, errors in SM
gauges, high mountain gauge undercatch) (Beck et al., 2020; Brocca
et al., 2014). In this study, we used the simplest version of SM2RAIN.
Nevertheless, better SM2RAIN configurations with more calibrating

parameters (Brocca et al., 2019), or with hybrid approaches to
overcome the inherent limitations (Saeedi et al., 2022) can
certainly improve the correlation of SM2RAIN skills and satellite
SM skills. For example, adding a temporal filtering component to
either the SM2RAIN calibration (through Tpot/Tbase parameters)
or the satellite SM would improve the satellite noises and fluctuation
that result in underestimation of rainfall estimates in SM2RAIN.

By addressing other aspects that affect SM2RAIN, the impact of
SMAP SM skills would becomemore significant on SM2RAIN skills,
thereby enhancing the correlation between the two evaluations.
Another factor that impacted the correlation of SM2RAIN skills
and satellite SM skills was the spatial resolution mismatch between
datasets. Due to the spatial heterogeneity of both SM and
precipitation, the difference between in situ SM resolution
(point-based) compared to those of gridded products such as
DAYMET would also have an impact on the correlation.
Similarly, the spatial mismatch between in-situ soil moisture and
satellite SM (9 km resolution in this case) is another substantial
source of errors. Due to the heterogeneous nature of SM, point-
based SM records may not represent the overall condition of
surrounding area. With increasing focuses and studies in SM
downscaling, this mismatch is expected to reduce greatly in the
future. In terms of temporal sampling, the original 2–3 days
sampling of SMAP SM (and most of satellite products) is not
suitable to obtain daily SM2RAIN rainfall. While DCT-PLS was
applied in this study to interpolate SMAP SM into daily resolution,
the gap filling’s inability to fully capture the temporal variability of
SM is another limitation of the approach. Additionally, the study
uses in situ SM and annual rainfall classes for SM2RAIN calibration
so the parameters can be applied to multiple satellite SM datasets.
However, this approach is not the most optimized for SM2RAIN. If
only one satellite SM product is considered, pixel-by-pixel
calibration with 5 parameters (Z, a, b, Tpot, and c) (Brocca et al.,
2019) using satellite SM instead of in-situ SM can substantially
improve the performance of SM2RAIN. This improvement can
certainly improve the agreement between the two comparisons.
For future study, we are planning to incorporate this improved
configuration of SM2RAIN and downscaled SMAP products to

TABLE 3 Correlation coefficient and p-value along with mean absolute andmean bias error between SM2RAIN skills’metrics and satellite SM skills’metrics.

R (p-value) Mean absolute error (mean bias error)

R NRMSE PBIAS R NRMSE PBIAS

Overall 0.36 (0.0) 0.35 (0.0) 0.34 (0.0) 0.16 (−0.06) 1.04 (0.97) 44.46 (−15.57)

Climate Arid 0.12 (0.13) 0.22 (0.0) 0.22 (0.0) 0.14 (−0.0) 1.1 (1.1) 37.05 (−2.92)

Temperate 0.54 (0.0) 0.53 (0.0) 0.42 (0.0) 0.19 (−0.14) 1.03 (1.02) 35.8 (−8.3)

Cold 0.31 (0.0) 0.24 (0.0) 0.26 (0.0) 0.17 (−0.08) 0.96 (0.91) 41.86 (−16.61)

Annual rainfall (mm/year) 0–443 −0.08 (0.45) 0.21 (0.05) 0.29 (0.01) 0.13 (−0.06) 1.13 (1.1) 48.33 (−32.9)

443–593 −0.0 (0.97) 0.04 (0.63) 0.08 (0.39) 0.15 (−0.01) 1.04 (1.03) 34.99 (4.41)

593–657 0.2 (0.15) 0.48 (0.0) 0.5 (0.0) 0.17 (−0.01) 1.13 (1.09) 31.95 (10.69)

657–798 0.53 (0.0) 0.41 (0.0) 0.19 (0.05) 0.14 (−0.05) 1.09 (1.09) 35.18 (−10.15)

798–1,132 0.42 (0.0) 0.45 (0.0) 0.41 (0.0) 0.16 (−0.11) 0.98 (0.93) 37.53 (−13.04)

>1,132 0.51 (0.0) 0.42 (0.0) 0.31 (0.0) 0.23 (−0.17) 0.84 (0.8) 49.92 (−21.81)
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minimize the errors in SM2RAIN and the effect of spatial mismatch
among data sources.

4 Conclusion

Despite current efforts in expanding field measurements
through the International Soil Moisture Network, in situ SM
data, which is necessary for evaluation satellite- and model-based
SM products, remains inadequate. As rain gauges are more
abundant and denser across the globe compared to in situ SM,
we evaluated whether the bottom-up SM2RAIN algorithm could be
utilized to use rain gauge for evaluation of satellite SM instead of
relying on in situ SM. Additionally, SM2RAIN skills using in situ SM
and satellite SM (i.e., SMAP) across CONUS were evaluated. The
SM2RAIN parameters were calibrated using in situ SM and
precipitation before being applied to SMAP SM to obtain SMAP-
derived rainfall. We examined whether the SM2RAIN skills (SMAP-
derived rainfall versus in situ precipitation) have good correlations
to satellite SM skills (SMAP SM versus in situ SM) for the
replacement of traditional SM evaluation methods.

SM2RAIN algorithm performed generally well across the
CONUS during the calibration period when we evaluated each
single station. The main limiting factors to the performance of
SM2RAINwere shown to be parameters compensating for noisy and
fluctuating SM during dry periods which leads to underestimation of
rain peak, rain gauge undercatch for mountainous region, and
unreasonable relationship between SM and precipitation at
certain stations. The skills of SM2RAIN algorithm, however,
could not be fully transferred when SMAP SM instead of in situ
SMwas being used, which lead to lower R values and higher NRMSE
and PBIAS during the evaluation period. During the evaluation
period, we also observed a reduction of SM2RAIN skills for
temperate climate and high annual precipitation classes.

While the correlation of SM2RAIN skills and satellite SM skills
are statistically significant, the overall strength of correlation is
relatively weak with varying degree for different climate and
annual rainfall classes. We observed a lower correlation between
two evaluations for arid and lower rainfall classes and moderately
strong correlation for temperate and higher rainfall classes. This is
mainly due to other inherent limitations of SM2RAIN that take away
the impacts of SMAP SM accuracy on SM2RAIN skills.
Improvement on the SM2RAIN model to overcome its
limitations (e.g., through better parameters and calibration
configurations) can potentially improve the model’s capabilities
in evaluate satellite SM observations. From there, SM2RAIN can
be applied to multiple satellite SM products to evaluate and compare
the accuracy of different satellite mission observations.
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