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Forests of California are undergoing large-scale disturbances from wildfire and
tree mortality, caused by frequent droughts, insect infestations, and human
activities. Mapping and monitoring the structure of these forests at high
spatial resolution provides the necessary data to better manage forest health,
mitigate wildfire risks, and improve carbon sequestration. Here, we use LiDAR
measurements of top of canopy height metric (RH98) from NASA’s Global
Ecosystem Dynamics Investigation (GEDI) mission to map vegetation height
across the entire California for two different time periods (2019–2020 and
2021–2022) and explore the impact of disturbance. Exploring the reliability of
machine learning methods for temporal monitoring of forest is still a developing
field. We train a deep neural network to predict forest height metrics at 10-m
resolution from radar and optical satellite imagery. Model validation against
independent airborne LiDAR data showed a R2 ≥0.65 for the top of canopy
height outperforming existing GEDI-based height maps and with improved
sensitivity for mapping tall trees (RH98 ≥ 50 m) across California. Height
showed distinct spatial variations across forest types offering quantitative and
spatial information to evaluate forest conditions. Themodel, trained on data from
2019 to 2020, showed a similar accuracy when applied to satellite imagery
acquired in 2021–2022 allowing a robust detection of changes caused by
natural and man-made disturbances of forest. Changes of height captured
impacts of tree mortality and fire intensity, pointing to the influence of wildfire
across landscapes. Fires caused more than 60% of the large forest disturbances
between the two time periods. This study demonstrates the benefits of using
locally trainedMLmodels to rapidly modernize forest management techniques in
the age of increasing climate risks.
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1 Introduction

The contribution of forestland to emissions offset in the United States has remained
relatively stable since 2005 despite steady declines in economy-wide CO2 emissions over
that period (Domke et al., 2020). This suggests that the forest carbon sink in the
United States, which is driven in large part by forest regrowth following harvest and
natural disturbances, is slowly diminishing (Williams et al., 2016; Pugh et al., 2019; Quirion
et al., 2021). This threat to the US forest sink is especially significant in California, and the
Pacific Northwest where frequent droughts have caused increasingly intense wildfires and
insect infestation, reducing the forest carbon stocks and productivity in the last two decades
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(Yu et al., 2022; Coffield et al., 2022). A history of fire suppression
due to forest management has increased fuel stocks and altered fire
regimes, causing catastrophic fires under cascading effects of climate
change (Keane, 2002). The changes of forest carbon and health have
devastating implications for California’s emission reduction strategy
and threatens its future economy by directly impacting landowners,
corporations, and communities living near and in forests (Badgley
et al., 2022).

One of the challenges associated with understanding the
threat to California forests and its inhabitants is the lack of
detailed, accurate, and frequent information on changes of forest
height (and the associated fuel load, and the carbon density) at
the state level. Surveys of forests across California over the last
century (1930s–2000s) show a significant demographic shift in
forest height accompanied by a shift in composition toward
increased dominance by oaks relative to pines (McIntyre et al.,
2015; Hill and Field, 2021). In recent years (1990s), these surveys
are performed every 10 years in a network of forest inventory and
analysis (FIA) plots. However, the small number of FIA plots
(about 5,300 1-acre plots) sampling more than 32 million acres of
forests in California and collected over a decade, is not enough to
capture widespread tree mortality and frequent disturbance that
alters forest height and biomass rapidly (Yu et al., 2022).
Therefore, there is an urgent need to map and frequently
monitor spatial variations of forest height at the scale of
disturbance and management activities across California.
Widespread mapping of vegetation structure and above
ground biomass at local, regional, and global scales have
become possible by using airborne and space borne LiDAR
(Light Detection and Ranging) sensors from the beginning of
this century (Dubayah and Drake, 2000; Næsset, 2002; Lim and
Treitz, 2004; Lefsky, 2010; Saatchi et al., 2011; Bruening et al.,
2023). Modern LiDAR sensors measure the timing and intensity
of reflected energy from forest attributes, providing relatively
continuous waveforms related to the vertical distribution of plant
material (branches and leaves) and accurate information on
forest height and terrain elevation (Eitel et al., 2016; Dong
and Chen, 2017; Kellner et al., 2019). In recent years, the
applications of LiDAR have broadened in forest ecology by
quantifying 3D structure, demography, and gap dynamics
(Vepakomma et al., 2008; Kellner and Asner, 2009; Ferraz
et al., 2016; Dalagnol et al., 2021; Jucker, 2022), carbon stocks
and dynamics (Asner and Mascaro, 2014; Stark et al., 2012;
Moura et al., 2020; Meyer et al., 2013), and forest disturbances
(Wulder et al., 2008; García et al., 2017; Jeronimo et al., 2018).

In California, LiDAR measurements have been used to quantify
structure and fuels over some of the tallest, and most complex
landscapes in the world (Kelly et al., 2017; Tang et al., 2014; Su et al.,
2017). Estimation of forest fuels, the organic matter available for fire
ignition and combustion, are considered the most essential
attributes of California forests and the key component of fire
management activities (Keane et al., 2004). The fuel loads are
directly linked to measurements of forest height and biomass and
can be estimated from ground over small areas and from remote
sensing measurements across larger landscapes (Anderson et al.,
2005; Saatchi et al., 2007; Skowronski et al., 2011; Kramer et al., 2016;
Garcia et al., 2017).

Although widespread airborne LiDAR data are now available
over California, the measurements are acquired over multiple years
with different sensor characteristics, limiting their use for the
monitoring of forest height across the state. Optical and radar
remote sensing observations from space may provide a reliable
alternative for mapping and monitoring forest height over large
areas. They can be combined with NASA’s Global Ecosystem
Dynamics Investigation (GEDI) that collected LiDAR samples
globally between 2019 and 2023. It provides billions of waveform
observations (~4% of the Earth surface) across global forests
(Dubayah et al., 2020). Data from GEDI have already been used
as reference for vegetation height to develop global vegetation height
maps at 10 and 30 m resolutions (Potapov et al., 2021; Lang et al.,
2022). However, these maps, although excellent for continental and
global studies of ecosystems, may have large uncertainty for local
studies and forest management applications. For example, the two
aforementioned products show little sensitivity to tall trees of
California (≥50 m) and have large uncertainty when compared
to local airborne LiDAR measurements (RMSE ≥ 12 m, R2 ≤ 0.6).
These are likely due to the global-scale machine learning training,
which cannot capture local forest height variations accurately. Local
maps have been shown to improve the accuracy compared to the
global products, providing better estimates of the fine scale
vegetation heights (Schwartz et al., 2023; Fayad et al., 2024). A
second aspect not yet addressed in methodologies developed to
estimate vegetation height (or biomass) from remote sensing
observations is the reliability over time. Improving the accuracy
of models and still being able to generalize to different observation
conditions has not yet been explored.

Here, we want to evaluate the capacity of machine learning
based model to monitor forest height changes in California. We
develop a model to map forest height over the entire California,
reducing the uncertainty in spatial variations compared to global
maps, and improving estimation of tall forests ≥ 50 m. The model is
then applied to two different time periods to enable an estimation of
changes of vegetation height with time. These are critical
contributions to state-wide forest carbon management wildfire
mitigation activities and ecosystem health and diversity
(Hakkenberg et al., 2023; LaRue et al., 2023; Vogeler et al., 2023).
Using satellite imagery from optical and radar sensors and surface
topography, we map the variations of vegetation height as measured
by GEDI LiDAR waveform across the state. The estimation is
performed using a deep-learning model utilizing GEDI sample
data for training and the spatial variations of the high-resolution
data from the remote sensing predictors as independent variables.
The accuracy of the derived maps is estimated against independent
airborne LiDAR campaigns available across the state, and the
changes occurring over California are evaluated in comparison
with existing products of forest degradation as well as coarse
scale changes of height estimated from GEDI.

The first sections of this paper describe the different datasets
used, and the methodologies developed to achieve the objectives. A
summary of the different steps of the analysis is provided in
Supplementary Figure S6. The results provide an analysis of the
output maps, compared to reference data, and as a tool for change
monitoring at high resolution. Finally, a discussion of the limitation
of such remote sensing derived vegetation height maps is provided.
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2 Data and methods

2.1 GEDI waveform data

The Global Ecosystem Dynamics Investigation (GEDI) is a
LiDAR mission launched in 2018 onboard the International
Space Station (ISS). The waveforms are sampled along ISS orbital
tracks and from different laser beams to measure waveforms returns.
The variations of vegetation structure and the biomass (Dubayah
et al., 2020) can then be inferred from the waveform. Since the
beginning of science data collection in 2019, GEDI has been
providing waveforms at approximately 25 m footprints across the
Earth between ±53° latitude. The measurements obtained by GEDI
are sparsely distributed along the orbits of the ISS, without a
repeated observation pattern nor a really random sampling. The
LiDAR pulse returned waveform is recorded every 60 m along the
track, with 600 m separating the individual laser beams. We only
consider nighttime measurements recorded during the growing
season (April to October) to avoid phenological changes and
limit snow cover effect across California. The waveforms are all
originating from full power beams with a sensitivity above 0.9, and
possessing valid degradation and quality flags. We use the Level 2A
products and the waveform return percentiles, referred to as relative
heights, the 98th percentile (RH98) representing the maximum
height of vegetation. To increase the available number of
observed heights from GEDI we aggregate data from two time
periods 2019–2020 and 2021–2022 to be used in this study. In
order to achieve a similar resolution, all datasets are resampled with
a nearest neighbor method to the Sentinel-2 10 m pixel resolution,
over California.

2.2 Airborne LiDAR data

Airborne Laser Scanning (ALS) data with contiguous coverage
of different areas of California forests was used to validate the
accuracy and spatial variations of vegetation structure of the maps
created using the GEDI samples and our model. The ALS
observations come from multiple sources. Three field sites within
the Sierra Nevada region, Lower Teakettle (TEAK), Soaproot Saddle
(SOAP), and San Joaquin Experimental Range (SJER) that are
acquired as part of the National Ecological Observatory Network
(NEON) funded by the National Science Foundation (NSF)
(Schimel et al., 2007; National Ecological Observatory Network,
2023). The sites were surveyed during the leaf-on season in
2019 across a variety of elevations and forest types, with TEAK
and SOAP sites surveyed in June and SJER surveyed in March for a
total area of approximately 70 km2. The average point density of the
ALS point clouds was ~6 points per square meter. The point clouds
were filtered for noise using the Statistical Outliers Removal function
and the 98 percentiles of the LiDAR returns in a 10 × 10 m regular
grid is extracted for comparison with our model estimates (Roussel
et al., 2020). In addition to the NEON sites, 39 sites from the
United States Geological Survey (USGS) LiDAR data collected
between 2018 and 2020 across different vegetation covers,
covering ~200 km2 were used for validation. Canopy Height
Models (CHM) at 1 m spatial resolution were collected and the
maximum value within each 10 m pixel computed for comparison

with the mapped RH98 values. The distribution of the validation
sites is apparent on Supplementary Figure S1.

2.3 Remote sensing data

Three distinct satellite data sources are used as input to the
model to predict vegetation height metrics. For optical imagery, we
use Sentinel-2 imagery in the visible and infrared bands (Drusch
et al., 2012). We specifically use the blue, green, red, and near-
infrared bands at their native 10 m spatial resolution. A mosaic was
created by taking the median values from cloud-free images
captured between April and October for the years
2019–2020 and 2021–2022 over California. The second source is
data from the Advanced Land Observation Satellite (ALOS-2),
operated by the Japanese space agency, carrying an L-band
synthetic aperture radar PALSAR 2 (Rosenqvist et al., 2007).
Both polarization (HH, HV) measurements are provided in a
mosaic with 25 m resolution for each year. The lower frequency
of L-band measurements allows for penetration through the canopy
cover, providing complementary information to the visible and
infrared observations (Shimada et al., 2014). To match the time
periods used from the GEDI measurement, the mean of the
2019 and 2020 mosaics is used to represent the
2019–2020 period, and the 2021 imagery only to represent the
2021–2022 period, as data for 2022 are not available from JAXA yet.
The third dataset is the Copernicus digital elevation model (DEM)
GLO-30 dataset (Fahrland et al., 2020). Elevation plays a significant
role in determining the distribution of vegetation structure and types
in California. It is a well-known factor influencing plant traits, and
the correlation between tree cover and elevation profiles has been
extensively described in previous studies (Critchfield, 1971;
Rybansky et al., 2016). Additionally, elevation is crucial in
analyzing the impact of topography on LiDAR returns (Khalefa
et al., 2013). Wall-to-wall mosaics of these datasets were prepared
over California at 10 m spatial resolution for the two analyzed
different time periods considered using the Google Earth Engine
platform (Gorelick et al., 2017).

2.4 Ancillary data

We selected a set of ancillary datasets for data analysis and
validation of vegetation structure maps. The datasets are produced
by the California Department of Forestry and Fire Protection
(CALFire) in order to facilitate research and forest management
across the state. We downloaded the map of Wildlife Habitat
Relationship classes (WHRTYPE) from (Mayer and Laudenslayer,
1988; CALVEG and California Wildlife Habitat Relationship, 2022),
which represents a comprehensive land cover map with more than
50 vegetation classes for the entire state of California. We also used
the extents of recent large fires (≥5000 acres) that occurred between
2019 and 2022 in California (CALFIRE, 2023) in order to study
changes of forest height across landscapes in burned areas. To
complement the fire extents, the Monitoring Trends in Burn
Severity (MTBS) program (Finco et al., 2012), provides a map
describing the burn severity within each fire, from unburned to
high severity (1–4), and areas with increased post-fire greenness (5).
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Additionally, the California Department of Water Resources
(DWR) has created watershed maps, which are manageable units of
land with geographic coherence, averaging around 3 km2. These
watershed maps are utilized to aggregate high-resolution data and
allow for comparison with aggregated sparse data. The shapes of the
watersheds can be obtained from the Relative Watershed Condition
dataset (The Cadmus Group, Inc., 2013).

Finally, existing height maps from (Potapov et al., 2021; Lang
et al., 2022) were obtained for inter comparison of the height maps.
These maps are available at similar resolution from 10 to 30 m and
also used LiDAR data from space borne or airborne sensors to train
machine learning models relying on different combinations
of input data.

2.5 Model implementation

We employ a deep learning model to establish the relationship
between the remote sensing predictor variables and the sparsely
distributed relative height metrics derived from GEDI waveform
measurements. The predictors consist of seven layers: four bands
from Sentinel-2 data, two bands from the ALOS2 L-band
backscatter, and one band from the GLO-30 digital elevation
model. Our method adopts an encoder-decoder architecture
similar to the U-Net network (Ronneberger et al., 2015), using
an EfficientNet encoder (Tan and Le, 2021), that has demonstrated
promising performance in vegetation studies within remote sensing
applications (Wagner et al., 2019; Kattenborn et al., 2021). The

dataset is divided into training and evaluation sets to assess the
model’s generalization capability. Issues can arise when creating the
training and evaluation sets with a random sampling (Kattenborn
et al., 2022; Ploton et al., 2020). To provide a geographically
independent validation set, we define two distinct geographical
regions. During the training phase, 10,000 patches of size 512 ×
512 pixels with seven bands are randomly extracted from the
training area for each epoch. The model produces a 1 × 512 ×
512 prediction array of RH98. The mean squared error loss is
computed for the pixels that have a value in the output GEDI
patch. The loss is summed for each batch of data during training,
and the Adam optimizer (Kingma and Ba, 2014) is applied to update
the model parameters. The final model is selected as the one with the
lowest loss on the validation data from the same year (occurring
after 230 epochs). To create the final maps, the trained model is
applied over the 2019–2020 data (partially used in training) and on
the 2021–2022 data (not used in training). The predicted height map
at 10 m resolution are computed per patch of 1536*1536 pixels,
including an overlap area of 512 pixels from the neighboring patches
to limit model field of view artifacts in the final created maps.

3 Results

3.1 Forest height maps

The produced map of top of canopy heights (RH98) detects
patterns of forests height variations across the state, Figure 1.

FIGURE 1
Map of the top canopy height (RH98) of California forests for the period 2019–2020. The three insets (A–C) show a zoom-in of selected sites with
RGB satellite imagery from Bing© alongside predicted heights from our model.
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Showing high mean top canopy height across the northwest
coniferous forests (≥60 m) as well as in the Sierra Nevada. The
coastal and Transverse Ranges mountainous areas in southern
California also have large forest extents. The prediction ranges
from 70 m average heights in the redwood forests or sequoia
groves to chaparral vegetation cover across southern California
mountains, transitioning to more shrublands and desert
landscapes in the southern part of the state. The insets show the
spatial patterns of forest height in zoomed-in areas for the coastal
redwood forests (A), the managed forests in North East California
(B), the Skagway grove in the Sequoia National Park (C). The high
resolution data used as input allows the spatial prediction to
accurately depict rivers and fire breaks and small clear-cut forest
patches, for instance in the middle of the managed forests (B). The
predicted heights also show variability inside forests, as in the
Sequoia National Park (C) where the grove with the highest
height is distinct from the dense forest cover around it.

The heights fromGEDI and the model prediction are aggregated
for individual watersheds across California. By area, watershed with
at least one GEDI observation cover more than 50% of the total state
area. The average density of 10 m pixels with a GEDI value in these
watersheds is ~170 pixel/km2. Figure 2 shows the variability of
height across predominant vegetation types and the similarity
between our estimated heights and the GEDI observed heights.
For each vegetation type, we plot the mean and distribution of the

watershed averaged top of canopy height, both derived from the
GEDI observed data and the model’s predicted map. We also
estimate the area of each dominant vegetation type. Notably,
watersheds dominated by redwoods exhibit an average mean top
of canopy height approaching 35 m. However, disparities in average
height are observable for certain vegetation types (e.g., Aspen,
Eucalyptus). Such disparities can be due to the small area of
these watersheds, which limits GEDI sampling, leading to large
variability.

3.2 Machine learning model performance

The model reached a root mean squared error of 7.1 m on the
training set and 4.46 m on the GEDI data validation set. The relative
root-mean-square error, and the explained variance between the
GEDI pixel values and the predicted values for the training
(validation) area are respectively, 43% (56%), 0.74 (0.68) for
2019–2020 and 44% (51%), 0.73 (0.63) for 2021-2022.

The highest explained variance and the lowest RMSE are
obtained with the 2019–2020 data used in training by a very
slight margin. The generalization of the model is good across
time, as all the metrics are consistent between the different data
splits. The model generalization across the unseen validation area is
slightly lower than other the same area in a different year.

FIGURE 2
Variations of average top canopy height for California major vegetation types grouped by watershed, the violin plot shows themean and distribution
for all watersheds with a common dominant vegetation type, from GEDI samples (blue) and predicted by the model (orange), the total watershed area of
each vegetation type is shown in the secondary axis (black dots).
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To further analyze the model error in representing variations of
GEDI RH98, we compute the residuals between the model
prediction and the observed GEDI RH98 values in 2021–2022.
Supplementary Figure S2 shows the absolute and relative
residuals for bins in predicted height. The absolute error is ≤6 m
up to 20 m height. The relative error is less than 30% for predictions
≥20 m. In addition, we look at the impact of elevation and slopes on
the relative residuals, and although elevation is not associated to
increase in error, slopes above 40° show a large increase in error.

3.3 Validation of spatial patterns on airborne
LiDAR acquisitions

To further analyze the height predictions, we compare the
predicted heights from 2019 to 2020 to the ones measured from
ALS in prior years (up to 3 years prior). Figure 3 shows the
comparison between the ALS data described in Section 2.2 and
the predicted map for 2019–2020. The range of height values from
GEDI observations and the predicted map is similar to the ALS
height metrics, showing a range of top of canopy height from 0 to
60 m. Measured GEDI RH98 is in good agreement with the ALS top
of canopy height across California (R2 = 0.72). The sampling
provided by GEDI is on average correct, as shown by the black
line closely following the 1:1 red line. However, we observe that the
error can be very large for individual pixel values, depicted by the
sparse points away from the 1:1 line. This leads to a large standard
deviation of GEDI derived metric for each height bin in the ALS
data. This can be explained by the original ~25 m resolution of
the GEDI observations, larger than the 10 m resolution at which
the comparison is made. A similarly good agreement is found
between the predicted height and the ALS reference, with an
RMSE = 12.59 m and R2 = 0.67 for the top of canopy height.
Looking at the average binned prediction value, the figures show that
both the model and GEDI height measurements do not have
significant systematic errors compared to ALS data over the
range of values considered. The model predictions underestimate

height of very tall trees (≥ 50 m), and overestimates height of short
trees (≤ 10 m). Similar patterns also appear when comparing GEDI
and ALS data, with an overestimation of trees ≤10 m.

The spatial patterns of height variability are similar between the
predicted height maps and the observed ALS for all the different
vegetation types across the sites (Figure 4). The difference between
the predicted and reference height in the third column highlights the
overestimation of the low values (especially for the SJER site) and
some discrepancies in high vegetation, as in the northern part of
the SOAP site.

3.4 Monitoring forest height

The top of canopy height difference (ΔRH98) map shows the
decrease in height between prediction from the 2019–2020 data
to the 2021–2022, highlighting large areas affected by
disturbances (high values) and low values across dense
undisturbed forest areas (Figure 5). Height changes associated
with timber harvests and forest management systems can also be
detected by our high resolution height maps (inset A). The clear-
cut forest patches are very distinct on the predicted map. The
fires’ delineation from CALFire is shown in green on Figure 5,
where the high height difference values are mostly contained
within the fire boundaries. Fires have different impacts on the
landscape, and the entire fire perimeter is not necessarily strongly
affected. Some very destructive fires such as the Slater fire in
Northern California (B) removed most of the vegetation cover,
the fire effect can also be more heterogeneous across the
landscape such as in the August Complex fire. Finally, for fires
affecting very low vegetation cover, as in the shrublands and
desert ecosystems, the change in vegetation height might not be
significant enough to be detected by this method. The average
ΔRH98 can be up to ~8 m for destructive fires but varies
considerably given the time to containment, area and
vegetation type (Supplementary Figure S4). Some pixels show
slight height increase (<2 m) between the two time periods. These

FIGURE 3
Pixel level comparison between GEDI measurements (first column) and model-predicted (second column) height metrics and the 98th percentile
(first row) of ALS data across all the validation sites. Points are colored following the increasing density of pixels from blue to yellow, the mean and
standard deviation of the y-axis variable within bins of the x-axis variable is shown in black, the red dotted line shows the 1:1 line.
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small values were not considered for analysis being too small
compared to the GEDI measurement uncertainty and
model error.

The change of top of canopy height is further analyzed for fires
in 2020 and 2021, and compared to the Monitoring Trends In Burn
Severity (MTBS) maps output. Figure 6 shows the change of height
for each class in the burn severity classification. The larger decrease
in height for the increasing severity is clearly apparent. With on
average ~10 m decrease in height for high severity burned areas. The
severity index is derived from thresholds applied to differences of
Normalized Burn Ratio. The extents align well with the ones
mapped by our method but with a coarser description of the
burn intensity. The range predicted height change in burned area
with low severity is compatible with the uncertainty range analyzed
in Section 3.2, ~6m.

To analyze the agreement between the predicted change and the
one measured by GEDI sampling, Supplementary Figure S5 shows
the change from the GEDI data averaged at the watershed level. The
very sparse nature of the GEDI data makes the analysis at high
resolution impossible, as there are very few pixels with repeated
observations. However, it is possible to find watersheds with
repeated observations and at least 100 pixels with values per
square kilometer. The analysis of these repeatedly observed

watersheds shows a good agreement between the change in
height at the watershed level measured from GEDI and from the
maps produced (Supplementary Figure S5, upper right). The largest
changes in fire affected areas show up to ~20 m decrease in average
height in some watersheds.

Overall, we computed the total area with more than 10 m top of
canopy height in 2019-2020 whose height decreased by more than
30% in 2021-2022, and found that 8,874 km2 of forest loss occurred
in fire areas and 5,001 km2 (~30%) occurred outside of fire affected
areas, likely caused by die off and harvests. The average height loss
caused by fires to the forests (RH98≥ 10 m) inside the fire polygons
is 6.2 m.

4 Discussion

4.1 Model of canopy height based on GEDI in
California

In California, our model mapped the top of canopy height for
two different time periods with an explained variance of about 0.7.
This shows the performance of our methodology to predict canopy
heights across time and over a large range of values, up to 70 m in

FIGURE 4
Maps of the model prediction of RH98 and ALS 98th percentile for the three NEON sites (top to bottom SOAP, SJER, TEAK) used for validation, the
first column shows the ALS, the second the predicted value and the third one the difference between the first two columns.
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redwood forests. Multiple studies have attempted to derive canopy
height from remote sensing predictors (Potapov et al., 2021; Lang
et al., 2022) at the pixel level or using scene level features with deep
learning. All models face challenges to represent the full range of
vegetation heights in different parts of the world. This limited
sensitivity can be explained by multiple factors: (1) the lack of
information in the underlying satellite imagery (optical or radar) to
predict height variations in forests. (2) The rare occurrence of very
tall trees: in California, only ~1% of the land cover has a ≥50 m

canopy height (Supplementary Figure S3). (3) All machine learning
models face limitations predicting the extremes in the range of target
values (Boucher and Aires, 2023).

The global models employ different strategies such as training
data rebalancing, or model localization to alleviate the lack of
sensitivity to variation of height in different regions. This study
shows how a locally trained model (e.g., at the state level), helps
improve the predictions compared to global approaches as shown by
the reduction in RMSE (≥1 m) and increased correlation with the

FIGURE 5
Decrease of canopy height between the 2019–2020 and the 2021–2022 period in the predicted RH98, on the global map at thewatershed level and
in the insets at the pixel level for a managed area in North-West California (A), the Slater (B), August Complex (C), and North Complex (D) fires, the area
delineated in green show the extents of the large fires in California that occurred in 2020 or 2021.

FIGURE 6
Boxplots of themean height and interquartile range (rectangle) change between the two predicted RH98maps for theMTBSmaps for the 2020 (left)
and 2021 (right) fires within each severity class (1–4 increasing burn intensity, 5 - increasing greenness post fire), the secondary axis shows the number of
pixels in each class.
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ALS data (Supplementary Table S1), and by the agreement with
GEDI state level distribution (Supplementary Figure S3). Alternative
improvements can come by using additional information for
instance from other frequencies, more sensitive to the integrated
vegetation structure or higher resolution data.

A second challenge faced by remote sensing derived height maps
is to achieve the highest spatial resolution possible. The effective
resolution of the output maps is coarser than the 10 m resolution of
Sentinel-2 observations. Different factors can explain this apparent
decrease in resolution. First, the large footprint (~25 m) and possible
geolocation inaccuracies from GEDI measurement cause the target
variable to not represent accurately the height variations at 10 m
resolution. Second, the inclusion of lower resolution predictors
(DEM and radar), might not have a sufficient resolution to
predict high resolution variations. Third, using convolutional
layers in the encoder-decoder architecture tends to smooth
structures in the predicted output map (He et al., 2022).
However, it is relevant to use the highest resolution possible for
the input data as it gives the model an opportunity to use all the
information available. This can help improve the accuracy in some
conditions, for instance to represent sparse trees outside forests, or
to represent the highest vegetation structures which tend to be
smoothed out at lower resolution.

Multi-temporal monitoring of heights requires precise and
accurate estimations of vegetation height on different time steps.
Although the results agree well with the distribution of heights
measured by GEDI, the remaining uncertainties are still too large
to accurately estimate growth of different forest types. In addition
to the model uncertainties, the measurements available from
GEDI have large uncertainties, Figure 3 and overestimate
vegetation heights ≤10 m (Dhargay et al., 2022; Adam et al.,
2020). This GEDI measurement uncertainty may limit its
usability to accurately estimate small variations of vegetation
height, especially in low vegetation and over short timespans.
Combining the high accuracy and high resolution of ALS with the
systematic sampling of GEDI could be a way to improve these
estimations.

The current results already provide valuable information for
decision makers. They can be used as tools to improve assessment of
damages following fires, or integrated in existing fire probability
models (Faivre et al., 2014; Li and Banerjee, 2021). Regarding the
impact of wildfires on the Californian forests, we find that about
8,874 km2 (60%) of forests (≥10 m) height decreased by more than
30%. (Wang et al., 2022) estimated the loss of tree cover due to fires
in 2020 and 2021 to be 15,760 km2. Furthermore, the data used in
this study may show a partial picture of the changes of structure
caused by disturbance events. GEDI waveform profiles are more
related to leaf distribution than to woody vegetation in forests.
Therefore, changes measured in the fire affected areas average
height, might not translate directly in variations in above ground
biomass. Standing trees after fires will remain large carbon stocks,
even though their height observed from LiDAR will have largely
decreased. For the estimation of carbon stocks and fluxes, estimation
of live and dead standing biomass requires additional work. An
alternative way could be to estimate the GEDI L4A shot level
biomass to directly retrieve pixel level biomass changes from
different years. Overall, the agreement between studies confirms
the fact that more than 60% of forest loss in California can be

attributed to fires between 2019–2020 and 2021–2022. This should
help target conservation and restoration efforts at the state level.

5 Conclusion

In this paper, we show how remote sensing observations and sparse
GEDI LiDAR observations can be used to create a wall-to-wall maps of
vegetation structure in California. A deep learning model is trained
using ALOS2-PALSAR mosaics and Sentinel-2 data from the
2019–2020 period to estimate the 98th percentile (RH98) of the
GEDI waveform return. The model robustness is also evaluated on
the 2021–2022 period, with similar performance. It can therefore be
applied to create maps on two separate dates and measure changes in
vegetation height caused by degradation. The changes estimated by our
method have a very good agreement with existing fire areas in
California and provide a finer understanding of the degradation
severity at high resolution compared to existing fire intensity maps.
We find that between those years, more than 60% of forest
(RH98≥ 10 m) degradation (≥30% decrease in height) were caused
by fires. This is key knowledge aligned with stakeholders requirements
for fire life cycle understanding, from fuel mapping before fires to
assessing burned areas extent and severity. Overall, this study
demonstrates the benefit of the combined sparse LiDAR and other
dense remote sensing products for forest monitoring at large scales and
the reliability of the empirical models to derive robust change maps.
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