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The aerosol size distribution is a crucial metric for evaluating aerosol optical
characteristics and determines the direct and indirect radiative forcings of
aerosols. Traditional methods for inversion of aerosol size distribution often
suffer from ambiguities and limitations. To address these shortcomings, this
paper introduces a method for inferring aerosol volume size distribution
utilizing an improved Lévy flight and chaotic sparrow search algorithm
(ILCSSA). The algorithm incorporates Circle chaotic mapping onto the basic
Sparrow Search Algorithm (SSA) to obtain a high-quality initial population and
employs a Lévy flight strategy to enhance population diversity. Additionally, the
process of updating the population’s positions is optimized to improve algorithm
accuracy. To validate the feasibility of the proposed method, the measured
aerosol optical depth (AOD) data obtained from a Precision Solar Radiometer
(PSR) sun photometer in Shouxian are utilized and a series of comparisons were
conducted among the Sparrow Search Algorithm, Standard Particle Swarm
Algorithm, Improved Particle Swarm Algorithm, and Spider Wasp Optimization
Algorithm. The results demonstrate a significant performance advantage for the
ILCSSA, evidenced by an average reduction of 50% in Sumof Squared Errors (SSE)
and 36% in Root Mean Squared Error (RMSE) when compared to the other four
algorithms. Additionally, the AOD obtained by ILCSSA had a correlation
coefficient of 0.9748 with the original AOD data. Furthermore, we analyzed
the aerosol volume size distribution in Shouxian under conditions of good air
quality, moderate pollution, and mild pollution. The proposed method holds
significant reference value in the field of aerosol volume spectrum inversion.
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1 Introduction

Aerosols are defined as minute particles suspended within a specific volume of gas,
existing in the atmosphere in solid, liquid, or a combination of both states, thus forming a
fundamental component of the atmospheric system. These microscopic aerosol particles
can impact the balance of the atmosphere-Earth system through direct and indirect
radiation Goldsmith et al. (1998), consequently affecting weather conditions and
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climate change, as well as posing potential threats to human health.
Atmospheric aerosols play a crucial role in climate, ecology, and
human health Carslaw et al. (2010).

Aerosols are characterized by a range of optical parameters, such
as aerosol optical depth (AOD), scattering coefficient, phase
function, and particle size distribution. AOD, recognized as a
fundamental parameter, provides information on the combined
impacts of aerosol light absorption and scattering across the
atmosphere, thus serving as a crucial tool for assessing the degree
of air pollution Xun et al. (2021). Moreover, particle size distribution
characterizes the distribution of aerosol particles with varying radii
in the atmosphere, affecting other optical parameters and thereby
influencing climate radiation effects. Accurate calculation of these
optical parameters holds crucial significance for comprehensive
research into the impacts of aerosols on human health and
climate change Mao and Li (2014).

Since the 20th century, researchers in the field of engineering
science have encountered the challenge of inferring original images
from measured values, a problem commonly known as the
mathematical-physical inverse problem Engl et al. (1996). AOD
can be directly obtained through direct solar irradiance, and its
relationship with particle size distribution follows the first type of
Fredholm integral equation. The process of solving for the particle
size distribution entails resolving the unknown variables in this
integral equation. Nevertheless, because of the oscillations of theMie
kernel function, the aforementioned equation is ill-posed. The first
type of Fredholm integral equation was originally proposed by
Philips and Tikhonov and further developed by Twomey (1963).
This theoretical framework forms the basis for most inversions of
particle size distribution using sun photometers. For example, King
et al. utilized this theory to conduct linearly constrained inversion
for aerosol particle size distribution. However, the inversion results
exhibited significant errors because the actual aerosol particle size
distribution may not necessarily conform to a smooth function.
Furthermore, due to the nonlinearity of the problem and limitations
in solutions, the uniqueness of the solution remains uncertain
Lienert et al. (2001). Hence, when the assumption of a smooth
function is unreasonable, the Philips-Twomeny method becomes
ineffective. Currently, there are numerous methods for aerosol
particle size distribution inversion. These encompass
regularization algorithms for multi-wavelength lidar data Engl
et al. (1996), improved particle swarm optimization algorithms
Mao and Li (2015), spectral extinction fitting techniques for
Microtops II sun photometer data Lee et al. (2015), genetic
algorithms Ye et al. (1999), and ant colony optimization
algorithms Goldsmith et al. (1998). The utilization of these
methods provides researchers with additional options and
opportunities to conduct comprehensive investigations into
aerosol particle size distribution.

The Sparrow Search Algorithm is a novel swarm intelligence
optimization algorithm introduced by Xue and Shen in 2020,
inspired by the foraging and feeding behaviors of sparrows Xue
and Shen (2020). SSA is widely adopted in various domains owing to
its straightforward structure, limited parameters, and rapid
convergence. For instance, Xingjia Li employed SSA to improve
the control precision of robot manipulators Li et al. (2022).
Shenghao Bi utilized SSA to design efficient workshop layouts Bi
et al. (2024); Ahmed Fathy applied SSA to optimize the operation of

microgrids Fathy et al. (2022). However, like other swarm
intelligence algorithms, SSA faces challenges such as blind
initialization of the population, limited global search capabilities,
and susceptibility to local optima. To address these issues, we
propose an improved algorithm called the Improved Levy Flight
and Circle Chaotic Sparrow Search Algorithm (ILCSSA), which
outperforms the standard SSA and other classical swarm intelligence
algorithms in terms of computational accuracy and global
optimization capability.

This study utilizes AOD data collected by a PSR sun photometer
and applies ILCSSA for the inversion of aerosol volume size
distribution. The paper provides a detailed description of the
principles underlying aerosol particle size distribution based on
ILCSSA. To validate the efficacy of ILCSSA and determine its
feasibility in inverting volume distribution under varying air quality
conditions, a series of experiments were conducted, and their outcomes
were thoroughly compared with several other methods.

2 Materials and methods

2.1 Aerosol volume size distribution

According to Mie scattering theory, assuming aerosol particles
are spherical, the relationship between aerosol optical depth and
aerosol size distribution is as follows:

τ � ∫zm
0
∫rm
η0
πr2n r, z( )Qext λ, r,m( )drdz

� ∫rm
η0
πr2Qext λ, r, m( )n r( )dr (1)

Where Qext(λ,r,m) is the extinction efficiency factor, rm and r0 are
the upper and lower limits of aerosol particle radius, respectively,
and n(r, z) is the aerosol particle size distribution at a certain
altitude. In addition, n(r, z)dz is the number of aerosol particles
within the radius range from r to r + dr at altitude z and zm is the
height of the atmospheric column top.

FIGURE 1
The curve of extinction efficiency kernel function corresponding
to different wavelengths.
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A conversion relationship exists between aerosol volume size
distribution and particle size distribution Dubovik and King (2000).
Equation 1 can be rewritten as:

τ � ∫rm

r0

K λ, r, m( )v r( )dr (2)

Additionally,

K λ, r, m( ) � 3
4r
Qext λ, r, m( ) (3)

Where K(λ,r,m) denotes the efficiency kernel function, which
signifies the sensitivity of AOD to variations in aerosol particle
radius, as described in Equation 3. The relationship between its
distribution across different wavelengths and radii is depicted in
Figure 1. According to Mie scattering theory, the extinction
efficiency factor is intricately linked to the complex refractive
index of aerosols, where the real component relates to the speed
of light propagation and the imaginary component to light
absorption Bohren and Huffman (2008). Its values vary at
different wavelengths, exhibiting oscillatory decay as the aerosol
particle radius increases and gradually approaches a constant of 2.

2.2 Aerosol size distribution

In aerosol particle size distribution studies, distribution
functions such as the single log-normal distribution and multiple
log-normal distributions are commonly used to describe the
characteristics of aerosols across different scales. These functions
accurately reflect the variation in aerosol particle sizes in the
atmosphere and are suitable for analyzing and modeling various
types of aerosols.

2.2.1 Single-lognormal spectrum
The single-lognormal distribution is a statistically significant

aerosol particle size distribution function, expressed as follows:

n r( ) � dn r( )
d ln r( ) �

N

σ
���
2π

√ exp − lnr − lnrm( )2
2σ2

( ) (4)

where N is the normalized particle number constant, σ is the
standard deviation, and rm is the mean particle radius, as
described in Equation 4.

2.2.2 Multi-lognormal distribution
In reality, aerosol patterns in the atmosphere are not singular but

rather multifaceted. The multiple-peak lognormal distribution
provides a better description of multi-source, multi-scale aerosol
spectrum distribution. The expression for the number concentration
spectrum is Whitby (1978):

n r( ) � dn r( )
d ln r( ) �∑2i�1 Ni

σ i
���
2π

√ exp − ln r − ln rmi( )2
2σ2i

( ) (5)

Where Ni, σ i and rmi represent the aerosol particle number
concentration, geometric standard deviation, and median radius,
respectively.

While analyzing aerosol particle size distribution, number
density spectra might not always capture the true particle

distribution accurately. In contrast, volume size distribution
offers substantial advantages. The expression for the volume
spectrum is written as Dubovik et al. (2011):

] r( ) � d] r( )
d ln r( ) �∑2i�1 Vi

σ i
���
2π

√ exp − lnr − lnrmi( )2
2σ2i

( ) (6)

Where Vi, σ i and rmi represent the volume concentration, standard
deviation, and geometric mean radius, respectively. The symbol ‘i’ in
Equation 5 and Equation 6 indicates the aerosol mode,
distinguishing between the coarse mode and fine mode. The
result of substituting Equation 6 into Equation 2 is given in
Equation 7.

τ � ∫rm

r0

K λ, r, m( )∑2
i�1

Vi

σ i
���
2π

√ exp − ln r − ln rmi( )2
2σ2i

( )dr (7)

2.3 Principle of SSA

The Sparrow Search Algorithm Xue and Shen (2020) primarily
achieves position optimization by mimicking the foraging behavior
and reciprocity behavior of sparrows. Research has indicated that in
captive sparrow populations, two distinct types exist: discoverers
and followers. Discoverers possess the richest resources, responsible
for locating food and providing direction and area foraging for the
followers. The followers exploit the discoverer to obtain food.
Additionally, when faced with external attacks, they use a danger
alert mechanism. The mathematical model of SSA is presented
as follows.

Assuming the search space is D-dimensional and there are n
sparrows, the spatial positions of the population X can be
represented as follows, as described in Equation 8:

X �
x1,1 x1,2 /x1,d
x2,1 x2,2 /x2,d
..
. ..

. ..
.

xn,1 xn,2 /xn,d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (8)

Based on the randomly initialized positions, the fitness value of
each sparrow can be calculated. Those with superior fitness are
chosen as discoverers, and the remaining are considered followers.
The updated formula for the positions of the discoverer is as follows:

Xt+1
i,j �

Xt
i,j · exp

−i
α × itermax
( ) ifR2 < ST

Xt
i,j + Q · L ifR2 ≥ ST

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (9)

Where t is the current iteration number, j = 1,2,3, . . . ,d. itermax

denotes the maximum iteration times, and α is a random number
between 0 and 1. R2 (R2∈[0,1]) and ST (ST∈[0.5,1.0]) respectively
represent the warning and safety values. Q is a random number
following a normal distribution. L represents a matrix of size 1*D,
where each element in the matrix is 1. If R2 < ST, it indicates that
there are no predators nearby, and the discoverer can conduct an
extensive search. Conversely, if R2 < ST, it means that some
sparrows have detected predators, and the group needs to
immediately evacuate to a safe area.
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The update formula for the follower positions is given by
Equation 10:

Xt+1
i,j �

Q · exp Xt
worst −Xt

i,j

i2
( ) ifi> n

2

Xt+1
P + Xt

i,j −Xt+1
P

∣∣∣∣∣ ∣∣∣∣∣ · A+ · L otherwise

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (10)

Where XP is the current best position of the discoverer, and
Xworst denotes the current globally worst position. A represents a
matrix of size 1*D, where each element is randomly assigned either
1 or -1, A+ = AT (AAT)−1. When (i > n/2), it indicates that the ith
follower has not obtained food, with very low energy, and needs to
fly elsewhere to forage for energy.

Opting for a minority of individuals from the population to
function as sentinels, the formula for updating vigilantes’ positions is
as follows:

Xt+1
i,j �

Xt
best + β · Xt

i,j −Xt
best

∣∣∣∣∣ ∣∣∣∣∣ iffiti >fitg

Xt
i,j +K · Xt

i,j −Xt
worst

∣∣∣∣∣ ∣∣∣∣∣
fiti − fitw( ) + ε

⎛⎝ ⎞⎠ iffiti � fitg

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (11)

Where Xbest denotes the current global best solution. β is a random
number following the standard normal distribution. K is a random
number within the interval [-1, 1], and ε serves to prevent division by
zero. fitg and fitw respectively denote the current global best and
worst fitness values.

In brief, if fiti > fitg, it indicates that the sparrow at this
position is situated at the edge of the group, making it susceptible to
predator attacks. Conversely, if fiti = fitg, it signifies that the
sparrow positioned in the middle of the group has recognized the
danger and needs to move closer to neighboring sparrows to
decrease the risk of being captured. Here, K represents the
direction and stride of the sparrow’s movement.

2.4 Principle of ILCSSA

During the initialization phase of the population, random
positions are generated for various dimensions of sparrow
individuals. This often leads to the local clustering of sparrow
individuals. Hence, the introduction of Circle chaotic mapping is
incorporated to enhance the distribution of the initial population.
This allows the sparrow population to explore the entire space more
extensively, thereby improving the optimization capability of the
algorithm. The mathematical model is written as Equation 12:

Xn+1 � mod d1xn + d2 − d3

d1π
sin d1π · xn( )[ ]{ } (12)

Where n is the dimensionality of the solution. d1, d2, and d3 are
constants whose values can be adjusted to alter the resulting
outcomes. For the experiment, d1 is chosen as 2, d2 as 0.2, and
d3 as 0.5.

Lévy flight Yang and Deb (2009) is a type of random walk model
that simulates long-distance movement with random step lengths
and directions. A key characteristic of this model is that its step
lengths follow a Lévy distribution, which has a long tail. This means
there is a probability, albeit low, of encountering extreme values with

large step lengths. This allows for both small and large step lengths,
enhancing the likelihood of long-distance jumps Yang and Deb
(2010). Consequently, Lévy flight is widely used in swarm
intelligence optimization algorithms, effectively broadening the
exploration range of the search space, enhancing the randomness
of the swarm’s search, and aiding in avoiding local optima
Yang (2010).

The formula for updating positions using Lévy flight is given in
Equation 13:

xt+1
i � xt

i + δ ⊕ Levy λ( ) (13)
Where xt

i indicates the position of xi in the tth generation; δ
represents the step size, with δ > 0; ⊕ denotes point-by-point
multiplication; Lévy(λ) is the random search path, where the
step lengths follow a Lévy distribution. The mathematical model
is given in Equation 14:

Levy ~ u � t−λ, 1< λ≤ 3 (14)
Lévy flight involves random step lengths that conform to a Lévy

distribution, which is very complex and has not been fully
implemented. Therefore, the Mantegna algorithm is commonly
used for simulation. The mathematical representation of this
algorithm is given in Equation 15:

si � u

v| |1/β (15)

u ~ N 0, δ2u( ), v ~ N 0, δ2v( ) (16)

δu � Γ 1 + β( )sin πβ/2( )
Γ 1 + β( )/2[ ]β p 2 β−1( )/2

⎧⎨⎩ ⎫⎬⎭1/β

, δ] � 1 (17)

In Equation 16, u and v follow a normal distribution, and β is
typically set to 1.5, as shown in Equation 17.

According to Equation 9, when R2 < ST, the value of each
dimension of the sparrow individual decreases with the number of
iterations. Obviously, this is not an optimal strategy for global
optimization. Therefore, the position update for discoverers in
the SSA is:

Xt+1
i,j � Xt

i,j · 1 + Q( ) ifR2 < ST
Xt

i,j +Q ifR2 ≥ ST
{ (18)

In each iteration, the sparrow population is uniformly distributed.
When followers distance themselves from poor positions in all
dimensions and move closer to the optimal position, they tend to
converge quickly but are susceptible to local optima. Therefore, the
position update formula for followers in the SSA is:

Xt+1
i,j �

Xt
i,j + rand · Xt+1

P −Xt
i,j

∣∣∣∣∣ ∣∣∣∣∣ ifi> n

2

Xt+1
P + Xt

i,j −Xt+1
P

∣∣∣∣∣ ∣∣∣∣∣ · A+ · L otherwise

⎧⎪⎪⎨⎪⎪⎩ (19)

2.5 Experimental inversion of aerosol
particle size distribution using ILCSSA

Initially, the population is initialized using the Circle chaotic
mapping. In Equation 6, Vi, σ i and rmi represent unknown
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parameters, necessitating the determination of six position
parameters. This implies that the dimensionality of the sparrow
population is 6. Table 1 outlines the range of each dimension for the
particles, enabling the adjustment of the positions of the sparrow
individuals.

In this study, the AOD measurements at six different
wavelengths obtained from the PSR sun photometer are used as
the true values, denoted by τr. The AOD values derived from
Equation 7 are referred to as the calculated values, τc. Since the
goal of ILCSSA is to minimize the error between these values, the
root mean square error (RMSE) is chosen as the fitness function
value, Fit, which is calculated as shown in Equation 20:

Fit �

������
1
6
∑6
i�1

e2i

√√
�

������������
1
6
∑6
i�1

τr − τc( )2
√√

i � 1, 2, 3, . . . 6. (20)

Where i represents the measurement wavelength of the PSR sun
photometer. Figure 2 shows the comprehensive flowchart of the
aerosol volume size distribution inversion process using ILCSSA.

Step 1: Utilize the Circle chaotic mapping to generate unknown
parameters, which will be employed in the subsequent inversion
process of the aerosol volume size distribution.

Step 2: Employ Equation 6 to invert the aerosol volume size
distribution based on the generated parameters, and compute the
corresponding AOD values using Equation 7.

Step 3: Compute the fitness function value (Fit) for each sparrow
individual and rank them accordingly. Based on the sorted results,

TABLE 1 Range of parameters for different Aerosol mode particles.

Aerosol modes Vi rmi σ i

Fine Mode 1–0.001 0.01–1 0.2–0.8

Coarse Mode 1–0.001 1–5 0.2–0.8

FIGURE 2
Flowchart illustrating the inversion of aerosol particle size
distribution using the enhanced Circle chaotic mapping sparrow
search algorithm.

FIGURE 3
PSR sun photometer device utilized in the experiment.
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designate 20% of the individuals as discoverers, 70% as followers,
and 10% as vigilantes, assigning roles for the subsequent
optimization process.

Step 4: Retrieve the current individual positions Xi and the
global best position Xg for each sparrow, and record their
corresponding fitness function values Pi and the global best
fitness value Gbest.

Step 5: Update the positions of discoverers, followers, and
vigilantes using Equation 18, Equation 19, and Equation 11,
respectively, and recalculate the fitness function values. Repeat
the process from Step 2 until the set number of iterations is achieved.

Step 6: After completing the iterations, output the global best
position Xg, and substitute it into Equation 6 to obtain the final
aerosol volume size distribution.

3 Results and discussion

3.1 The comparison and analysis of multiple
algorithms

The research employed measurement data from the PSR sun
photometer for analysis. As shown in Figure 3, the PSR sun
photometer is located at the Shouxian National Meteorological
Observatory (32.56°N, 116.78°E). This device features broad
spectral coverage, with each scan covering 9 bands, comprising
340 nm and 380 nm in the ultraviolet spectrum, 440 nm, 500 nm,
and 670 nm in the visible spectrum, and 870 nm, 940 nm, 1020 nm,
and 1640 nm in the infrared spectrum.

The sun photometer is engineered with complete automation,
enabling direct irradiance observation through sun tracking and sky
radiance measurement. Developed by Anhui Zhongke Puruida
Optoelectronics Co., Ltd., detailed instrument parameters and
other relevant information can be referenced from Xun et al. (2021).

The aerosol size distribution inversion method based on the
Improved Particle SwarmOptimization Algorithm (IPSO) proposed
byMao et al Mao and Li (2015). has received widespread recognition
and application in the field of atmospheric science. This method

enhances global optimization capabilities by adjusting the speed and
position of particles and has effectively solved the accurate inversion
of aerosol size distribution under various weather conditions. Mao
et al.‘s approach has demonstrated exceptional performance,
particularly in dealing with nonlinear and ill-posed problems,
which is crucial for aerosol size distribution inversion.

Mao et al.’s research not only provides a theoretical foundation
for subsequent studies but has also validated its effectiveness in
several practical applications. For instance, comparisons with
traditional methods show that their approach offers higher
accuracy and robustness under dust and haze conditions.
Consequently, Mao et al.’s method is regarded as an important
reference standard for aerosol size distribution inversion.

In this context, to evaluate the feasibility of the ILCSSA
algorithm, we have compared it with SSA, PSO, IPSO, and SMO

TABLE 2 Range of parameters for different Aerosol mode particles.

Inversion method ILCSSA PSO SSA IPSO SMO

Population Size 30 30 30 30 30

Convergence Threshold 0.8 0.8

Maximum Iterations 25 50 50 50 50

Initial Inertia Weight ωini 0.9 0.9

Final Inertia Weight ωend 0.4 0.4

Cognitive Parameters c1 1.8 1.8

Social Parameters c2 1.8 1.8

Discoverers Ratio 20% 20%

Follower Ratio 70% 70%

Sentinels Ratio 10% 10%

Dimension d 6 6 6 6 6 FIGURE 4
The variation of fitness function values with evolutionary
generations for the ILCSSA, SSA, PSO, IPSO, and SMO methods.

FIGURE 5
Aerosol volume size distributions retrieved by various algorithms.

Frontiers in Remote Sensing frontiersin.org06

Xun et al. 10.3389/frsen.2024.1449854

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2024.1449854


Abdel-Basset et al. (2023) algorithms. Table 2 provides a detailed list
of the experimental parameters of these algorithms for
further analysis.

Figure 4 shows the variations in fitness values over different
numbers of iterations for the ILCSSA, SSA, PSO, IPSO, and SMO
methods. Despite initially demonstrating faster convergence rates,
both the ILCSSA and PSO algorithms show that after 10 iterations,
the ILCSSA’s fitness value decreases more rapidly than that of PSO.
Furthermore, compared to the SSA, IPSO, and SMO methods, the
ILCSSA significantly addresses premature convergence issues while
achieving superior results in terms of both convergence speed
and accuracy.

The aerosol volume size distributions retrieved by the ILCSSA,
SSA, PSO, IPSO, and SMO algorithms are presented in Figure 5. To
further evaluate the inversion performance of these five algorithmic
sets, we also randomly selected the sum of squared errors and the
mean square error between the calculated and true values of eight
sets of AOD at six wavelengths, as depicted in Figure 6. Notably, the
superiority of the ILCSSA algorithm is evident.

The correlation between the calculated AOD values obtained
through the ILCSSA algorithm and the measured values is presented
in Figure 7. We randomly selected 24 data sets to assess their
correlation, achieving a maximum correlation coefficient of
0.9748. This result further confirms the superiority of the
ILCSSA algorithm in aerosol inversion.

3.2 Inversion and analysis of volume size
distribution

To assess the practical application of ILCSSA, we describe the
characteristics of atmospheric aerosol volume size distribution in the
Shouxian. Experimental data were selected from periods of excellent,
good, and mild pollution air quality in Shouxian.

Figure 8 shows the diurnal variations in AOD and volume size
distribution based on the ILCSSA algorithm, during a period of
excellent air quality in Shouxian County on 1 August 2020. It is
evident from Figure 8A that there is a pronounced similarity
between the wavelength-dependent trend of AOD and its diurnal
variation. At the same moment, the relationship between AOD
values and wavelength exhibits an inverse correlation: longer
wavelengths correspond to smaller AOD values and trends,
whereas shorter wavelengths correspond to larger AOD values
and trends. The temporal variations in AOD values across
different wavelengths also demonstrate similarities. Following
sunrise in the morning, rapid heating of the Earth’s surface
induces a gradual increase in atmospheric temperature, leading to

FIGURE 6
Using the Sparrow Search Algorithm and the Circle Chaotic Sparrow Search Algorithm based on improved Levy flight for solving the sum of squared
errors (A) and mean square errors (B).

FIGURE 7
The correlation between the original and calculated values of
aerosol optical depth using the Circle Chaotic Sparrow Search
Algorithm based on improved Levy flight.
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intense convection. This convective process transports surface
pollutants upwards to higher altitudes, leading to an increase in
AOD during the morning hours. As human activities intensify
around noon, emissions from vehicular exhausts and industrial
pollutants escalate, coupled with the introduction of ground-level
dust into the atmosphere. These factors collectively contribute to a
rise in AOD, peaking at 12:54 PM. Subsequently, AOD values start
declining in the afternoon due to the decrease in surface temperature
and reduced human activities, facilitating the settling of particulate
matter back to the ground. As depicted in Figure 8B, the volume size
distributions at four different time points exhibit bimodal spectra,
mirroring the trends observed in AOD values, with higher aerosol
volume concentrations in the morning and lower concentrations in

the afternoon. Influenced by various factors, the amplitude of the
aerosol volume size distribution curves for the day is substantial,
indicating a predominance of anthropogenic fine particulate matter
in the atmospheric pollution of Shouxian County.

Figure 9 presents AOD and aerosol volume size distribution in
Shouxian on 14March 2021, during a period of favorable air quality,
as determined through the ILCSSA algorithm. Despite the overcast
weather conditions, AOD values remained relatively steady until 11:
42 a.m. Subsequently, over, for the next hour, there was a slight
decrease followed by an increase back to the initial values, peaking
abruptly at 2:51 p.m., after which AOD values began declining across
all spectral bands. Analysis of the volume spectra at different time
intervals reveals marginal discrepancies in volume concentration

FIGURE 8
Aerosol optical depth (A) and volume size distribution (B) based on improved Lévy Flight and Circle Chaos Sparrow Search Algorithm for excellent air
day in Shouxian on 1 August 2020.

FIGURE 9
Aerosol optical depth (A) and volume size distribution (B) based on improved Lévy Flight and Circle Chaos Sparrow Search Algorithm for good air day
in Shouxian on 14 March 2021.
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throughout the day, yet the primary and secondary peaks exhibit
consistent values, suggesting a stable overall structure of
atmospheric aerosols in Shouxian County for the day. The
retrieved aerosol volume size distribution demonstrates minimal
variability, consistent with the observed good air quality conditions.

Figure 10 illustrates the AOD and aerosol volume size
distribution in Shouxian County on 4 December 2020, during a
period of mild pollution, as derived using the ILCSSA algorithm. In
Figure 10A, before 12:40 p.m., AOD values exhibit significant
fluctuations at wavelengths of 340 nm, 440 nm, 500 nm, and
675 nm, while remaining relatively stable at 870 nm and 1020 nm.
Subsequently, AOD values commence an ascent, reaching their peak at
2:51 p.m., indicating a pronounced influence of fine particles on
afternoon AOD levels. Figure 10B portrays a comparable trend in
volume size distribution at 9:18 a.m. and 11:33 a.m., characterized by
relatively low volume concentrations, followed by a marked increase in
particles smaller than 1 micron in volume concentration at 1:30 p.m.
and 2:33 p.m. as aerosols accumulate. Relative to the volume size
distribution of aerosols at various time points on 1 August 2020, and
14 March 2021, the aerosol volume concentration on this day is
elevated, indicative of poor air quality conditions consistent with the
prevailing weather. Furthermore, the elevated presence of fine particles
suggests that anthropogenic emissions of fine particulate matter
primarily influenced the air quality in Shouxian County on that day.

The AOD values for 14 March 2021, were slightly lower or
comparable to those for 4 December 2020, but exhibited instability.
On 4 December 2020, the air quality index (AQI) was 104, classified
as lightly polluted, while on 14 March 2021, the AQI was 94,
classified as good. Notably, the AOD values for the mild
pollution air day were higher than those for the good air quality
day and this phenomenon is further analysed.

This discrepancy may be attributed to differences in
meteorological conditions and ozone concentrations. 4 December
2020, was a clear day, whereas 14 March 2021, was cloudy. Cloud
cover likely reduced solar radiation and increased atmospheric

humidity, which could have led to aerosol particle condensation
or growth, affecting the accuracy of AOD measurements and
resulting in lower AOD values. Additionally, the higher ozone
concentration on 14 March 2021 (128 μg/m3 compared to 64 μg/
m3), may have intensified the absorption in the ozone layer, thereby
reducing the scattering and absorption of sunlight by aerosols,
further influencing the stability and accuracy of the AOD retrieval.

4 Conclusions

Aerosols constitute a vital component of the atmosphere,
exerting significant influence on atmospheric radiation balance,
air quality, and human health. The aerosol size distribution is a
crucial parameter for assessing aerosol optical properties. In this
study, the ILCSSA algorithmwas successfully employed to overcome
the limitations of traditional methods in solving particle spectra.
This approach initializes the population using a typical Circle
chaotic mapping, optimizes the positions of explorers and
followers through optimization, and introduces Levy flights to
prevent convergence to local optima.

Compared to SSA, PSO, IPSO, and SMO algorithms, the
ILCSSA algorithm demonstrates superior performance in terms
of computational time and accuracy. Specifically, ILCSSA
achieves an average reduction of 60% in SSE and 43% in RMSE
compared to SSA; a 30% reduction in SSE and a 17% reduction in
RMSE compared to PSO; a 52% reduction in SSE and a 34%
reduction in RMSE compared to IPSO; and a 57% reduction in
SSE and a 51% reduction in RMSE compared to SMO. Additionally,
the correlation coefficient between the AOD obtained using ILCSSA
and the original AOD data is 0.974, reflecting high accuracy and
reliability. By utilizing AOD data obtained from a PSR sun
photometer, we successfully inverted aerosol volume spectra
under different air quality conditions in Shouxian County,
validating the feasibility of the ILCSSA method. The proposed

FIGURE 10
Aerosol optical depth (A) and volume size distribution (B) based on improved Lévy Flight and Circle Chaos Sparrow Search Algorithm for mild
pollution day in Shouxian on 4 December 2020.

Frontiers in Remote Sensing frontiersin.org09

Xun et al. 10.3389/frsen.2024.1449854

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2024.1449854


method holds significant promise in the field of aerosol volume
spectrum inversion.
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