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Introduction: The Common Agricultural Policy (CAP) is a vital policy framework
implemented by the European Union to regulate and support agricultural
production within member states. The Land Parcel Identification System (LPIS)
is a key component that provides reliable land identification for administrative
control procedures. On-the-spot checks (OTSC) are carried out to verify
compliance with CAP requirements, typically relying on visual interpretation or
field visits. However, the CAP is embracing advanced technologies to enhance
its efficiency.

Methods: This study focuses on using Sentinel-2 time series data and a two-level
approach involving recurrent neural networks (RNN) and convolutional neural
networks (CNN) to accurately identify permanent pastures.

Results: In the first step, using RNN, the model achieved an accuracy of 68%, a
precision of 36%, a recall of 97% and a F1-score of 52%, which indicates the
model’s ability to identify all the true positive parcels (correctly identified
permanent pasture parcels) and minimize the false negative parcels (non-
identified permanent pasture parcels). This occurs due to the difficulty in
distinguishing between permanent pastures and other similar land covers
(such as temporary pastures and shrublands). In the second step, it was
possible to distinguish the permanent pasture parcels from the others. The
obtained results improved significantly from the first to the second step. Using
CNN, an accuracy of 93%, a precision of 89%, and a recall of 98% were achieved
for the “Permanent pasture” class. The F1-score was 94%, indicating a balanced
measure of the model’s performance.

Discussion: The integration of advanced technologies in the CAP’s control
mechanisms, as demonstrated, has the potential to automate the verification
of farmers’ declarations and subsequent subsidy payments.
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1 Introduction

The Common Agricultural Policy (CAP) is a comprehensive
policy framework implemented by the European Union to support
and regulate agricultural production within its member states (Heyl
et al., 2021). With a substantial budget, the CAP plays a crucial role
in ensuring the stability and sustainability of Europe’s agricultural
sector (Heyl et al., 2021; European Commission, 2024). A significant
portion of this budget is managed and controlled through the
Integrated Administration and Control System (IACS)
(Commission, 2023). The IACS serves as the backbone of the
CAP’s financial management and control mechanisms. It
encompasses various tools and procedures to ensure compliance
with the CAP’s rules and regulations. One of the key components of
the IACS is the Land Parcel Identification System (LPIS) (European
Court of Auditors, 2016). The LPIS acts as a reliable reference for
land identification and serves as the basis for several administrative
control procedures. Within the CAP’s control system, on-the-spot
checks (OTSC) are carried out by the paying agency to verify the
accuracy of the information provided by farmers and to ensure that
they are complying with the CAP requirements (European Court of
Auditors, 2016; European Commission, 2023). These checks are
carried out on an annual basis but are limited to approximately 5%
of all agricultural holdings. The selection process for these checks is
typically based on visual interpretation of recent aerial or satellite
images or through field visits. By using these methods, authorities
can verify the accuracy of the declared agricultural areas and
activities. However, the CAP is continuously evolving to adopt
modern technologies that enhance its efficiency and cost-
effectiveness (European Court of Auditors, 2022). In this regard,
there is a growing recognition of the role that advanced technologies
can play in improving the IACS. For instance, Copernicus Sentinel
satellites and other Earth Observation (EO) data are increasingly
utilized to strengthen the control mechanisms for area-
based payments.

The application of remote sensing and machine learning
techniques for the identification of permanent pastures poses
some unique challenges compared to other soil uses (Allen et al.,
2018; Navarro et al., 2019). Permanent pastures, characterized by a
diverse mix of grass species and varying phenological stages, exhibit
high spectral and spatial heterogeneity (O’Mara, 2012). This
complexity makes it more challenging to accurately classify and
differentiate them from other land cover types using remote sensing
data (Reinermann et al., 2020; Morais et al., 2021). Additionally, the
dynamic nature of permanent pastures, which can undergo changes
in vegetation density and species composition over time, further
complicates their identification (Thrippleton et al., 2021).
Furthermore, the spectral similarity between permanent pastures
and other vegetation types, such as temporary crops or natural
grasslands, can lead to misclassification (Ali et al., 2016; Amin
et al., 2024).

Machine learning algorithms applied to Earth observation data,
although powerful, require large and diverse training datasets to
accurately classify land cover types (Tong et al., 2020; Tassi et al.,
2021; Morais et al., 2022). To address these difficulties, the
incorporation of time-series data from satellite bands and
vegetation indices has been used to enhance the discrimination
of permanent pastures from other crops (Zhu et al., 2016; Zhong

et al., 2019; Vilar et al., 2020). Common machine learning models
such as random forests and support vector machines have shown
commendable performance in land cover classification tasks (Duro
et al., 2012; Pflugmacher et al., 2019; Phiri et al., 2020), but they
encounter limitations when handling the temporal dynamics
inherent in time-series data (Sahu et al., 2023). For instance,
when a random forest model is employed on a remotely-sensed
monthly time series, a combination of month and band would be
treated as independent inputs. Conversely, recurrent neural
networks (RNNs) capture the temporal dynamics and patterns
present in time series data (Reichstein et al., 2019). These
architectures enable RNNs to learn and remember important
information over extended periods, allowing them to capture
patterns that occur across multiple time steps (Reichstein et al.,
2019; Zhong et al., 2019). Another family of models are
convolutional neural networks (CNNs) (LeCun et al., 1989;
O’Shea and Nash, 2015) that, in contrast to random forests and
support vector machines, incorporate spatial patterns that cannot be
adequately captured by those models. CNN is specifically designed
to leverage spatial features and capture intricate patterns through
convolutional layers, making it well-suited for tasks that require
spatial analysis and recognition (Tong et al., 2020; Trenčanová
et al., 2022).

By leveraging advancements in remote sensing and machine
learning, the CAP’s IACS can more accurately assess policy
implementation, relying less on costly human and computational
resources (López-Andreu et al., 2022). The integration of these
technologies offers the potential to streamline administrative
control procedures, enhance cross-checking capabilities, and
optimize on-the-spot checks by the paying agency, ultimately
contributing to the overall efficiency and effectiveness of the
CAP. For example, in mainland Portugal, an operational
monitoring system for the identification and classification of
annual crops has already been proposed in the context of CAP’s
IACS (Navarro et al., 2021). This system utilizes Sentinel-2 data and
machine learning algorithms, applying a hierarchical approach.
Vizzari et al. (2024) developed a Random Forest approach to
classify annual crops in the Lake Trasimeno area (Italy).
Similarly, in the Navarra region (Spain), multiple approaches
have also been proposed to validate annual crops from CAP
declarations. González-Audícana et al. (2020) proposed the use of
a Random Forest algorithm to classify crop types based on NDVI
time series data. Sitokonstantinou et al. (2018) concluded that
Random Forest was outperformed by Support Vector Machines
in the classification of annual crops using Sentinel-2 time series data,
utilizing individual bands and vegetation indices. Additionally,
(Campos-Taberner et al., 2021) found that for the same task, in
Valencia region (Spain), RNN outperformed random forest models.
Papadopoulou et al. (2023) also found that neural network models
performed better than Random Forest models in the classification of
annual crops in the Prefecture of Serres region (Greece).

Our study is the first to propose a model for identifying
permanent pastures in Portugal using machine learning and
Sentinel-2 time series data, leveraging this technology for the
region’s specific agricultural landscape. To achieve this, we
adopted a two-step approach. In the first step, we employed a
recurrent neural network (RNN) that utilized the monthly time
series of Sentinel-2 data. For each parcel, we extracted the mean
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values of each band and vegetation indices for each date of the time
series, which were then fed into the RNN. This allowed us to capture
the temporal patterns and changes in vegetation over time. In the
second step, we employed a convolutional neural network (CNN)
that operated on the monthly time series data at the parcel level. By
treating each monthly image as an input, we trained the CNN to
analyse the spatial patterns within each parcel, specifically focusing
on those introduced by landscape features, such as the presence and
extent of shrubs. This two-level approach enabled us to leverage
both the temporal and spatial information present in the Sentinel-2
data, enhancing the accuracy of permanent pasture identification.

2 Material and methods

2.1 Study area and sampling design

This research focused on mainland Portugal. Spanning
approximately from 36.98° N to 42.14° N in latitude and 6.19° W
to 9.53° W in longitude, it encompasses a wide range of geographical
features and climatic conditions. Portugal’s unique location along
the Atlantic Ocean and the Mediterranean Sea gives rise to a diverse
climate across the country, influencing its natural landscapes and
environmental characteristics. Mainland Portugal has several
climatic regions, as classified by the Köppen climate classification
system (Rubel and Kottek, 2010). The northern and central parts of
the country predominantly fall under the Csb climate category,
characterized by mild, wet winters and warm, dry summers. The
southern coastal areas experience a Csa climate, marked by hot, dry
summers and mild, relatively wet winters. The interior regions, the
transition from a Csa to a Csb climate occurs due to increased
continentality, resulting in colder winters and greater temperature
variations.

2.2 Land parcel information and remote
sensing data

In Portugal, the Land Parcel Identification System (LPIS) is
managed by the National Paying Agency for Agriculture and
Fisheries (IFAP, 2021). The LPIS is updated annually and
provides information on the geographic location and delimitation
of each agricultural parcel, as well as the soil use type declared by
farmers during their Common Agricultural Policy (CAP) subsidy
application. For this study, we considered the 2020, 2021, and
2022 versions of the LPIS provided by IFAP. The ground truth
data used in this study was collected by IFAP through on-the-spot
checks (OTSC) conducted each year (IFAP, personal
communication).

One notable source of Earth Observation data is the Sentinel-2
satellite mission (ESA, 2015; ESA, 2023). Sentinel-2, developed by
the European Space Agency (ESA), provides high-resolution,
multispectral imagery of Earth’s surface. It consists of a
constellation of two identical satellites, Sentinel-2A and Sentinel-
2B, operating in a sun-synchronous orbit. Sentinel-2 carries a
multispectral instrument with 13 spectral bands, ranging from
the visible to the shortwave infrared spectrum. This wide spectral
coverage enables detailed monitoring of various land and coastal

areas, including vegetation health, land use, urban development, and
water quality. The spatial resolution of Sentinel-2 imagery is
impressive, with bands offering 10-m, 20-m, and 60-m
resolutions, allowing for detailed analysis and mapping at
different scales. The frequent revisit time of Sentinel-2, with a
global coverage every 5 days, facilitates monitoring of rapidly
changing phenomena such as vegetation growth, deforestation,
and natural disasters (Morais et al., 2021; Venter and Sydenham,
2021; Dusseux et al., 2022). Furthermore, the free and open data
policy associated with Sentinel-2 has democratized access to high-
quality Earth observation data in Europe, enabling researchers,
scientists, and policymakers around the world to benefit from its
rich and diverse information (Ali et al., 2016).

Here, Sentinel-2 time series were used, considering nine spectral
bands, i.e., B2 (blue), B3 (green), B4 (red), B5-B7 (red-edge), B8
(near infrared), and B11-B12 (short-wave infrared) (ESA, 2015) and
one vegetation index, the Normalized Difference Vegetation Index
(NDVI) (Rouse Jr et al., 1973). Bands 1 (Coastal Aerosol), 9 (Water
Vapor), and 10 (Short-Wave Infrared - Cirrus) were not considered
as they are primarily used for atmospheric correction and cloud
detection, rather than being directly relevant to vegetation analysis
or land surface monitoring in this context (ESA, 2015; Phiri et al.,
2020). Thus, the selected spectral bands and NDVI reflect a
methodical approach designed to capture a wide range of
vegetation characteristics, from leaf structure and chlorophyll
content to water stress and biomass, enabling a robust analysis of
vegetation over time (Phiri et al., 2020).

Only Sentinel-2 images with less than 30% cloud cover were
used. To address gaps due to cloudy images, a linear interpolation
method was employed, based on Inglada et al. (2015). Additionally,
in the non-cloudy images, cloudy pixels were identified using the
corresponding Sentinel-2 ″quality_cloud_confidence” masks. To
handle these cloudy pixels, a temporal linear interpolation
approach was employed, based on the work of Inglada et al.
(2015), who demonstrated that a temporal linear interpolation
provided the best balance between accuracy and processing time
for handling cloudy data. In mainland Portugal, there are regions
with long periods of cloud cover and that is also a limiting factor to
use remote sensing data as Sentinel-2. For example, in the year 2018,
for the tile 29TNE between April and September there were only
8 cloud-free Sentinel-2 images (cloud cover lower than 30%), but for
2019 the number of cloud-free images increased to 13 (Navarro
et al., 2021). Here, to deal with this limitation, we followed the same
approach as others (Navarro et al., 2019; Navarro et al., 2021;
Catalão et al., 2022), i.e., linear interpolation between two cloud-
free images. However, this introduces error in the data and
consequently in the obtained results.

Monthly composite images were generated by integrating data
from multiple time points within each month. This approach
allowed for the extraction of representative information while
reducing the impact of small temporal variations in the imagery.
This approach minimizes the impact of short-term fluctuations
caused by factors like weather events, cloud cover, atmospheric
disturbances, or sensor noise. Monthly composites provide a more
stable dataset for long-term monitoring, capturing essential trends
while reducing the influence of temporary anomalies (Xu et al.,
2019). We used a median approach to obtain the composite. The
median is preferred because it is more robust to outliers and extreme
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values, which can arise due to residual cloud cover, atmospheric
disturbances, or sensor noise. This approach ensures a more reliable
and accurate representation of the typical conditions in each time
period, preserving the integrity of the data. The resulting composite
images were subsequently employed for the identification and
mapping of permanent pastures.

Figure 1 displays the spatial distribution of the utilized parcels
across mainland Portugal. A comprehensive dataset comprising a
total of 153,883 parcels was used for this study.

2.3 Classification procedure and accuracy
assessment

Figure 2 provides an overview of the procedure employed to
identify permanent pasture parcels. This procedure consists of two
main steps: the first step utilizes recurrent neural networks (RNN),
while the second step employs a convolutional neural network (CNN).

In the first step, the Sentinel-2 time series was transformed into a
tabular format. For each parcel and month, the mean values of each
band and the vegetation index were extracted from the time series. So,
the data structure for each parcel was represented as 1 × 10 × 12,
where 10 represents the number of bands (including individual bands

andNDVI) and 12 denotes the number of months in a year. The RNN
architecture incorporated multiple LSTM layers with decreasing units
(256, 128, 64, 32, 16, and 8) and dropout layers with a rate of 0.2 after
each LSTM layer. The size of these layers was chosen through an
iterative procedure, optimizing for performance and generalization.
Stacking LSTM layers with decreasing units allows the network to
gradually compress information, making it easier for the model to
focus on essential features while reducing overfitting risks. This
hierarchical reduction is effective in many deep learning
applications, particularly those involving time-series or sequence
data (Smagulova and James, 2020). The addition of dropout layers
after each LSTM layer serves as a regularization technique to mitigate
overfitting, ensuring the network generalizes well to unseen data
(Salehin and Kang, 2023). The architecture concluded with a dense
layer comprising 16 units and a rectified linear activation function
(ReLU), followed by a final dense layer with a sigmoid activation
function. The model was compiled using the binary cross-entropy loss
function, the Adam optimizer, and the accuracy metric. The ReLU
activation function is commonly used in hidden layers of neural
networks due to its simplicity and effectiveness. This helps prevent the
vanishing gradient problem and allows the model to learn complex
patterns (Vargas et al., 2021). Sigmoid is used in the final layer when
binary classification is involved. It maps the output to a range between
0 and 1, making it suitable for predicting probabilities, particularly for
binary outcomes (Dubey et al., 2022). The binary cross-entropy loss
function is commonly used in binary classification tasks. It measures
the difference between the predicted probability and the actual label,
penalizing incorrect predictions (Ramos et al., 2018). Adam is an
efficient optimization algorithm that adjusts learning rates adaptively
based on first- and second-order moments of gradients (Dubey et al.,
2022). The goal of this first step was to weed out parcels that, using the
tabular format only, can be clearly discarded as not being pasture.
Therefore, after training, in order to minimize the occurrence of false
negative parcels (i.e., parcels that are permanent pasture but are
incorrectly classified as non-pasture), the classification threshold
was reduced to 0.20. Although this adjustment decreased the
accuracy and precision of the model in the first step, it ensured
the maximization of the probability that all permanent pastures were
correctly classified as such. This threshold of 0.20 was defined
iteratively through validation experiments, where it was found to
ensure that more than 95% of the permanent pastures were correctly
identified. This procedure ensured the maximization of the
probability that all permanent pastures were correctly classified.

Subsequently, only the parcels classified as potentially
permanent pasture proceeded to the second step. Here, the
Sentinel-2 data was employed as a time series of images. For
each parcel, the Sentinel-2 images were clipped based on their
boundaries and divided into 16px x 16px images with at least
40% of their area falling within the parcel boundaries. As a
result, the data structure for each parcel becomes 1 × 12xNx
(16 × 16 × 10), where 12 represents the number of months in a
year, N represents the number of 16 × 16 images clipped, and
10 represents the number of bands (including individual bands and
NDVI). In this step, each image per parcel was treated
independently. Thus, there is no temporal dependency between
images of the same parcel.

The CNNmodel had the following architecture: it started with a
2D convolutional layer comprising 32 filters of size 2 × 2, accepting

FIGURE 1
Spatial distribution of the parcels used to identify permanent
pastures in mainland Portugal.
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input images with 16 × 16 pixels and 11 channels. An activation
function, ReLU, was applied to introduce non-linearity.
Subsequently, a max pooling layer with a pool size of 2 × 2 was
added to downsample the spatial dimensions. This process was
repeated with two additional convolutional layers, each consisting of
32 and 64 filters of size 2 × 2, respectively. These were followed by
ReLU activation and max pooling. The resulting feature maps were
then flattened into a 1D vector and passed through a dense layer
with 64 units, followed by ReLU activation. Tomitigate overfitting, a
dropout layer with a rate of 0.5 was introduced. Finally, a dense layer
with a single unit and sigmoid activation was appended to produce
the final binary classification output. The model was compiled using
the binary cross-entropy loss function and the Adam optimizer.

The accuracy assessment procedure was the same for both steps.
Regarding model training, validation, and testing, the total dataset was
randomly divided into three parts: 70% for training, 15% for validation,
and 15% for testing. The training set was used to train themodels, while
the validation set provided an unbiased evaluation of the model’s
performance and aided in fine-tuning the model’s hyperparameters.
The test set was used after the model had been fully trained to assess its

performance on completely unseen data. Multiple evaluation metrics
were assessed, including the confusion matrix, overall accuracy,
precision, recall, and the F1-score. The performance of the
classification was evaluated using the output of the second step model.

All methods were implemented on Python 3.9.12, using multiple
packages. The packages used were Numpy 1.18.5 to handle all the data
processing, scikit-learn 1.0.24 for data partition, keras 2.9 to construct
the neural networkmodels andTensorFlow 2.7 as the backend for keras.

3 Results

3.1 Descriptive analysis of the parcel
information and remote sensing data

In total, we utilized 153,883 unique parcels that underwent on-
the-spot checks for this study. Approximately 30% of the total number
of parcels were classified as permanent pasture, amounting to
46,687 parcels. These permanent pasture parcels are distributed
across the study area, with a concentration predominantly

FIGURE 2
Graphical representation of the process used in this work.
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observed in the southern part of mainland Portugal, specifically in the
Alentejo region, constituting around 30% of the total. This is the
region of the country with the highest overall pasture area.

Figure 3 demonstrates that there is minimal disparity in
reflectance values between permanent pastures and other land
cover types across all spectral bands. This phenomenon can be

FIGURE 3
Temporal variation of the used bands (individual and NDVI) from the Sentinel-2 time series. In each subplot, permanent pastures are represented by
the blue line, and other land classes by the orange line. The blue and orange lines represent the averages for permanent pastures and other land classes,
respectively. The range of variation for each is indicated by the dark and light blue bands. Oct - October; Nov - November; Dec - December; Jan -
January; Feb - February; Mar - March; Apr - April; May - May; Jun - June; Jul - July; Ago - August.
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attributed to the temporal similarity shared by permanent pastures
and other land cover classes, such as temporary pastures or
shrublands. However, Bands 6, 7, 8, 11 and 12 exhibit subtle, but
relevant, variations in reflectance values across the year. For
instance, in Band 6 and Band 7, while the overall trends are
closely aligned between permanent pastures and other land cover
types, there are observable differences during the early part of the
year, particularly between November and February. In Band 8,
permanent pastures tend to display slightly higher reflectance
values compared to other land cover classes, particularly in the
early part of the year. In Band 11, for example, reflectance values for
permanent pastures diverge slightly from other land cover types
between June and September. Similarly, Band 12 shows a growing
disparity between July and September, where permanent pastures
exhibit higher reflectance values compared to other land
cover classes.

3.2 Permanent pasture identification

Table 1 presents the confusion matrix of step one (using RNN).
In this step the classification threshold was reduced to 0.2 in an
effort to minimize false negative cases. The model became more
sensitive and captured a higher proportion of actual positive
samples, specifically those belonging to the permanent pasture.
This adjustment aimed to increase the recall, which indicates the
model’s ability to correctly identify positive cases. For example, the
model correctly identifies 97% of the actual permanent pasture
samples (accuracy of 68%, a precision of 36% and a F1-score of
52%). However, this approach may also lead to a higher number of
false positives (e.g., shrubland parcels), as the model becomes more
prone to classifying samples as permanent pasture even if they
belong to the other class. There were 13,634 non-pasture parcels
misclassified as permanent pasture. Consequently, the precision of
the model was affected, with an accuracy for the permanent
pasture class equal to 46%. The precision was about 36%,
indicating that out of all samples predicted as “Permanent
pasture,” only 36% are actually permanent pasture. The F1-
score, which considers both precision and recall, was 52% for
the “Permanent pasture” class.

In the OTSC conducted by IFAP, the actual land cover of all
parcels was collected. Consequently, it became feasible to identify
the specific true land cover of the parcels that were falsely classified
as positives. These parcels primarily comprised temporary pastures
(30%), shrublands (23%), and fallow land (8%).

Table 2 presents the confusion matrix of step two (using CNN).
In this classification step the threshold was kept at 0.5. The model
achieved an accuracy of 93%, which means that 93% of the samples
were correctly classified. The precision for the permanent pasture
class was 89%, indicating that out of all the samples predicted as
permanent pasture, 89% of them were actually permanent pasture.
The recall was 98% for the permanent pasture parcels. This means
that 98% of the actual permanent pasture parcels were correctly
identified by themodel. The F1-score was 94%, indicating a balanced
measure of the model’s performance, considering both false
positives and false negatives. In this classification step the
number of false negatives and false positives was
considerably reduced.

Figure 4 presents an example of the application of the proposed
procedure to identify permanent pastures at the parcel level. The
area displayed is one of the regions in the test set (i.e., it was not
used to train the model). This region was chosen because it is
particularly challenging for the algorithm as it exhibits a high
density of parcels. In this area, non-permanent pasture parcels
(light green) are predominant. Although the identification
procedure performed well in this area, its accuracy was lower
than the general performance on the test set, achieving 71%
compared to 93%. Some parcels were misclassified, particularly
those where permanent pasture was not detected (indicated by
pink parcels), representing one of the lowest accuracy cases in
the country.

TABLE 1 Confusion matrix on the test set for permanent pasture
identification in step 1 (using recurrent neural networks).

Predicted label

Permanent pasture Other

True label Permanent pasture 7,552 250

Other 13,634 4,211

TABLE 2 Confusion matrix on the test set for permanent pasture
identification in step 2 (using convolutional neural networks).

Predicted label

Permanent pasture Other

True label Permanent pasture 9,199 1,254

Other 129 10,604

FIGURE 4
Example of the identified permanent pastures and other areas at
the parcel level.
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4 Discussion

In this paper, we leveraged the advances in Earth
Observation (EO) data, specifically Sentinel-2 data, in
conjunction with machine learning methods for the
identification of permanent pastures in Portugal. To enhance
the identification process, a two-step approach was employed. In
the first step, RNN were utilized to perform an initial
identification of permanent pastures as well as similar land
cover classes, such as temporary pastures and shrublands. In
the second step, CNN were employed to effectively differentiate
between permanent pastures and other land cover classes,
achieving good performance with accuracy rates exceeding
85% across all evaluation metrics utilized.

To our knowledge, this study is one of the few specifically
focused on the identification and classification of ‘permanent
pastures,’ distinguishing them from other pasture types such as
annual pastures and shrub pastures. In contrast, most existing
models primarily target annual crops, and when pastures are
included in land cover classification schemes, they are often
aggregated into broader categories. This distinction is crucial for
agricultural monitoring and policy applications, as permanent
pastures play a different ecological and agricultural role
compared to other types of vegetation. When comparing our
approach with Navarro et al. (2021), who also conducted a study
in Portugal, their focus was on verifying farmer declarations under
the CAP using Random Forest and Support Vector Machinemodels.
Their model achieved about 97% compliance accuracy, but the
classification covered only annual crops and did not include any
type of pastures. Our results, in contrast, achieved an accuracy of
93% and a recall of 98% for permanent pastures. In comparison with
Campos-Taberner et al. (2021), who also used neural networks, their
bi-directional Long Short-Term Memory (Bi-LSTM) network
achieved a high overall accuracy of 97.5% in classifying various
land uses, including abandoned lands. Like Navarro et al. (2021),
their study did not focus on separating different types of pastures.
Finally, when comparing our study with models that use traditional
machine learning techniques, such as those by Sitokonstantinou
et al. (2018) and Vizzari et al. (2024), both of which employed
Support Vector Machines and Random Forest classifiers, we
observed that these studies often focused only on annual crops.
While they achieved strong classification metrics (e.g.,
Sitokonstantinou reported a kappa coefficient of 0.87, and Vizzari
reported accuracies up to 89%), these models did not differentiate
permanent pastures from other pasture types.

The Sentinel-2 time series was utilized to identify permanent
pastures in mainland Portugal. Sentinel-2 possesses a significantly
superior spatial resolution, up to 10 m, when compared to other
satellites such as LandSat-8, which has a spatial resolution of 30 m
(Zhong et al., 2019). However, in Portugal, the sizes of the parcels vary
greatly, with a considerable number of parcels being small or very
small (less than 0.1 ha). It was for areas with small parcels that our
model performed the worse. In these cases, the spatial resolution of
Sentinel-2 is too coarse to be applied effectively. To overcome this
limitation, high-resolution satellite imagery such as Pleiades or
GEOSat, which offer sub-meter spatial resolution, can be used as a
viable alternative (Catalão et al., 2022). Nonetheless, acquiring such
data incurs significant costs, which hinders their application in large

areas like mainland Portugal. Furthermore, orthophoto maps derived
from aerial images can also provide higher spatial resolution (Costa
et al., 2020), which is essential for accurately identifying permanent
pastures in very small parcels. However, orthophoto maps lack the
temporal resolution necessary to monitor inter-annual patterns, as
they are available at most once a year, whereas satellites pass over the
same region multiple times throughout the year. The use of super-
resolved images may be one strategy for moving forward and using
high spatial and temporal resolution data.

There have been limited studies specifically focused on
identifying permanent pastures and grassland systems, as most
research has concentrated on broader areas (Phiri et al., 2020;
D’Andrimont et al., 2021). Previous investigations conducted in
Portugal have primarily emphasized crops and broad agroforestry
systems (Allen et al., 2018; Navarro et al., 2021). It is noteworthy
that the accuracy achieved in the present study surpasses that
reported in the literature for studies with similar objectives. For
instance, (Phiri et al., 2020) conducted a review on the utilization
of Sentinel-2 satellite imagery for land cover and land use
classification, where the overall accuracy for object-based
classification ranged between 61% and 98% among the reviewed
papers. In comparison with average performances, the present
study attains higher accuracy levels. In the context of Portugal,
(Allen et al., 2018) developed a model for land cover classification
encompassing three municipalities in the Alentejo region, yielding
an accuracy of 63% specifically for the identification of the
agroforestry land cover class.

The procedure presented for identifying permanent pastures
represents a valuable tool for automating the verification of farmers’
declarations and subsequent subsidies payment. However, additional
validations are necessary to ensure its robustness and reliability. These
validations should include testing the procedure in different years,
distinct from the ones utilized in the present study (2019, 2020, and
2021).Moreover, it is important to acknowledge that the study area was
limited to mainland Portugal. In order to encompass the entire
country, including the Madeira and Azores archipelagos, further
developments are required. These unique regions possess distinct
conditions that differ significantly from those found in the
mainland (Gil and Abadi, 2015; Shrestha et al., 2019).

5 Conclusion

We have successfully developed a novel model that integrates
advanced remote sensing and machine learning techniques to
significantly improve the precision of identifying permanent
pasture parcels in Portugal. The key innovation of this study lies
in the two-step approach, which leverages the strengths of both RNNs
and CNNs in combination with Sentinel-2 time series data. In the first
step, the RNN demonstrated its capacity to capture the temporal
dynamics of the data, although it faced challenges in distinguishing
between permanent pastures and similar land cover types. However,
the critical novelty is the second step, where the CNN’s ability to
capture spatial features led to a substantial improvement in
classification performance, achieving 93% accuracy, 89% precision,
98% recall, and a 94% F1-score for the “Permanent pasture” class. This
two-tiered model represents a novel approach to automated land
cover classification within the CAP framework, addressing the
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longstanding challenge of distinguishing permanent pastures from
other land covers that can be applied to large areas or at country-scale
efficiently in computational terms. Our method not only enhances the
accuracy of pasture identification but also offers a scalable, cost-
effective solution for integrating advanced technologies into the CAP’s
control mechanisms, streamlining subsidy verification and supporting
more efficient agricultural management.
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