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Soil particle size fractions play a critical role in determining soil health attributes,
including soil aeration, water infiltration and retention capacity, nutrients, and
organic matter dynamics. Traditional soil mapping methods rely predominantly
on ground-based surveys and laboratory analysis which are reported to be time-
consuming and expensive. To address these challenges, there has been a global
shift towards digital soil mapping (DSM) techniques that utilize remote sensing
data. This review, conducted according to the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) 2020 guideline, aims to provide
a comprehensive synthesis of the current state of soil texture prediction using
remote sensing data. In particular, the review extract and synthesizes the satellite
images used, identify the derived environmental covariates and their relative
importance, and assesses the prediction models/algorithms used in the
prediction of soil texture. Synthesis and analysis of 70 articles show that clay
content is the most predicted of the three soil particle fractions accounting for
37% of the reviewed studies predominantly from topsoil layer (74.29%). Sentinel
2 and Landsat 8 are reported as themost frequently used satellite images. Among
the covariates derived from these images, NDVI (80.4%) and SAVI (60.8%) are by
far the most derived band ratios (indices). Red (37.3%), NIR (35.3%), Green (33.3%),
Blue (33.3%), and SW2 (29.4%) bands were the five most incorporated as
covariates for soil texture prediction amongst individual satellite bands.
Regarding the DSM algorithms, Random Forest (RF) appeared in most
reviewed articles followed by Support Vector Machines (SVM), and Quantile
Regression Forest (QRF). The comparative model performance analysis
showed that RF and Artificial neural network (ANN) had a good trade-off
across validation metrics indicating their best performance in the prediction of
both clay, sand, and silt. The RF performance showed a decreasing trend with
increasing depth interval for clay and sand prediction and inconsistent for silt
prediction.
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1 Introduction

A soil’s texture determines a number of its physical, chemical, and
biological properties. It is the summation of the proportion of clay, silt,
and sand particle size fractions (PSF) (Zheng et al., 2023). PSFs influence
key soil health attributes including soil aeration, water infiltration and
retention capacity, nutrients, and organic matter dynamics (Azizi et al.,
2023; Li et al., 2023). These properties in turn affect the soil’s ability to
support plant growth, development, productivity, and quality (Amirian-
Chakan et al., 2019; Mirzaeitalarposhti et al., 2022; Swain et al., 2021).
Accurate and reliable information on soil conditions, soil texture
inclusive, is critical for increasing agricultural productivity and
meeting escalating global demand for food and agricultural raw
materials (FAO, 2022). The impetus of this information extends to
sustainable use and management of land resources (Keshavarzi et al.,
2022; Li et al., 2023; Zeraatpisheh et al., 2019).

Relying on intensive field surveys and laboratory analyses, traditional
mapping of soils and soil properties including soil texture is reported to
be time-consuming, expensive, and affected by uncertainty particularly
when mapping soil at national, regional, or global scales (Dharumarajan
and Hegde, 2022; Dhiman et al., 2023; Dornik et al., 2022; Mallah et al.,
2022). To offset these challenges, soil surveying practices have largely
transitioned towards the use of digital soil mapping (DSM) approaches
globally taking advantage of advancements in remote sensing, machine
learning, and geographical information systems (Mallah et al., 2022).
Remote sensing data including satellite images provide valuable
information about the spatial and temporal variations in soil
properties (Hosseini et al., 2023; Rengma et al., 2023; Saygın et al.,
2023). DSM combines field observations, and laboratory analyses with
environmental variables derived from RS data to create a geo-based soil
information system (Dharumarajan andHegde, 2022;Mirzaeitalarposhti
et al., 2022; Mousavi et al., 2023). DSM applies different model structures
spanning from geostatistical, and machine learning to hybrid, ensemble,
and model averaging to predict soil properties.

Numerous studies have reported the usefulness of satellite imageries
in the prediction of soil texture with varying accuracy and uncertainty
depending on satellite image sources, environmental covariates derived
and models applied (Loiseau et al., 2019; Mirzaeitalarposhti et al., 2022;
Saygın et al., 2023; Yuzugullu et al., 2020). However, to the best of the
authors’ knowledge, the literature lacks comprehensive documentation
and comparison of soil texture prediction findings utilizing satellite
imagery. Several reviews document the use of remote sensing data in
agriculture including prediction of soil properties over the past decade. In
2017 the review by Zhang et al. (2017) provided an overview of themajor
progressmade in digital soilmapping detailing history and turning points
in the decade leading up to 2017. Lamichhane et al. (2019) reviewed
research and applications of various DSM techniques in soil organic
carbon (SOC) concentration and stock mapping. Sishodia et al. (2020)
offered an overview of remote sensing systems, techniques, and
vegetation indices applications in precision agriculture between
2015 and 2020. Machine learning techniques for processing RS data
to estimate soil quality indicators were reviewed by Diaz-Gonzalez et al.
(2022). Centered at a broad scale (spatial extent greater than 10,000 km2),
Chen et al. (2022) provided a broad view of the progress made and
suggested further applications and developments in broadscale DSM of
the 12 mandatory GlobalSoilMap properties from 244 articles between
2003 and 2021. Pouladi et al. (2023) provide a quantitative insight into
14 years of trends of SOC digital mapping using remote sensing

technology while suggesting some directions for future
development from 2010.

These reviews have tended to cover a wide range of soil properties,
providing a broad overview of each property but often with a level of
generalization that limits their comprehensiveness, particularly in the
context of soil texture prediction. This gap underscores the need for a
systematic review that synthesizes existing studies and identifies trends,
discrepancies, and areas for improvement in the application of satellite
imagery for soil texture prediction. Such a review could serve as a valuable
resource for guiding future research and enhancing the reliability and
precision of soil texture predictions. Addressing these gaps would
contribute to advancing the understanding and utilization of satellite
imagery in soil science research. Therefore, this review aimed to
contribute to filling these gaps by conducting a systematic analysis of
soil texture prediction using remote sensing data, with a focus on satellite
images. The review primarily provides a comprehensive synthesis of
existing studies that investigate the application of satellite imagery for soil
texture prediction. This involves identifying and collating relevant peer-
reviewed literature from 2014 to 2023, evaluating the methodologies
employed, types of satellite data, covariates derived, and predictive
models’ performances, reliability, and limitations to enhance the
effectiveness and applicability of satellite imagery in soil texture
prediction. The focus of the review period was driven by the need to
capture the cutting-edge techniques spanning from satellite sensor
capabilities, data processing, and prediction models that have
enhanced the accuracy of soil texture prediction.

1.1 Rationale of the review

Accurate and reliable prediction of soil texture is important for
effective soil management, sustainable land use, and agricultural
productivity (Keshavarzi et al., 2022). Traditional, soil mapping
methods, which rely on intensive field surveys and laboratory
analysis, are time-consuming, costly, and often impractical for large-
scale applications. Transitioning to digital soil mapping (DSM)
approaches leveraging advances in remote sensing, machine learning,
and geographic information systems offers a promising alternative. In
particular, satellite imagery provides extensive spatial and temporal data
that can be used for the prediction of soil properties, including texture
(Dhiman et al., 2023; Li et al., 2023). Although numerous studies
highlighted the potential of satellite imagery in predicting soil texture,
but differ in the methods used, image sources, preprocessing techniques,
and modeling algorithms. This variability leads to different levels of
accuracy and uncertainty and requires a comprehensive assessment and
synthesis of existing research results. This systematic review on soil
texture prediction using satellite imagery is motivated by the need to
evaluate and synthesize existing research, address knowledge gaps, assess
methodological variability, evaluate accuracy and uncertainty, inform
decision-making, and guide future research directions.

2 Systematic review framework

2.1 Articles search

An updated guideline for reporting systematic reviews, The
Preferred Reporting Items for Systematic Reviews and Meta-
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Analyses (PRISMA) 2020 statement, was adopted in conducting
the current review. The PRISMA 2020 statement provides updated
reporting guidance for systematic reviews that reflect advances in
methods to identify, select, appraise, and synthesize studies (Page
et al., 2021). The papers were collected from five principal
academic search systems as classified by Gusenbauer and
Haddaway (2020) which include Web of Science Core
Collection, MDPI, PubMed, Science Direct, and EbscoHost
covering the 10 years from January 2014 to December 2023.
The systematic search was undertaken to choose the fully
published journal papers by selecting search strings in such a
way that most papers relevant to our review objective would be
included. All search expressions were chosen based on the defined
keywords query for title, keywords, and abstract. The keywords
included “soil texture” OR “clay” OR “sand” OR “silt” “digital soil
mapping” OR “soil mapping” OR “prediction”, AND “Remote
sensing” OR “satellite image”. The search was limited to English
(language), article (document type), agriculture and biological
sciences, plant sciences, remote sensing, environmental sciences
ecology (subject areas).

2.2 Articles screening

A total of 505 papers were identified in the database searches.
175 duplicate articles were identified and subsequently removed,
leaving 330 papers for further evaluation against our inclusion
criteria. The inclusion criteria were as follows: (1) studies that
predict, estimate, or map soil texture, (2) studies utilizing satellite

imagery in soil texture prediction, estimation, or mapping, (3)
publications falling within the timeframe of 2014–2023, and (4)
papers written exclusively in the English language. Upon rigorous
scrutiny of titles and abstracts, 106 articles were selected for a
thorough examination, including a full-text review. Finally,
70 articles were found to meet all our criteria after completing a
full text and included in this review. Figure 1. Depicts the flow of the
review from search sites to the final decision for articles included in
this review.

2.3 Articles characterization

From the included articles, different criteria and parameters
were considered including the year of publication, the predicted
parameter, satellite image used and sources, environmental
covariates extracted from the satellite image, prediction, and
mapping methodologies, model accuracy assessment metrics, and
model performance were evaluated, and the findings are reported in
the section below. The summary of evaluated parameters is
presented in Tables 1, 2.

3 Results and discussion

3.1 Overview of the relevant papers

Over the last 10 years, there has been a general growing interest
in using optical satellite images to predict soil texture as illustrated

FIGURE 1
Schematic overview of the screening process applied to the papers included in the review.
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TABLE 1 Summary of reviewed articles.

S/
N

Soil
property

Targeted soil
Depth (cm)

Satellite Imagery Prediction Models Metrics Reference

1 C 0–10 Landsat 8 RF-OK, RK ME, CCC, R2,
RMSE

Mousavi et al. (2023)

2 C, S, Si 0–30 Triplesat ANN, SVM CCC, MAE,
MAPE, R2, RMSE

Saygın et al. (2023)

3 C, S, Si 0–20 Sentinel-2 ANN, gb, RF, SVR MAE, R2, RMSE Piccoli et al. (2023)

4 C, S, Si 0–30 Landsat 8 CNN, CNN-RF, RF MSE, R2, RMSE Hosseini et al. (2023)

5 C, S, Si 0–30 Sentinel-1, Sentinel-2 RF CCC, MAE, ME,
PICP, RMSE

Azizi et al. (2023)

6 C, S, Si 0–10, 10–30, 30–100 Sentinel-2 BGLM, kNN, MONMLP, RF,
SGB, SVM

CCC, MAE, R2,
RMSE

Siqueira et al. (2023)

7 C, S, Si 0–15 Sentinel-2 kNN, MLR, RF, RFR, SVR MAE, R2, RMSE Rengma et al. (2023)

8 C, S, Si 0–20, 20–40, 40–60 Landsat 8 MLR, PLSR, SVM R2 Li et al. (2023)

9 C, S, Si 0–20 GaoFen-5 AHSI CNN, PLSR R2, RMSE, RPD Pan et al. (2023)

10 C, S, Si 0–20 Sentinel-2 RF MAE, R2, RMSE,
RPIQ

Zheng et al. (2023)

11 C, Si NA Landsat 8, Sentinel-2 ADA, GB, RFR, XGB R2 Dhiman et al. (2023)

12 C, S NA Landsat 5 RF CCC, R2, RMSE Sorenson et al. (2022)

13 C, S, Si 0–20 Landsat 8 RF MAE, nRMSE, R2,
RMSE

Taghizadeh-Mehrjardi
et al. (2022)

14 C, S, Si 0–20 Landsat 8 DT, RF CCC, R2, RMSE Keshavarzi et al. (2022)

15 C, S, Si 0–30 sentinel-1, Sentinel-2 RF, SVM, XGB MAE, R2, RMSE Mirzaeitalarposhti et al.
(2022)

16 C, S, Si 0–10 Landsat 8, PRISMA, Sentinel-2 Cu, PLSR R2, RMSE, RPD,
RPIQ

Mzid et al. (2022)

17 C, S, Si 0–30, 30–60 Sentinel-2 QRF ME, CCC, PICP,
R2, RMSE

Žížala et al. (2022)

18 C, S, Si 0–5, 5–15, 15–30,
30–60, 60–100,

100–200

MODIS RF MAE, R2, RMSE Liu et al. (2022)

19 C, S, Si 0–10 Sentinel-2 GDBT, MLP-ANN R2, RMSE Dindaroğlu et al. (2022)

20 T. Class 0–30 Landsat 8 DT, RF, SVM Kappa, OA Kaya et al. (2022)

21 T. Class 0–5, 5–15, 15–30,
30–60, 60–100,

100–200

Landsat 8, MODIS RF Kappa, OA Dharumarajan and Hegde
(2022)

22 T. Class 0–20 Landsat 8, Sentinel-2 GDBT, RF, SVM F-score, Kappa,
OA, Precision,

Recall

Zhou et al. (2022)

23 T. Class 0–30 Landsat 8, MODIS, Sentinel-2 RF F-score, Kappa,
OA, Precision,

Recall

Mallah et al. (2022)

24 C 0–5 Landsat 8 MLR ME, R2, RMSE,
RPD, RPIQ

Gasmi et al. (2021)

25 C 0–5, 5–15, 15–30,
30–60, 60–100

Landsat 7 ANN, Cu, GAM, QRF R2, RMSE Ma et al. (2021)

26 C 0–20 Landsat 8, Planetscope, Sentinel-2 CRT R2, RMSE, RPIQ Bellinaso et al. (2021)

(Continued on following page)
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TABLE 1 (Continued) Summary of reviewed articles.

S/
N

Soil
property

Targeted soil
Depth (cm)

Satellite Imagery Prediction Models Metrics Reference

27 C, S 0–5, 5–15, 15–30,
30–60, 60–100,

100–200

Sentinel-2, Landsat 5 Cu, GAM, georob, LASSO,
RF, SVM

R2, RMSE Baltensweiler et al. (2021)

28 C, S, Si 0–20 Landsat 8, MODIS, Sentinel-2 2-scale CCC, R2, RMSE Hengl et al. (2021)

29 C, S, Si 0–20 Landsat 8, MODIS, Sentinel-2 BAT-ANN, BP-ANN, GA-
ANN, MBO-ANN,

PSO-ANN

CCC, MAE, R2,
RMSE

Taghizadeh-Mehrjardi
et al. (2021)

30 C, S, Si 0–15 Pl´eiades RF-OK, UK ME, RMSE, RPD Mammadov et al. (2021)

31 C, S, Si 0–10 Sentinel-2 RF, SVR R2, RMSE Swain et al. (2021)

32 C, S, Si 0–30 Landsat 8 MLR R2, RMSE Khosravi Aqdam et al.
(2021)

33 C, S, Si 0–10 Sentinel-1, Sentinel-2 PLSR ME, CCC, R2,
RMSE

Zhang et al. (2021)

34 T. Class 0–15 Landsat 8 RF, SVM Kappa, OA Pittman et al. (2021)

35 C 0–20 sentinel 1 and 2 ANN, CNN, RF R2, RMSE, RPIQ Tziolas et al. (2020)

36 C 0–15 Landsat 8 GBM, RF CCC, R2, nRMSE,
RMSE

Paul et al. (2020)

37 C 0–30 Sentinel-1, Sentinel-2 RFR MAPE, R2 Yuzugullu et al. (2020)

38 C, S 0–20 Landsat8 PLSR R2, RMSE Salazar et al. (2020)

39 C, S, Si 0–5, 5–15, 15–30,
30–60, 60–100,

100–200

Sentinel-2 QRF ME, PICP, R2,
RMSE

Dharumarajan et al.
(2020)

40 C, S, Si 0–5, 5–15, 15–30,
30–60, 60–100,

100–200

Landsat 8, MODIS RF CCC, ME, PICP,
R2, RMSE

Liu et al. (2020)

41 C, S, Si 0–20 Sentinel-1, Sentinel-2 RF CCC, RMSE Domenech et al. (2020)

42 C 0–5, 5–15, 15–30,
30–60, 60–100,

100–200

Sentinel-2, MODIS QRF ME, CCC, PICP,
R2, RMSE

Loiseau et al. (2019)

43 C, S 0–5, 5–15, 15–30, 0–30 MODIS RK MAE, ME, RMSE Laborczi et al. (2019)

44 C, S, Si 0–30 Landsat 8 Cu, MLR, RF, RT R2, RMSE Zeraatpisheh et al. (2019)

45 C, S, Si NA Landsat 8 MLR, OK, SK,
United Kingdom

MAE, R2, RMSE Mondejar and Tongco
(2019)

46 C, S, Si 0–20 Sentinel-2 Cu, LBM, PS, QR, RF, RR,
SGB, SVM

R2, RMSE Flynn et al. (2019)

47 C, S, Si 0–30 Landsat 8 CK, NNRK, RF, RK.
RKNNRK

MAE, ME, RMSE Shahriari et al. (2019)

48 C, S, Si 0–8 Sentinel-2 PLSR R2, RMSE, RPD Vaudour et al. (2019)

49 C, S, Si 0–30 Landsat 8, Sentinel-2 RF ME, RMSE Amirian-Chakan et al.
(2019)

50 C, S, Si 0–5, 5–15, 15–30,
30–60, 60–100

Landsat 8 ANFIS, ANN, RT CCC, ME, nRMSE,
R2, RMSE

Mehrabi-Gohari et al.
(2019)

51 T. Class NA Sentinel-2 SVM Kappa, OA Gomez et al. (2019)

52 C, S, Si 0–5, 5–15, 15–30,
30–60, 60–100

MODIS GAM SSVR, nRMSE, R2,
RMSE

Poggio and Gimona,
(2017a)

53 S 0–20 Landsat 7 LMM R2, RMSE Lakshmi et al. (2015)

(Continued on following page)
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by the overall trend of selected publications (Figure 2A). The trend
coincides with a growing need for accurate and detailed information
about soil texture to decide on soil resource management
(Keshavarzi et al., 2022). 42 articles (60% of the analyzed articles)
were dedicated to predicting all three major components of soil
texture (i.e., clay, sand, and silt) an implication of strong interest in
comprehensive soil texture analysis (Figure 2B). 22 (31.43%) articles
focused on predicting one class of soil texture i.e 13 (18.57%) clay
content, 7 (10%) broad texture classification such as sandy, Clayey,
and loamy, and 2 (2.86%) sand. The remaining 6 (8.57%) articles
predicted a combination of sand and clay content.

Clay content is the most predicted of the three soil particle
fractions (87.14%), followed by sand (71.43%) and silt (60%)
whereas five (10%) of the articles predicted the soil texture
class. Researchers’ interest in clay content prediction may be
motivated by the strong relationship between clay and other
soil properties and functions such as charge dynamics thus soil
reactions, soil carbon, nutrient and water retention, water
infiltration, and drainage, amongst others (Bellinaso et al.,
2021). The 70 articles considered in the current study were
published in 26 different peer-reviewed journals, with Remote
Sensing leading the way with fifteen (15) published articles,

TABLE 1 (Continued) Summary of reviewed articles.

S/
N

Soil
property

Targeted soil
Depth (cm)

Satellite Imagery Prediction Models Metrics Reference

54 C, S, Si 0–5, 5–15, 15–30,
30–60, 60–100

MODIS, Landsat 8, Sentinel-1,
Sentinel-2

GAM nRMSE, R2, RMSE Poggio and Gimona
(2017b)

55 C, S, Si 0–20 Landsat 8 OK ME, MSE, R2,
RMSE, ASE,

RMSSE

Tola et al. (2017)

56 C 0–30 Landsat 7 RK, ANN, GAM, BRT, LSLR ME, R2, RMSE,
MAE RRMSE

Sindayihebura et al. (2017)

57 C 0–15 Landsat 8 ANN MSE, R2 Kalambukattu et al. (2018)

58 C 0–20 Landsat5 LMM ME, R2, RMSE,
MAE SRMSE

Samuel-Rosa et al. (2015)

59 C, S, Si 0–30 EO-1 ALI and Hyperion, Landsat
8 OLI, Sentinel-2 MSI, EnMAP,

PRISMA and HyspIRI

PLSR R2, RMSE, RPD,
RPIQ

Castaldi et al. (2016)

60 C, S 0–20 Landsat 5 Cu, RF R2, RMSE, RPD,
RPIQ

Fongaro et al. (2018)

61 C, S, Si 0–20 Landsat 7 RK, Cu ME, CCC, R2,
RMSE

Ma et al. (2017)

62 S 0–20 MODIS RF R2, RMSEP Vågen et al. (2016)

63 C, S, Si 0–30 Landsat 8, RapidEye RK, OK ME, R2, RMSE Ceddia et al. (2017)

64 C 0–5 Landsat 5 OK R2, RMSE Shabou et al. (2015)

65 C, S, Si 0–10 Sentinel 2 SVMR ME, RMSE, RPD Gholizadeh et al. (2018)

66 Tex. Class 0–20 Landsat 5 SAM RMSE, RPD Sayão and Demattê (2018)

67 C, S, Si 0–20 Landsat 5 RF, MLR R2, RMSE Chagas et al. (2016)

68 C, S, Si 0–5, 5–15, 15–30,
30–60, 60–100,

100–200

Landsat 5 OK, RK, LR, RT R2 de Carvalho Junior et al.
(2014)

69 C 0–20 MODIS RK R2 Omuto and Vargas (2015)

70 C, S, Si 0–5, 5–15, 15–30,
30–60, 60–100,

100–200

MODIS RF ME, CCC, R2,
RMSE

Akpa et al. (2014)

Abbreviations; soil properties, Clay (C), sand (S), silt, and textural class (T.Class) (Si); prediction models, Adaptive Boosting (ADA). Adaptive network-based fuzzy inference system (ANFIS),

artificial neural network (ANN), bat Algorithms ANN (BAT-ANN), backpropagation algorithm ANN (BP-ANN), Genetic Algorithm ANN (GA-ANN), monarch butterfly optimization algorithm

ANN (MBO-ANN), multi-layer perception artificial neural network (MLP-ANN), particle swarm optimization (PSO), Bayesian generalized linear models (BGLM), Co-kriging (CK), convolutional

neural network (CNN), cubist regression tree algorithm (CRT), Cubist (Cu), Decision tree (DT), generalized additive model (GAM), gradient boosting (GB), generalized boosted regression model

(GBM), gradient descent boosting tree (GDBT), robust external-drift kriging (georob), k-nearest neighbor (kNN), least absolute shrinkage and selection operator (LASSO), Linear boosted regression

(LBM), multiple linear regressions (MLR), monotone multi-layer perceptron neural network (MONMLP), neural network residual kriging (NNRK), ordinary kriging (OK), partial least squares

regression (PLSR), quantile regression (QR), quantile regression forest (QRF), random forest (RF), random forest-ordinary krigging (RF-OK), random forest regressor (RFR), regression kriging (RK),

regression kriging-neural network residual kriging (RKNNRK), regression tree (RT), stochastic gradient boosting (SGB), simple Kriging (SK), support vector machine (SVM), support vector

regression (SVR), universal kriging(UK), extreme gradient boosting (XGB); evaluation metrics; concordance correlation coefficient (CCC), mean absolute error (MAE), mean absolute percentage

error (MAPE), mean error (ME), mean squared error (MSE), prediction interval coverage probability (PICP), coefficient of determination (R2), root mean squared error (RMSE), normalized root

mean squared error (nRMSE), ratio of performance to deviation (RPD), ratio of performance to interquartile distance (RPIQ), overall accuracy (OA).
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TABLE 2 Summarized environmental covariates derived from satellite images for prediction of soil texture.

Covariate Definition/Formula SCORPAN
factor

Selected Reference

Atmospherically Resistant Vegetation Index (ARVI) (NIR - (2 * R) + B)/(NIR + (2 * R) + B) O Dhiman et al. (2023)

Bare Soil Index (BSI) (((SWIR1 + R) - (NIR + B))/((SWIR1 + R) + (NIR +
B))) * 100 + 100

S Azizi et al. (2023)

Brightness Index (BI) ((G)̂2 + (R)̂2 + (B)̂2)̂0.5 or ((R)̂2 + (NIR)̂2)̂0.5 S Hosseini et al. (2023)

Canopy Response Salinity Index (CRSI) O Sorenson et al. (2022)

Carbonate Index (CaI) R/B S Loiseau et al. (2019)

Carbonate Rock Index1 (CRI1) P Mousavi et al. (2023)

Carbonate Rock Index2 (CRI2) P Mousavi et al. (2023)

Chlorophyll Vegetation Index (CVI) NIR * (R/G * 2) O Dhiman et al. (2023)

Clay Index (CI) SWIR1/SWIR2 S Azizi et al. (2023)

Clay Minerals Ratio (CMR) SWIR1/SWIR2 S, P Liu et al. (2020)

Coloration Index (CoI) (R - G)/(R + G) S Loiseau et al. (2019)

Enhanced Vegetation Index (EVI) (NIR - R)/(NIR + 6 * R - 7.5 * B + 1) O Dhiman et al. (2023)

Ferric Iron P Azizi et al. (2023)

Ferrous Iron (FeI) R/SWIR 1 S, P Loiseau et al. (2019)

Geo index (GeoI) (SWIR1 - SWIR2)/(SWIR1 + SWIR2) P Loiseau et al. (2019)

Green Chlorophyll Vegetation Index (GCVI) NIR/(G - 1) O Dhiman et al. (2023)

Green Leaf Index (GLI) (2 * G - R - B)/(2 * G + R + B) O Dhiman et al. (2023)

Green Normalized Difference Vegetation Index
(GNDVI)

(NIR-G)/(NIR + G) O Dhiman et al. (2023)

Green Optimized Soil Adjusted Vegetation Index
(GOSAVI)

O Azizi et al. (2023)

Green Soil Adjusted Vegetation Index (GSAVI) (NIR - G)/NIR + G + 0.5 *1.5 O Mehrabi-Gohari et al. (2019)

Green Vegetation Index (GVI) O Žížala et al. (2022)

Green-Red Vegetation Index (GRVI) (G - R)/(G + R) O Zheng et al. (2023)

Gypsum Index (GI) (NIR - R)/(NIR + R) S, P Taghizadeh-Mehrjardi et al.
(2022)

Hue Index (HI) (2 * R - G - B)/(G - B) S Loiseau et al. (2019)

Infrared Percentage Vegetation Index (IPVI) R/(R + G) O Taghizadeh-Mehrjardi et al.
(2022)

Inverted Red-Edge Chlorophyll Index (IRECI) RE3 - R * RE2/RE1 O Zhou et al. (2022)

Iron Oxide P Rengma et al. (2023)

Land Surface Temperature (LST) S Liu et al. (2020)

Modified Chlorophyll Absorption Ratio
IndexMCARI

1–0.2 * (RE1 - G)/(RE1 - R) O Zhou et al. (2022)

Modified Soil-Adjusted Vegetation Index (MSAVI) (2*NIR + 1 - sqrt ((2*NIR + 1)̂2–8*(NIR - R)))/2 O Dindaroğlu et al. (2022)

Modified Soil-Adjusted Vegetation Index-2
(MSAVI2)

(2 * NIR + 1 - ((2 * NIR + 1)̂2–8 * (NIR - R))̂0.5)/2 O Dindaroğlu et al. (2022)

Moisture Stress Index (MSI) SWIR1/NIR O, S Zheng et al. (2023)

MERIS terrestrial chlorophyll index (MTCI) (RE2 - RE1)/(RE1 - R) O Zhou et al. (2022)

Normalized Clay Index (NCI) (SWIR1 - SWIR2)/(SWIR1 + SWIR2) S Keshavarzi et al. (2022)

(Continued on following page)
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followed by Geoderma (13), Geoderma Regional (7), and others
with one to three publication each (Figure 2C).

The maximum targeted soil depth of the predicted soil texture
maps is presented in Figure 3 and Table 1. As indicated, the majority
of studies (74.29%) focused on predicting soil texture in the topsoil
in the depth range of 0–5, 0–10, 0–15, 0–20, and 0–30 reported in

2.86%, 10.00%, 7.14%, 31.43%, and 22.86% of articles respectively.
Fourteen articles (20.00%) focused on the prediction of soil texture
to the subsoil depth limit of 60 cm (4.29% of articles), 100 cm
(7.14%), and 200 cm (5.71%) using the standard depth interval
defined by GlobalSoilMap (Chen et al., 2022). Four articles (5.7%)
did not specify the exact soil depth of the predicted maps. Instead,

TABLE 2 (Continued) Summarized environmental covariates derived from satellite images for prediction of soil texture.

Covariate Definition/Formula SCORPAN
factor

Selected Reference

Normalized Difference Moisture Index (NDMI) (NIR - SWIR1)/(NIR + SWIR1) S Paul et al. (2020)

Normalized Burn Ratio Index (NBRI) (SWIR1 - SWIR2)/(SWIR1 + SWIR2) O Mzid et al. (2022)

Normalized difference (CalcI) (SWIR 1 - G)/(SWIR 1 + G) P Loiseau et al. (2019)

Normalized Difference Built-up Index (NDBI) (SWIR1 - NIR)/(SWIR1 + NIR) Dhiman et al. (2023)

Normalized Difference Tillage Index (NDTI) (SWIR1 – SWIR2)/(SWIR1 + SWIR2) O, S Paul et al. (2020)

Normalized Difference Vegetation Index (NDVI) (NIR - R)/(NIR + R) O Azizi et al. (2023)

Modified Normalized Difference Water Index
(MNDWI)

(G - SWR1)/(G + SWR1) S Dhiman et al. (2023)

Normalized Difference Water Index (NDWI) (R - NIR)/(R + NIR) S Azizi et al. (2023)

Optimized Soil Adjusted Vegetation Index (OSAVI) (NIR - R)/(NIR + R + 0.16) O Dhiman et al. (2023)

Perpendicular Vegetation Index (PVI) -SINa(NIR) COSa(R) O Azizi et al. (2023)

Ratio Vegetation Index (RVI) (R/G)/(B + G) O Taghizadeh-Mehrjardi et al.
(2022)

Renormalized Difference Vegetation Index (RDVI) O Rengma et al. (2023)

Red-Edge Chlorophyll Vegetation Index (RECl) (NIR/R) - 1 O Dhiman et al. (2023)

Redness Index (RI) R̂2/(B * Ĝ3) Loiseau et al. (2019)

Salinity Index (SaI) (CA - G)/(CA + G) S Taghizadeh-Mehrjardi et al.
(2022)

SAR Vegetation Index (SVI) VV/VH O Yuzugullu et al. (2020)

Saturation Index (SI) (R - B)/(R + B) S Loiseau et al. (2019)

Second Brightness Index (BI2) ((G)̂2 + (R)̂2 + (NIR)̂2)̂0.5 S Zheng et al. (2023)

Sentinel-2 red-edge position index (S2REP) 705 + 35 * ((0.5 * (R + RE3) - RE1)/(RE2 - RE1)) O Zhou et al. (2022)

Shortwave Infrared Water Stress Index (SIWSI) O, S Swain et al. (2021)

Simple Ratio (SR) NIR/R O Dhiman et al. (2023)

Soil Composition Index (SCI) P Azizi et al. (2023)

Soil-Adjusted Total Vegetation Index (SATVI) ((SWIR2 - R)/(SWR1 + R +1) *2) - (SWIR2/2) O Azizi et al. (2023)

Soil-Adjusted Vegetation Index (SAVI) ((NIR - R)/((NIR + R) + 0.5)) * (1 + 0.5) O Azizi et al. (2023)

Structure Insensitive Pigment Vegetation Index
(SIPI)

(NIR - B)/(NIR - R) O Dhiman et al. (2023)

Grain Size Index (TGSI) (R - B)/(R + G + B) S Azizi et al. (2023)

Transformed Soil Adjusted Vegetation Index
(TSAVI)

(sl * (NIR - sl * R - a)/(R + sl (NIR - a) +x (1+sl̂2)) O Dindaroğlu et al. (2022)

Transformed Vegetation Index (TVI) ((NIR - R)/(NIR + R) + 0.5)̂0.5 * 100 O Zheng et al. (2023)

Vegetation Index (V) NIR/R O Zheng et al. (2023)

Visible Atmospherically Resistant Index (VARI) (G - R)/(R + G - B) O Dhiman et al. (2023)

Abbreviations: Formula; soil line intercept (a); blue(B), coastal aerosol (CA) green(G), red(R), near-infrared (NIR), shortwave infrared (SWIR), and red edge (RE) satellite bands; soil line slope

(sl). SCORPAN; soil properties (S), Climate (C), Organisms (O), Relief (R), Parent material (P), Age (A), spatial position (N).
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these articles used the generalized term “topsoil”. The dominance of
soil texture prediction studies in topsoil can be attributed to the
relative importance of the layers for agricultural productivity. The
topsoil layer is where most plant feeder roots are located and most

nutrient exchange occurs and controls the plant’s available water
(Schreiner-McGraw and Baffaut, 2023; Zhou et al., 2024).
Additionally, RS is reported to be more effective at capturing
properties at the surface or near-surface making the topsoil

FIGURE 2
Overview of the included articles: Number of included articles by publishing date (A), Predicted soil texture attribute (attribute(s); number of articles)
in the reviewed articles (B), and Number of reviewed articles in publishing journals (C).

FIGURE 3
Maximum depth of the predicted soil texture maps using satellite images.
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accessible for studies utilizing RS data including satellite images
(Abdulraheem et al., 2023). Studies at 60 cm, 100 cm, and 200 cm
indicate an interest in understanding the comprehensive
soil profiles.

3.2 Satellite images and environmental
covariates

3.2.1 Satellite images
Reviewed studies reported the prediction of soil texture using

variable satellite images including the Landsat 5, 7, and 8,
Sentinel 1 and 2, Moderate Resolution Imaging Spectrometer
(MODIS), GaoFen-5 Advanced Hyperspectral Imaging (GF-
5 AHSI), PRecursore IperSpettrale della Missione Applicativa
(PRISMA), Pleiades, Planetscope, RapidEye, HyspIRI, Hyperion,
EnMAP, and Triplesat. Figure 4 illustrates the varied utilization
of satellite imagery sources in soil texture prediction in the last
10 years. The figure indicates that Sentinel 2 is the most
extensively utilized satellite platform outnumbering Landsat
8 in terms of paper citations. The superior spatial resolution,
multi-spectral capabilities, open accessibility, frequent revisits,
and global coverage of sentinel 2 makes it an attractive choice for
researchers around the world to monitor land surface dynamics
in a comprehensive and timely manner (Azizi et al., 2023;
Mirzaeitalarposhti et al., 2022; Mzid et al., 2022). The study by
Hengl et al. (2021) reported that the use of sentinel 2 derivatives
improves the accuracy of soil texture predictions. Evaluating the
ability of the PRISMA hyperspectral imager to estimate soil
texture in comparison with Sentinel 2 and Landsat 8, Mzid
et al. (2022) found that, PRISMA hyperspectral satellite
imagery with the Cubist Regression provided the best
performance in the prediction of silt, sand, and clay followed
by Sentinel 2 and Landsat 8. Furthermore, In a study by Bellinaso
et al. (2021), it was found that Sentinel 2 (R2 = 0.68) yielded
satisfactory prediction model performance, followed by Landsat 8

(R2 = 0.62) and poor prediction performance of Planetscope
satellite image (R2 = 0.26).

Thirty-five percent (35%) of the articles reported the
multisource use of satellite images with an overall objective of
improving prediction accuracy and model performance. The
combined usage of satellite images highlights the importance of
leveraging complementary satellite imagery sources to achieve
higher accuracy in soil texture prediction models.

3.2.2 Environmental covariates derived from
satellite images

The conceptual models of soil formation have been used to
predict soil texture patterns in the landscape. The McBratney et al.
(2003) conceptual model (Sa or Sc = f(SCORPAN), which
quantitatively expresses the relationship between soil and soil
forming factors termed as environmental covariates has been
used as a basis for the selection of environmental covariates in
most studies under review. The model conceptualizes soil attribute
(Sa) or class (Sc) at a point in space and time, as empirical
quantitative function of the soil (S), climate (C), organisms (O),
relief (R), parent material (P), age (A), and spatial position (N). In
the last 10 years, satellite imageries have been used to derive
covariates related to soil properties, Organisms, and parent
material as indicated in Table 2 below. These covariates are
derived from satellite imagery as individual satellite bands or by
a combination of bands known as band ratios (Shahriari et al., 2019).

Figures 5A, B show the percentage frequency of band ratios and
individual bands respectively, derived from satellite images as
covariates for the prediction of soil texture in the reviewed
articles. Figure 4A reveals that NDVI (75.7%), SAVI family of
indices (52.9%) (includes TSAVI, MSAVI, MSAVI2, GSAVI, and
GOSAVI), BI (18.6%) EVI (17.1%), and CI (14.3%) are the five most
prevailing soil texture prediction indices with NDVI on the lead. The
high percentage of studies using the NDVI, a measure of the
difference between near-infrared (NIR) and red-light reflectance
(Loiseau et al., 2019), highlights its dominance in the prediction of

FIGURE 4
Satellite images used for the prediction of soil texture in the last 10 years.
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soil texture. NDVI has a high degree of correlation to vegetation
biomass and chlorophyll content and can subsequently be linked to
the aboveground green biomass, vegetation moisture content, and
indirectly linked to soil texture (Dindaroğlu et al., 2022; Loiseau
et al., 2019). Amongst individual bands used in soil texture
prediction (Figure 4B), Red, NIR, Green, Blue, and SW2 bands
were the five most prevailing with 28.6%, 27.1%, 25.7%, 25.7%, and
21.4% percent of studies used prediction respectively. Combining
individual bands in soil texture prediction has long been reported to
increase prediction accuracy (Mallah et al., 2022).

3.2.3 Relative importance of environmental
covariates

Finding the best covariates for predictive soil mapping is a
crucial step that determines the soil mapping accuracy particularly
when the number of soil samples is limited and spatial heterogeneity
high (Lu et al., 2019; Rengma et al., 2023). Incorporating a wide
range of environmental covariates increases the likelihood of finding
optimal predictors (Rengma et al., 2023). However, it is essential to
investigate the influence of each covariate on soil mapping and
employ feature selection techniques to identify informative
covariates and exclude those that add more noise or complexity
to the predictive models (Duan et al., 2022). Among the reviewed
articles, 60.78% reported variable importance analysis employing
nine (9) different approaches for selecting covariates important for
soil texture prediction. They include Accuracy Based Importance
(ABI) (Keshavarzi et al., 2022), genetic algorithms (GA)

(Taghizadeh-Mehrjardi et al., 2022), Shapley Addictive
Explanation (SHAP) (Zhou et al., 2022), Pearson correlation
coefficient and variance inflation factor analysis (PCC-VIF)
(Azizi et al., 2023), Spearman correlation and Recursive Feature
Elimination (SC-RFE) (Siqueira et al., 2023), minimal depth (MD)
(Mallah et al., 2022), explained variance distribution (EVD)
(Dindaroğlu et al., 2022), and Boruta feature ranking and
selection (BFRS) algorithm (Rengma et al., 2023).

Of the reported variable importance analysis approaches, ABI is
the most applied approach (61.29%), followed by all other
approaches each reported by 3.23% of the analyzed articles
reporting the variable importance analysis (n = 31). ABI is a
technique for calculating the prediction error of machine learning
models like random forests and boosted decision trees that employ
bootstrap aggregating (Shahriari et al., 2019). The variable
importance is determined by the change in out-of-bag (OOB)
error when a variable is permutated from the set of
environmental variables (the higher the value the greater the
variable importance) (Kaya et al., 2022). Streamlining the model
evaluation process by estimating prediction error efficiently without
the need for a separate validation dataset or test set, makes ABI a
preferred approach over other methods (Dharumarajan and Hegde,
2022; Liu et al., 2022).

Besides ABI, GA, a computational model with biological
inspiration based on evolutionary processes like selection,
crossover, and mutation, is designed to determine the functions
that best suit the experimental data set (Taghizadeh-Mehrjardi et al.,

FIGURE 5
Covariates derived from satellite images; Band ratios/indices (A) and individual satellite bands (B).
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2022). While SHAP estimates the contribution of the individual
variable by comparing the performance of the model with and
without this variable using a Shapley value based on the coalitional
game theory (Zhou et al., 2022). The PCC-VIF and SC-RFE
analysis calculates the correlation between environmental
variables and the soil texture followed by the elimination of the
multi-collinearity problem between explanatory variables (Azizi
et al., 2023), and ranking the importance of each predictor in a full
model based on the importance index available for each model
(Siqueira et al., 2023; Taghizadeh-Mehrjardi et al., 2021)
respectively. MD is based on the decision tree structures, it
determines variable importance by the position of the variables
in the decision trees (Mallah et al., 2022). EVD calculates the
relative importance of each input variable by distributing the
explained variance among the estimators, taking into account
the weighting coefficients in the input, hidden, and output
layers of the common variables (Dindaroğlu et al., 2022). The
BFRS algorithm duplicates the dataset and shuffles the predictors
column-wise, creating shadow predictors and then comparing
them to the shadows, the feature importance (Z score) of each
predictor is then evaluated based on the relevant RMSE (Paul
et al., 2020).

Figures 6A–C present the analysis of the relative importance of
environmental covariates used for predicting the clay, sand, and silt
content in the analyzed articles based on Accuracy-Based
Importance (ABI). The figures highlight that the NIR band,
followed by the SWIR2 band, contributes more to predicting clay
content. Conversely, the NDVI, followed by the NIR band, has the
greatest influence on predicting sand and silt contents. The NIR
band, which typically ranges from 0.7 to 1.0 µm, is particularly
sensitive to soil moisture and organic matter content which are
closely linked to clay minerals (Hong et al., 2018; Viscarra Rossel
et al., 2016). Due to their small size and large surface area, clay
particles tend to retain more water, resulting in higher reflectance in
the NIR region (El Alem et al., 2022). Additionally, the NIR band is

often used to estimate soil moisture content, which indirectly
correlates with clay content (Gozukara et al., 2022; Soltani
et al., 2019).

SWIR2 covers wavelengths from 1.55 to 2.29 µm and is sensitive
to specific absorption characteristics of clay minerals such as
kaolinite, montmorillonite, and illite, as well as carbonate
content. This makes SWIR2 an essential covariate for the
detection of mineralogical composition of soils as reported by
Coblinski et al. (2020). NDVI, which ranges from −1 to +1,
reflects vegetation density, with higher values indicating denser
vegetation cover. Studies by Dindaroğlu et al. (2022) and Loiseau
et al. (2019) have shown that dense vegetation is associated with
higher organic matter content and improved soil structure
properties that are typical of soils with lower sand content and
higher silt and clay contents. Thus, the importance of NDVI in
predicting sand and silt content highlights the indirect relationship
between vegetation cover and soil texture.

3.3 Prediction models and performance
assessment

3.3.1 Prediction models used
Recent advances in machine learning and remote sensing

technologies have improved soil texture prediction, using satellite
images. Selection of a suitable model for digital soil mapping
requires consideration of the advantages and disadvantages of
different models (Azizi et al., 2023). Forty-three (43) different
models have been used to predict soil texture in the last 10 years
which can be grouped into machine learning models such as RF,
SVM, Cu, ANN, and CNN; statistical models such as PLSR, MLR,
GAM, and BGLM, geostatistical models such as RK, UK, CK, OK
and SK; and Hybrid models such as RFR, RF-OK, and ANFIS. The
current review found the dominance of machine learning models
constituting 55.2% of the articles analyzed followed by statistical

FIGURE 6
Relative importance of covariates for soil texture prediction: clay (A), sand (B), and silt (C).
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models used by 12% of the articles whereas Hybrid and geostatistical
model models have been reported by 10.4% and 8.0% respectively.
The review also found a considerable portion of articles (14.4%) used
ensemble and model averaging approaches such as Quantile
regression forest and Gradient Boosting. The prominence of
machine learning models in soil texture prediction is a shred of
evidence of their effectiveness in the prediction of soil texture
(Baltensweiler et al., 2021). The application of hybrid and
ensemble modeling approaches shed light on the effort to
improve prediction accuracy. When multiple learning algorithms
are combined, the prediction models are more powerful and robust
than when they are used individually (Hengl et al., 2021; Swain et al.,
2021). A study by Wang et al. (2024) on finer soil strength mapping
using remote sensing images concluded that boosting ensemble
learning methods overall perform better in soil properties
prediction especially soil moisture.

Figure 7 depicts the predictive models used to predict soil texture
prediction in studies reviewed. RF model is by far the most used
prediction model (44.3%), indicating that this approach has proven
suitable for the prediction of soil texture. RF is an ensemble learning-
based assemblage of classifications and regression trees (Liu et al.,
2020; Pittman et al., 2021). In the context of large-scale, high-
dimensional data, it emerges as the preferred model due to its
robustness. Compared to many other prediction models, RF
improves prediction accuracy and reduces model overfitting
(Dharumarajan and Hegde, 2022). Another advantage of the RF
model is that it provides information on the relative importance of
environmental covariates in modeling (Mallah et al., 2022). SVM
was the second most used (14.3%) followed by ANN, Cu, and RK
which was reported in 11.4% of the articles each. SVM is an
intelligently constructed supervised machine learning system that
uses learning algorithms based on statistical learning and
optimization theories (Kaya et al., 2022). Due to its kennel
functions, SVM implicitly maps data into high dimensional
space, making it effective at handling and modeling non-linear
relationships between data. This versatility makes it an excellent
choice for predicting soil texture (Li et al., 2023). The PLSR, MLR,
and QRF have been used by 10.0% each followed by SVR reported in
5.7% of articles. All other models which include CNN, kNN, DT,

CK, and OK, albeit to a lesser extent, have also contributed to soil
texture prediction, being reported variably in 1%–4.3% of
the articles.

3.3.2 Model performance evaluation metrics
Predictive models must be evaluated for effectiveness and

reliability before being selected for soil texture prediction. In the
reviewed articles, K-fold cross-validation data splitting, and leave-
one-out cross-validation (LOOCV) approaches have been used to
evaluate the models employing various statistical indices. Figure 8
displays different statistical indices employed to assess the model’s
performance in predictions of clay, sand, and silt in the examined
articles. The figure shows that root mean square error (RMSE),
coefficient of determination (R2), and mean absolute error (MAE)
are the most applied metrics to validate model performance in
predictions of both Clay (31.0%, 29.2%, and 14.2%), sand (32.8%,
27.8%, and 16.2%), and silt (29.7%, 26.9%, and 17.0%) respectively.
Concordance correlation coefficient (CCC) and mean error (ME)
are the second most frequently used group of metrics appearing in
10.7%, and 5.3% for clay; 11.6%, and 4.1% for sand; and 11.6%, and
6.67% for silt predictions respectively. RIPQ, RPD, nRMSE, PCIP,
MAPE, and MSE are the least frequently applied statistical indices
reported in less than 3% of both clay, sand, and silt predictions in the
examined articles.

The results are in agreement with the results of Chen et al.
(2022). Each statistical metric provides unique insights into model
performance, thus choosing indices is crucial to evaluating soil
texture predictions (Baltensweiler et al., 2021; Dharumarajan and
Hegde, 2022; Siqueira et al., 2023; Sorenson et al., 2022). The
preference for RMSE, R2, and MAE in the reviewed articles
highlights their effectiveness in capturing the accuracy, reliability,
and goodness-of-fit of soil texture models. MAE and RMSE
summarize the residuals and describe the absolute accuracy of
the models showing how close the predicted values are to the
actual values, the closer to zero, the more reliable the prediction
becomes (Baltensweiler et al., 2021; Domenech et al., 2020; Laborczi
et al., 2019; Siqueira et al., 2023). R2measures the agreement between
measured and predicted data with a goodmodel having values closer
to 1 (Domenech et al., 2020). Although less frequently used, CCC

FIGURE 7
Prediction model used for prediction of soil texture.
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assesses the precision and accuracy of predictions by comparing
them to observed values (Mehrabi-Gohari et al., 2019) and ME is a
useful indicator of model bias (Dharumarajan et al., 2020). RIPQ,

RPD, nRMSE, PCIP, MAPE, and MSE albeit less frequency, provide
valuable supplementary information on model performance in soil
texture prediction studies. RIPQ indicates model reliability (Tziolas

FIGURE 8
Statistical indices applied in model evaluation for prediction of clay, sand, and silt.

FIGURE 9
Comparative model performance.
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et al., 2020), RPD indicates model robustness and reliability
(Vaudour et al., 2019), nRMSE facilitates the standardized model
accuracy assessment (Mehrabi-Gohari et al., 2019), PCIP is valuable
for assessing classification accuracy (Liu et al., 2020; Loiseau et al.,
2019), and MAPE is effective in highlighting relative errors (Saygın
et al., 2023).

3.3.3 Comparative predictive model performance
The analysis was done to assess the performances of the most

frequently used models (reported in more than 10% of the studies)
in the prediction of soil texture using the most frequently used
statistical indices R2, RMSE, and MAE (Figure 9). The figure
reveals that RF performs well across all three soil texture
fractions (clay, sand, and silt) with a good trade-off between R2,
MAE, and RMSE indicating good model fit and accurate
predictions. The ANN also performs consistently for clay, sand,
and silt with the lowest RSME and MAE values for silt while PLSR
performs satisfactorily for clay and silt with slightly higher RMSE
and MAE values for sand.

SVM has comparably the highest value of R2 across the soil
texture fractions, suggesting it as the best-fit model for soil texture
predictions. However, the reported RSME and MAE are also the
highest compared to RF and ANN. Cu, QRF, and MLR vary across
soil texture fractions. As a result of their trade-off performance
across statistical indices, RF and ANN appear to be strong
candidates for soil texture prediction. In numerous studies, RF
performed best in predicting soil texture (Azizi et al., 2023;
Baltensweiler et al., 2021; Dharumarajan et al., 2020; Siqueira
et al., 2023). According to Zhang and Shi (2019), RF is relatively
robust to overfitting due to the use of an ensemble tree without

pruning. A study by Zhang et al. (2021) comparing ANN, ANFIS,
and RT reported that ANN being non-significant different from
ANFIS, was more efficient in soil clay, sand, and silt than RT. A
similar study by Ma et al. (2021) reported that ANN models in 2.5D
and 3D modeling provided the best prediction accuracies for clay
compared to QRF and Cu. The ANNs’ robustness and performance
can be ascribed to their capacity to work on intricate non-linear
relationships, manage high-dimensional information, and exhibit
adaptability when managing a diverse of data types (Ma et al., 2021;
Taghizadeh-Mehrjardi et al., 2021).

Figure 10 presents the performance of the RF model in the
prediction of clay, sand, and silt as indicated by the R2 across four
different targeted maximum soil depths grouped as 0–30 cm,
30–60 cm, 60–100 cm, and 100–200 cm. The RF performance to
predict clay content showed a decreasing trend with increasing
depth interval, with median R2 values of 0.49, 0.45, 0.43, and
0.43 respectively. Similarly, sand prediction demonstrated a
decrease in RF model performance with median R2 of 0.53, 0.47,
0.47, and 0.45 across the same depth intervals. A similar trend of
decreasing model performance of soil properties prediction with
increasing soil depth was reported in the review by Chen et al.
(2022). This suggests a consistent pattern in the predictive
challenges associated with deeper soil layers which can be
attributed to high variability in soil moisture content, mineral
composition, and less influence of surface processes captured by
RS sensors (Abdulraheem et al., 2023; Pavlů et al., 2023; Wang et al.,
2024). The RF model performance was inconsistent with silt
predictions (median R2 of 0.50, 0.46, 0.48) with increasing depth
intervals. Particles-wise, the RF model performance was in the
sand > silt > clay indicating the robustness of the RF model in

FIGURE 10
Performance of RF model (R2) for prediction of clay, sand, and silt across four depth intervals.
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capturing variability in sand content compared to clay and silt across
varying soil depths.

4 Conclusion

This study conducted a systematic review of soil texture
prediction using satellite images and a meta-analysis on the
relative importance of environmental covariates and the
performance of the prediction models used to predict soil
texture. We concluded that among the soil texture attributes, clay
was the most predicted than the other particle size fractions. Topsoil
layers (0–30 cm) are the most targeted in soil texture prediction
studies. Sentinel-2 and Landsat 8 satellite images were by far the
most commonly utilized images with the red and NIR individual
satellite bands and band ratios, NDVI and SAVI family being the
most extensive derived covariates incorporated in soil texture
prediction. The Random Forest model is the most favored for
soil texture prediction due to its robustness, accuracy, and ability
to rank the importance of environmental covariates. Based on the
meta-analysis of the relative importance of environmental covariates
calculated using the ABI approach, the individual bands NIR and
SWIR2 are the most important in the prediction of clay while NDVI
and NIR are the most important for the prediction of sand and silt
soil particles. Furthermore, the meta-analysis compares the
prediction model performance using the most common
performance measures used, R2, MAE, and RSME; RF and ANN
are pictured as the leading models in the field of soil texture
prediction based on their good trade-off across performance
measures. RF model stands out for its robustness against
overfitting and its consistent performance across all soil texture
fractions, making it a preferred choice for soil texture prediction.
While ANN models demonstrate strong capabilities in handling
complex non-linear relationships and high-dimensional data. The

RF performance trend decrease with increase in soil depth interval
for clay and sand prediction and inconsistent for silt prediction.
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