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Efficient monitoring of crop water requirements is crucial for assessing the
impacts of major irrigation projects, such as the Kaleshwaram lift irrigation
project, both before and after their implementation. These projects can
significantly change agricultural practices and water usage patterns,
necessitating thorough evaluations to ensure sustainable water management
and agricultural resilience. The main aim of this study is to evaluate and compare
crop water needs during the winter (rabi) seasons of 2018–2019 and
2022–2023 across the command area of the project. This is achieved by
mapping major crops and their respective length of growing periods across
the study area using sentinel-2 satellite data and ground data, and quantifying
crop water requirements using reference evapotranspiration and FAO crop
coefficients. Results reveal a significant shift towards rice cultivation, with an
over 80% increase in the winter season of 2022–2023 compared to 2018–2019,
indicating substantial escalations in crop water requirements. These findings
provide valuable insights into agricultural transformations induced by large-
scale irrigation interventions, emphasizing the need for sustainable water
management practices to ensure agricultural resilience and resource
conservation in similar contexts.
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1 Introduction

Agriculture in India’s dryland regions, heavily dependent on rainfed practices,
represents a critical sector that contributes significantly to the nation’s food security
and rural livelihoods. Approximately 60% of India’s net sown area is rainfed, covering
about 68 million hectares (Pratibha et al., 2024; Rao et al., 2015; Sharma et al., 2010).
However, the vulnerability of rainfed agriculture to climate variability and water stress
necessitates innovative approaches to enhance productivity and resilience (Rockström and
Barron, 2007). In states like Telangana, where rainfed agriculture predominates, represents
a crucial sector facing unique challenges and opportunities. Telangana, known for its
predominantly rainfed agricultural practices, relies heavily on monsoon rainfall to support
its agricultural activities (Gumma et al., 2023; Guntukula and Goyari, 2020). Approximately
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60% of Telangana cultivated area is rainfed, making it susceptible to
climate variability and water scarcity (Telangana State Agriculture
Department).

The adoption of irrigation technologies has been pivotal in
transforming agricultural landscapes in dryland areas (de Araujo
et al., 2021; Kpadonou et al., 2017). Over the years, India has
significantly expanded its irrigated area, reaching approximately
70 million hectares (Jain et al., 2019; Sharma et al., 2010). This
expansion has led to increased agricultural output and diversified
cropping patterns, contributing to improved food security and
economic stability in rainfed regions (Rao et al., 2015). The
adoption of irrigation technologies has been instrumental in
augmenting agricultural productivity and resilience in Telangana.
According to the Telangana State Irrigation Development
Corporation (TSIDC), the state has made significant strides in
irrigation development, with the coverage of irrigated area
expanding from 19.88 lakh hectares in 2014 to 24.81 lakh
hectares in recent years. This expansion has not only stabilized
crop production but has also diversified cropping patterns, leading
to improved food security and economic prosperity in
rainfed regions.

The Kaleshwaram Lift Irrigation Project (KLIP) in Telangana
has had a profound impact on agriculture in the region. By using
water from the Godavari river, the project has significantly expanded
the irrigation potential, allowing vast areas of farmland previously
dependent on erratic rainfall to be brought under consistent
irrigation (Venkateshwarlu and Deshpande, 2021). This
expansion of cultivable land has not only increased agricultural
output but also diversified the types of crops grown (Aizen et al.,
2019; Rahman, 2009). Moreover, these type of projects will mitigated
the impact of droughts by providing a steady water supply during
dry periods, reducing farmers’ vulnerability to climate variability
(Gohar and Cashman, 2016).

Satellite-based remote sensing has emerged as a game-
changing technology for agricultural monitoring and
management (Obi Reddy et al., 2023). The constellation of
remote sensing satellites, including Resourcesat, Cartosat,
Sentinel-2, Landsat, MODIS, and others, provides valuable data
on croplands, growing periods, and land use dynamics (Kumar
et al., 2022). These satellites enable accurate mapping of crop types
and monitoring of vegetation health, achieving a classification
accuracy of over 90% for crop type mapping (Gumma et al., 2022).
Such precise information empowers farmers and policymakers to
make informed decisions regarding land use planning, water
allocation, and crop management strategies (Weiss et al., 2020).
Recently, there has been significant interest in utilizing machine-
learning algorithms such as Random Forest (RF), Support Vector
Machines (SVM), and Artificial Neural Networks (ANN) for
classifying satellite data and its derivatives into various crop
types (Feng et al., 2019; Gumma et al., 2022; Panjala et al.,
2022; Saini and Ghosh, 2018; Sun et al., 2019; Xiong et al.,
2017). Additionally, several studies have employed satellite-
derived data, such as spectral mixture models (SMTs), to assess
land use and land cover (LULC) dynamics in different regions
(Teluguntla et al., 2017; Thenkabail et al., 2007). In this context,
our study aims to utilize a hybrid model integrating machine
learning algorithms and traditional methods to map crop types and
estimate the length of growing periods effectively.

Quantifying crop water requirements is fundamental to
optimizing water use efficiency in agriculture (Hsiao et al., 2007).
The National Commission on Agriculture, Government of India,
and Telangana State Department of Irrigation emphasize the
adoption of water-saving technologies such as drip and sprinkler
irrigation systems to meet crop water demands more effectively
(Abhilash et al., 2020). Research suggests that optimizing irrigation
scheduling based on crop water requirements can result in water
savings of up to 40% while maintaining or even increasing crop
yields (Playán andMateos, 2006). Research studies conducted by the
International Crops Research Institute for the Semi-Arid Tropics
(ICRISAT) demonstrate the benefits of precise irrigation scheduling
based on crop water requirements in improving water productivity
and yield stability in rainfed agriculture (Serraj et al., 2003). This
underscores the potential for efficient water management practices
to enhance agricultural sustainability in rainfed areas (Rost et al.,
2009; Sharma et al., 2010). Evapotranspiration (ET) combines
evaporation (water loss from soil and water bodies) and
transpiration (water loss from plants). Crop water requirements
(ETc.) reflect how much water crops need for optimal growth.
Remote sensing, like satellite imagery, helps estimate ET ETc by
monitoring surface temperatures, vegetation health (using indices
like NDVI), and detecting water stress (Gerhards et al., 2019; Khanal
et al., 2017; Kundu et al., 2016; Virnodkar et al., 2020). This
technology is vital for efficient water management in agriculture.

This study aims to analyse crop types, their growing periods, and
quantify water requirements before and after the KLIP in Telangana.
It will identify major crops grown in the area, assess their typical
growing durations using sentinel-2 satellite data imagery and
analyse historical water needs based on factors like
evapotranspiration and crop coefficients. Additionally, the study
will focus on crop water productivity, measuring the efficiency of
water use in relation to crop yield, to provide comprehensive
insights into the impact of KLIP on agricultural water
management and productivity.

2 Data and methods

2.1 Study area

Telangana, situated in southern India, is the 12th largest state by
both geographical area and population. It lies between 15° 46′ and
19° 47′N latitude and 77° 16′and 81° 43′E longitude. The state shares
borders with Maharashtra to the North and North-west, Karnataka
to the West, Chhattisgarh to the north-east, and Andhra Pradesh to
the south and east. Positioned on the Deccan Plateau in a semi-arid
zone, Telangana experiences a typical yearly average rainfall of
713 mm, ranging from 700 mm to 1,500 mm annually. The
south-west monsoon contributes around 80% of this rainfall,
with the remaining 20% from the north-east monsoon (MOSPI,
2016). Telangana has a tropical climate, with slight variations
influenced by elevation and maritime factors. Rainfall patterns
play a crucial role in determining the cropping patterns followed
by farmers in the region.

Telangana exhibits a diverse agricultural profile with crops
cultivated during both the kharif (monsoon) and rabi (winter)
seasons. In irrigated regions during the kharif season, major
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crops like paddy (rice), maize, cotton, and soybeans thrive due to the
availability of water through irrigation. The rainfed areas witness the
cultivation of millets and pulses benefiting from the natural
monsoon rainfall. Telangana state is drained with major, medium
and minor rivers. Of these, two are major interstate river basins,
i.e., Godavari and Krishna. The KLIP in Telangana, India, is the
world’s largest multi-stage lift irrigation project. It aims to irrigate
about 18.75 lakh hectares of drought-prone land across 13 districts
of Telangana. KLIP comprises 7 links, 28 segments, and an extensive
canal network covering over 1,800 km. This project aimed to
enhance agricultural prospects and water availability in the
region, benefiting 118 mandals/blocks as per the Telangana
government’s notification (Figure 1).

2.2 Ground survey data

Ground data were collected in March 2023 from 594 sample
points across the study area (Figure 2). The data collection process
involved utilizing pre-classified output and Google Earth imagery
through the iCrops mobile application (https://maps.icrisat.org/
icrops/index.php). Detailed information from specific locations
was gathered for training purposes, including class identification
and labelling. The collected dataset comprises geographical

coordinates, land use categories, percentages of land cover,
seasonal cropping patterns (gathered through farmer interviews),
crop types, and irrigation methods (irrigated or rainfed).

Independent data, not utilized for training, will be employed for
accuracy assessment. The ground data encompasses various crop
types such as Rice, Maize, Millet, as well as other land use and land
cover categories.

2.3 Methodology

2.3.1 Crop type mapping using satellite imagery
and ground data

The methodology for crop type mapping employed in this study
combines remote sensing techniques in Google Earth Engine (GEE)
with traditional ground truthing for accurate classification and
labelling (Figure 3). The study utilized Sentinel-2 satellite imagery
within the Google Earth Engine platform. Initially, the Normalized
Difference Vegetation Index (NDVI) was calculated for each image
captured during the winter season spanning from November to May
over the years 2018–2019 and 2022–2023. Subsequently, the
maximum NDVI value was determined for each month, and
these values were stacked to form a composite image comprising
seven bands, each representing the monthly maximum NDVI.

FIGURE 1
The study area showing the notified blocks of Telangana
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The stacked image was subjected to unsupervised classification,
i.e., k-means algorithm, dividing it into clusters, with each cluster
representing a unique signature known as a cluster signature.
Ground signatures were derived from the stacked imagery using
ground truth data collected in the field. The cluster signatures
obtained from the unsupervised classification were then
compared against the ground signatures and high-resolution
imagery from google earth. The best-matched clusters were
labelled with corresponding crop class names. Any
misclassifications identified were corrected through
reclassification of the affected clusters.

This hybrid approach integrates the efficiency and scalability of
machine learning in GEE for initial classification with the precision
of ground truthing to validate and refine the results, ensuring
accurate crop type mapping for the study area.

2.3.2 Mapping of length of growing periods
The methodology involves utilizing Sentinel-2 satellite data

within the GEE platform to map the length of growing periods
for specific crop types (Figure 4). Initially, the satellite images are
processed to create composite images and mask out non-crop pixels,
focusing solely on the desired specific crop areas.

The next step involves identifying the peak of the growing
season (POS) by identifying the maximum NDVI and its
corresponding date (Day of Year, DOY). Subsequently, the start
of the season (SOS) is determined by locating the pre-peak
minimum NDVI, and the end of the season (EOS) is identified

using the post-peak minimum NDVI. These critical dates (SOS,
POS, and EOS) are then aggregated into monthly intervals and
labelled accordingly for each pixel, repeating the entire process for
all specific crop types of interest.

2.3.3 Spatial mapping of crop water requirements
The methodology for estimating crop water requirements

involves several key steps to ensure accurate calculations based
on crop coefficients (Kc) and reference evapotranspiration (ETo)
data (Figure 5). Initially, the start of the growing season (SOS), peak
of the season (POS), and end of the season (EOS) for each crop will
be considered. These critical periods serve as the basis for applying
appropriate crop coefficients during different growth stages.

The use of crop coefficients (Kc) as outlined in the
FAO56 guidelines is fundamental to this methodology (Table 1).
For example, crops like rice and maize exhibit varying water
requirements throughout their growth stages. The provided Kc
ranges specify how much water a crop requires relative to the
surrounding environmental conditions, with different coefficients
assigned to initial, mid-season, and late-season stages. By applying
these coefficients to the corresponding growth stages of the crop, we
can estimate the relative water needs during these periods.

To estimate the crop water requirements, the methodology
integrates reference evapotranspiration (ETo) data obtained from
the Terraclimate database (Abatzoglou et al., 2018) for specific
growing periods. ETo represents the amount of water lost from
the soil and plant surfaces due to evaporation and transpiration

FIGURE 2
Spatial distribution of ground data collected.
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under standard conditions. By multiplying the ETo values by the
appropriate crop coefficient (Kc) for each growth stage, the crop
evapotranspiration (ETc.) values were derived which indicate the
actual water needs of the crop during those periods. It is important
to note that while the FAO56 crop coefficients provide a standard
framework, actual Kc values can vary based on factors such as local
environmental conditions, crop variety, and management practices.
Due to potential data constraints, similar values from the FAO
guidelines are often utilized for estimating crop water requirements.

2.4 Accuracy assessment

Accuracy has been assessed using validation data. A total of
402 ground survey samples were utilized to test the accuracy of the
classification findings to produce a confusion matrix. A confusion
matrix’s columns include field-plot data points, while the rows
provide crop map classification results (Congalton, 1991). Kappa
(Cohen, 1960) is a widely used metric that represents the agreement
between user and reference ground survey data.

3 Results

3.1 Spatial distribution of crop types and
their changes

The results of this study reveal significant changes in land use
and land cover within the notified mandals/blocks of the
Kaleshwaram project between 2018–2019 and 2022–2023

(Figure 6; Table 2). Rice cultivation experienced a remarkable
expansion, with the cultivated area increasing by 82.1% from
313,929 ha to 571,632 ha. Conversely, there was a notable decline
in millets/maize cultivation by 15.2%, with the area shrinking from
73,604 ha to 62,396 ha over the study period. Other crops showed
marginal change, decreasing slightly by 0.6% from 88,961 ha to
88,385 ha. The most substantial reduction was observed in fallow
land, which decreased by 30.3% from 754,954 ha to 526,559 ha.
Notably, water bodies exhibited an 18.2% increase, expanding from
81,533 ha to 96,375 ha. The overall classification accuracy obtained
about 85%. These findings highlight dynamic shifts in agricultural
practices and land management possibly influenced by the
implementation of the Kaleshwaram project.

The district-level changes in rice cultivation between the winter
seasons of 2018–2019 and 2022–2023 reflect significant shifts in
agricultural practices across different regions within the study area
(Table 3). The analysis presented in Table 3 demonstrates both
substantial increases and decreases in rice cultivation areas among
various districts. Medak district experienced the most dramatic
expansion in rice cultivation, with the area increasing by 219.7%
over the study period. This substantial growth suggests a shift
towards rice as a dominant crop in Medak, potentially driven by
factors such as irrigation improvements or market demands.
Rajanna Sircilla, Nalgonda, Siddipet, and Kamareddy districts
also exhibited notable increases in rice cultivation areas, ranging
from 75.5% to 134.6%. These districts may have seen intensified
efforts to promote rice farming or favorable conditions that have
encouraged farmers to expand their rice acreage.

Conversely, Medchal Malkajgiri district experienced a decline of
31.4% in rice cultivation area, indicating a shift away from rice

FIGURE 3
Methodology of crop type mapping.
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towards other crops or land uses in this region mainly due to
urbanisation. The overall trend of increasing rice cultivation
across several districts underscores the dynamic nature of
agricultural activities influenced by factors such as infrastructure
development (like irrigation projects), and climatic conditions.
These findings highlight the need for targeted interventions and
policy adjustments to optimize land use, promote sustainable
agriculture, and ensure food security in the context of evolving
agricultural landscapes within the Kaleshwaram project area.

The statistical analysis of the area under rice cultivation during
the winter seasons of 2018–2019 and 2022–2023 revealed significant
changes. The mean area under rice cultivation increased from
26,160.58 ha in 2018–2019 to 47,635.92 ha in 2022–2023,

representing a substantial rise of approximately 82.1%. The total
area under rice cultivation also saw a significant increase, rising from
313,927 ha to 571,631 ha. This indicates a notable shift towards rice
cultivation within the command area of the Kaleshwaram lift
irrigation project. The standard deviation for the area under rice
cultivation increased from 19,881.25 ha in 2018–2019 to
35,159.82 ha in 2022–2023, suggesting greater variability across
different districts. The mean percentage change in the area under
rice cultivation was 81.06%, with a standard deviation of 62.47,
highlighting considerable variability in the percentage change
across districts.

The paired t-test results further confirmed the statistical
significance of these changes, with a t-statistic of −4.053 and a

FIGURE 4
Methodology for mapping length of growing periods.
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p-value of 0.0019, indicating that the increase in rice cultivation
area between the two seasons is highly significant. These findings
underscore the significant impact of the Kaleshwaram lift
irrigation project on cropping patterns, with a marked shift
towards the cultivation of rice, a water-intensive crop. The

observed variability across districts suggests differing levels of
adoption and efficiency in utilizing the irrigation facilities,
providing valuable insights for policymakers and stakeholders
involved in agricultural planning and water resource
management.

FIGURE 5
Methodology for mapping crop water requirements.
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3.2 Spatial distribution of length of growing
periods and crop water requirement

The spatial distribution of growing season lengths reveals
distinct cultivation windows (SOS-POS-EOS) in the
Kaleshwaram region for both the 2018–2019 and
2022–2023 periods (Figure 7). For rice cultivation, the primary
sowing periods were November and December, with harvests
occurring in April and May, respectively. For Millet and Maize,
sowing occurred predominantly in November and December in
2022, resulting in harvests by March and April. This pattern saw
significant change in the 2018–2019 period, with sowing
occurring in December and January. The earlier sowing dates
in 2022 could be attributed to improved irrigation facilities.

These spatial maps aid in estimating water requirements by
integrating with ETr (Evapotranspiration).

As mentioned in the methodology, the crop water requirement
estimation relies on crop coefficients derived from FAO56, reference
evapotranspiration, and growing period lengths extracted from
spatial maps. The results obtained provide a comprehensive
overview of the crop water needs for the Kaleshwaram
project region.

The crop water requirements (CWR) across various districts
within the Kaleshwaram project region during the years
2018–2019 and 2022–2023 reveals substantial changes in
irrigation water demand (Figure 8; Table 4). Among these
districts, Medak showed the most significant increase in CWR,
soaring by 234.24% from 184,235,500 m3 in

FIGURE 6
Spatial maps of crop types for 2018–2019 and 2022–2023.
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2018–2019–615,788,797 mm in 2022–2023. This notable surge
signals a substantial transformation in agricultural water
requirements within Medak. Similarly, districts such as
Kamareddy, Siddipet, and Rajanna Sircilla also demonstrated
noteworthy increases of 54.48%, 120.12%, and 119.34%,
respectively. These sharp rises reflect evolving patterns in crop
cultivation, likely influenced by changing agricultural techniques
and climatic conditions.

Some districts experienced decreases in CWR over the same
period. Medchal_Malkajgiri witnessed a reduction of 30.07%, while
Nirmal’s CWR decreased by 19.89%. These declines could be
attributed to factors like enhanced water management practices,

shifts in crop choices, or variations in climate conditions affecting
water demand. Understanding these trends is critical for effective
water resource management and sustainable agricultural
development within the Kaleshwaram project area.

The statistical analysis of CWR across various districts
during the winter seasons of 2018–2019 and
2022–2023 revealed significant changes. The mean CWR
increased from 268,416,409.25 m³ in 2018–2019 to
414,419,145.92 m³ in 2022–2023, reflecting a substantial rise
of approximately 54.4%. This indicates a notable escalation in
water usage, driven by shifts in agricultural practices,
particularly an increased preference for water-intensive crops
like rice. The total CWR also saw a significant jump from
3,220,996,911 m³ in 2018–2019 to 4,973,029,751 m³ in
2022–2023, underscoring the scale of this transformation. The
standard deviation of CWR values for both years
(221,961,566.84 m³ for 2018–2019 and 305,375,997.76 m³ for
2022–2023) highlights the variability in water demand across
different districts, suggesting diverse agricultural practices and
irrigation efficiencies.

A paired t-test confirmed the statistical significance of these
changes, with a t-statistic of −2.884 and a p-value of 0.0149 (p <
0.05), indicating that the increase in CWR between the two seasons
is significant. This analysis underscores the profound impact of the
project on water usage patterns and the necessity for sustainable

TABLE 2 Classes and their respective areas for 2018–2019 and 2022–2023.

Class 2018–2019 (ha) 2022–2023 (ha) % change

01. Rice 313,929 571,632 82.1

02. Millets/Maize 73,604 62,396 −15.2

03. Other Crops 88,961 88,385 −0.6

04. Fallows 754,954 526,559 −30.3

05. Waterbodies 81,533 96,375 18.2

TABLE 3 District wise Rice crop changes in the study area.

S.No District name Area of rice in 2018–2019 (ha) Area of rice in 2022–2023 (ha) % change

1 Jagtial 9,625 13,553 40.8

2 Kamareddy 41,709 73,198 75.5

3 Karimnagar 25,27 47,61 88.4

4 Medak 22,555 72,101 219.7

5 Medchal_Malkajgiri 3,822 2,621 −31.4

6 Nalgonda 6,958 14,706 111.3

7 Nirmal 36,161 42,231 16.8

8 Nizamabad 63,443 99,323 56.6

9 Rajanna Sircilla 19,300 45,276 134.6

10 Sangareddy 16,564 29,216 76.4

11 Siddipet 43,893 91,799 109.1

12 Yadadri Bhuvanagiri 47,370 82,846 74.9

TABLE 1 Growth stage wise crop coefficients (Kc).

Crop Growth stage Kc range

Rice Initial 0.3–0.4

Mid-season 0.7–1.0

Late season 1.0–1.1

Maize/Milet Initial 0.3–0.4

Mid-season 1.0–1.2

Late season 0.8–1.0
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water management practices to ensure agricultural resilience and
resource conservation.

Analyzing these changes in crop water requirements enables
policymakers and stakeholders to allocate resources more efficiently
and devise strategies to optimize water usage and enhance
agricultural productivity across the region.

3.3 Accuracy assessment

The accuracy assessment table provides a detailed evaluation of
the classification performance for various land use/land cover
(LULC) classes in the study area, yielding an overall accuracy of
91.6% and kappa coefficient 0.838 (Table 5). This high level of
agreement between the classified map and the ground truth data
demonstrates the robustness of the classification model, which
effectively integrates Sentinel-2 satellite data with ground truth data.

Rice exhibited the highest accuracy metrics, with a User’s
Accuracy of 0.98 and a Producer’s Accuracy of 0.96. This
indicates that the classification model is highly effective in
identifying rice fields, likely due to the distinct spectral signature
of rice, particularly during the growing season. Millets/Maize also

performed well, with a User’s Accuracy of 0.95 and a Producer’s
Accuracy of 0.78. However, the slightly lower Producer’s Accuracy
suggests some confusion with other crop types, potentially due to
spectral similarities during certain growth stages. Other Crops had
lower accuracy metrics, with a User’s Accuracy of 0.63 and a
Producer’s Accuracy of 0.71, indicating higher rates of
misclassification. This could be attributed to the diverse nature of
crops in this category, which might overlap spectrally with Millets/
Maize and Fallows. Fallows showed a high Producer’s Accuracy of
0.95 but a lower User’s Accuracy of 0.70, suggesting that while most
actual fallow lands were correctly identified, some areas classified as
fallow were actually other crop types.

Water Bodies achieved perfect accuracy with both User’s and
Producer’s Accuracy at 1.00, highlighting the distinct and easily
identifiable spectral characteristics of water. Built-up areas had a
User’s Accuracy of 0.75 and a Producer’s Accuracy of 1.00,
indicating some misclassification with Other LULC classes.
Finally, Other LULC had a User’s Accuracy of 0.86 and a
Producer’s Accuracy of 0.67, reflecting moderate
misclassification rates.

These findings underscore the effectiveness of the classification
model in mapping LULC types, particularly for rice and water

FIGURE 7
Spatial distribution of length of growing periods across study area.
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bodies. However, they also highlight areas for improvement,
especially in distinguishing between different crop types and
fallows. The high overall accuracy suggests that the model is a

valuable tool for monitoring crop water demand and land use
changes, providing critical insights for sustainable water
management and agricultural planning in the region.

FIGURE 8
Spatial distribution of crop water requirements across study area.

TABLE 4 Total crop water requirements at district level.

S.No District CWR of 2018–2019 (m3) CWR of 2022–2023 (m3) % change

1 Jagtial 126,935,522 137,217,299 8.1

2 Kamareddy 418,702,588 646,832,239 54.5

3 Karimnagar 25,396,565 41,756,020 64.4

4 Medak 184,235,500 615,788,797 234.2

5 Medchal_Malkajgiri 32,357,119 22,627,636 −30.1

6 Nalgonda 44,709,161 115,014,455 157.3

7 Nirmal 555,519,927 445,046,074 −19.9

8 Nizamabad 732,343,715 908,125,046 24.0

9 Rajanna Sircilla 172,981,259 379,418,691 119.3

10 Sangareddy 207,285,849 227,538,384 9.8

11 Siddipet 355,496,277 782,524,171 120.1

12 Yadadri Bhuvanagiri 365,033,429 651,140,939 78.4
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4 Discussion

The study results show significant alterations in land use and
agricultural practices within the mandals/blocks affected by the
Kaleshwaram project over the span from 2018–2019 to
2022–2023. These changes are crucial for understanding the
project’s impact on the region’s agricultural landscape and water
demands. The most notable shift observed was the substantial
expansion of rice cultivation by 82.1%, indicating a preference
for this crop possibly due to enhanced irrigation facilities
provided by the Kaleshwaram project. Conversely, there was a
decline in millets/maize cultivation, suggesting a change in crop
preferences or adaptation strategies among farmers. The decrease in
fallow land by 30.3% points towards increased utilization of
previously unproductive areas, which could be linked to
improved water availability and agricultural infrastructure. The
district-level analysis further reveals variations in agricultural
practices. Medak district stands out with a remarkable 219.7%
increase in rice cultivation, indicating a major transformation
likely driven by factors such as irrigation enhancements or
market dynamics. Other districts like Rajanna Sircilla, Nalgonda,
Siddipet, and Kamareddy also witnessed substantial rises in rice
acreage, highlighting localized shifts in crop patterns and land use
strategies. The spatial distribution of growing seasons and crop
water requirements offers critical insights for water resource
management. The shift in sowing periods, particularly for rice
and millets/maize, points towards changes in agricultural
calendars possibly influenced by improved irrigation schedules.
These changes are fundamental for estimating and managing
water needs efficiently, ensuring sustainable agricultural
development.

The analysis of Crop Water Productivity (CWP) across various
districts from 2018–2019 to 2022–2023 reveals no major change in
water use efficiency for crop production (https://aps.dac.gov.in/
APY/Public_Report1.aspx). The CWP varies from 0.25 to 0.
47 across the study area. Most districts experienced slight

decreases in CWP, with reductions in Nirmal, Medak, Medchal
Malkajgiri, Nizamabad, and Kamareddy ranging from 0.04 to 0.06.
The districts of Karimnagar and Siddipet showed minimal decreases
of about 0.01, while Sangareddy remained stable with no change in
CWP (Table 6).

These findings suggest relatively stable water productivity levels,
thoughminor declines highlight the need for continuous monitoring
and improvement. Addressing potential challenges through
improved irrigation techniques, better water management
policies, climate adaptation strategies, and enhanced soil health
practices can help maintain and potentially improve water
productivity in the future.

This study provides valuable insights into the impact of the
Kaleshwaram project on agriculture and water management from

TABLE 5 Accuracy assessment for Crop Type Classification.

01.
Rice

02. Millets/
Maize

03. Other
crops

04.
Fallows

05. Water
bodies

06.
Built-up

05. Other
LULC

Total Users
accuracy

01. Rice 132 2 1 135 0.98

02. Millets/
Maize

18 1 19 0.95

03. Other
Crops

2 5 1 8 0.63

04. Fallows 5 1 19 2 27 0.70

05. Water
bodies

2 2 1.00

06. Built-up 3 1 4 0.75

05. Other
LULC

1 6 7 0.86

Total 138 23 7 20 2 3 9 202

Producers
Accuracy

0.96 0.78 0.71 0.95 1.00 1.00 0.67 Overall
Accuracy

0.916

TABLE 6 Crop water Productivity for study areas at district level.

Dist_Name CWP (2018–2019) CWP (2022–2023)

Jagtial 0.44 0.41

Kamareddy 0.42 0.38

Karimnagar 0.42 0.41

Medak 0.34 0.30

Medchal_Malkajgiri 0.39 0.35

Nalgonda 0.39 0.36

Nirmal 0.45 0.39

Nizamabad 0.47 0.43

Rajanna Sircilla 0.39 0.36

Sangareddy 0.30 0.30

Siddipet 0.26 0.25

Yadadri Bhuvanagiri 0.41 0.39

(CWP: Crop Water Productivity).
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2018–2019 to 2022–2023. However, it is important to acknowledge
several limitations. Firstly, the reliance on satellite imagery and
ground-based data introduces potential variability in data quality
and coverage across different districts. Secondly, the study’s
temporal scope is limited to a specific period, potentially missing
longer-term trends and seasonal variations. Thirdly, while efforts
were made to assess spatial variability, the study may not fully
capture localized impacts within diverse socio-economic contexts.
Methodologically, uncertainties exist in estimating crop water
requirements and land use changes using FAO crop coefficients
and remote sensing techniques. Lastly, the study primarily focuses
on agricultural and water management aspects, with less exploration
of broader environmental and socio-economic implications.
Addressing these limitations would enhance the study’s
applicability and provide a more comprehensive understanding
of the project’s impacts. Generally, crop water requirements are
estimated at administrative levels, whereas this method can estimate
crop water requirements at the pixel level in real-time using
satellite imagery.

Future research should concentrate on longitudinal and
comparative studies to track how agricultural practices and water
management evolve post-Kaleshwaram project. Enhancing data
integration using satellite imagery, ground-based data, and socio-
economic factors will improve accuracy in assessing crop water
requirements and land use changes. Developing climate-resilient
agricultural strategies tailored to local conditions, evaluating water
management policies, engaging local communities in decision-
making, and conducting comprehensive environmental impact
assessments are essential. These efforts will provide insights to
optimize agricultural outcomes and inform sustainable water
management policies in the Kaleshwaram project area.

5 Conclusion

The findings underscore the dynamic interplay between
infrastructure development, climate, and agricultural practices
within the Kaleshwaram project area. The significant increase in
rice cultivation alongside declines in other crops reflects adaptive
responses to changing conditions and opportunities afforded by
irrigation improvements. Key districts like Medak demonstrate
substantial shifts towards rice cultivation, potentially reshaping
regional agricultural economies. Conversely, districts like
Medchal Malkajgiri show declines in rice cultivation, possibly
due to urbanization pressures or alternative land use priorities.

Understanding these shifts in land use and crop water
requirements is essential for policymakers to optimize resource
allocation and promote sustainable practices. Effective
management of water resources, guided by detailed assessments
of crop water needs and growing season dynamics, is vital for
ensuring the long-term viability of agriculture in the
Kaleshwaram project region. In summary, the study highlights
the transformative impact of the Kaleshwaram project on
agriculture, emphasizing the need for targeted interventions to
harness opportunities and address challenges associated with
evolving agricultural landscapes.

While the increase in rice cultivation has positive aspects, such
as enhanced food security and economic benefits, it also poses
environmental challenges. One significant concern is the impact
of rice cultivation on methane emissions, a potent greenhouse gas.
Future studies will focus on the environmental side of rice
cultivation, particularly its contribution to methane emissions, to
develop strategies that mitigate these impacts and promote more
sustainable agricultural practices.
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