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Many species of fishes around the world are soniferous. The types of sounds
fishes produce vary among species and regions but consist typically of low-
frequency (< 1.5 kHz) pulses and grunts. These sounds can potentially be used to
monitor fishes non-intrusively and could complement traditional monitoring
techniques. However, the significant time required for human analysts to
manually label fish sounds in acoustic recordings does not yet allow passive
acoustics to be used as a viable tool for monitoring fishes. In this paper, we
compare two different approaches to automatically detect fish sounds. One is a
more traditional machine learning technique based on the detection of acoustic
transients in the spectrogram and the classification using RandomForest (RF). The
other is using a deep learning approach and is based on the classification of
overlapping segments (0.2 s) of spectrogram using a ResNet18 Convolutional
Neural Network (CNN). Both algorithms were trained using 21,950 manually
annotated fish and non-fish sounds collected from 2014 to 2019 at five different
locations in the Strait of Georgia, British Columbia, Canada. The performance of
the detectors was tested on part of the data from the Strait of Georgia that was
withheld from the training phase, data from Barkley Sound, British Columbia, and
data collected in the Port of Miami, Florida, United States. The CNN performed up
to 1.9 times better than the RF (F1 score: 0.82 vs. 0.43). In some cases, the CNN
was able to find more faint fish sounds than the analyst and performed well in
environments different from the one it was trained in (Miami F1 score: 0.88). Noise
analysis in the 20–1,000 Hz frequency band shows that the CNN is still reliable in
noise levels greater than 130 dB re 1 μPa in the Port of Miami but becomes less
reliable in Barkley Sound past 100 dB re 1 μPa due to mooring noise. The
proposed approach can efficiently monitor (unidentified) fish sounds in a
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variety of environments and can also facilitate the development of species-specific
detectors. We provide the software FishSound Finder, an easy-to-use open-source
implementation of the CNN detector with detailed documentation.
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passive acoustics, random forest, convolutional neural networks, British Columbia, Florida

1 Introduction

Over 1,000 species of fishes worldwide are known to be
soniferous (Kaatz, 2002; Rountree et al., 2006; Looby et al.,
2022). It is believed that many more species produce sounds, but
their repertoires have not yet been identified (Looby et al., 2022; Rice
et al., 2022). Several ongoing efforts aim to identify and characterize
sounds from more fish species (e.g., Riera et al., 2020; Mouy et al.,
2018; 2023; Parsons et al., 2022), but many fish sounds still remain
unknown. Fishes can produce sound incidentally while feeding or
swimming (e.g., Moulton, 1960; Amorim et al., 2004) or
intentionally for communication purposes (Ladich and Myrberg,
2006; Bass and Ladich, 2008). The temporal and spectral
characteristics of fish sounds can convey information about male
status and spawning readiness to females (Montie et al., 2016), or
about male body condition (Amorim et al., 2015). It has been
speculated that some species of fishes may also emit sound to
orient themselves in the environment (i.e., by echolocation,
Tavolga, 1977). As is the case for marine mammal sounds, fish
sounds can typically be associated with a specific species and
sometimes to specific behaviors (Lobel, 1992; Ladich and
Myrberg, 2006). Several populations of the same species can have
different acoustic dialects (Parmentier et al., 2005). Consequently, it
may be possible to use the characteristics of recorded fish sounds to
identify which species of fishes are present in an environment, to
infer their behavior, and in some cases potentially identify and track
a specific population (Luczkovich et al., 2008).

Passive acoustic monitoring (PAM) of fishes can not only
provide presence/absence information, but in some cases it can
also be used to estimate the relative abundance of fish in an
environment. By performing a simultaneous trawl and passive
acoustic survey, Gannon and Gannon (2010) found that
temporal and spatial trends in densities of juvenile Atlantic
croaker (Micropogonias undulatus) in the Neuse River estuary in
North Carolina could be identified by measuring characteristics of
their sounds in acoustic recordings (i.e., peak frequency, received
levels). Similarly, Rowell et al. (2012) performed passive acoustic
surveys along with diver-based underwater visual censuses at several
fish spawning sites in Puerto Rico and demonstrated that passive
acoustics could predict changes in red hind (Epinephelus guttatus)
density and habitat use at a higher temporal resolution than
previously possible with traditional methods. Rowell et al. (2017)
also measured sound levels produced by spawning Gulf corvina
(Cynoscion othonopterus) with simultaneous density measurements
from active acoustic surveys in the Colorado River Delta, Mexico,
and found that the recorded levels were linearly related to fish
density during the peak spawning period. While passive acoustics
shows great promise for monitoring fish populations, it is still largely
limited by knowledge gaps about the vocal repertoire of many
fish species.

The manual detection of fish sounds in passive acoustic
recordings is typically performed aurally and by visually
inspecting spectrograms. This is a time-consuming and
laborious task, with potential biases which depend on the
experience and the degree of fatigue of the analyst (Leroy
et al., 2018). Therefore, developing efficient and robust
automatic detection and classification algorithms for fish
sounds can substantially reduce the analysis time and effort
and make it possible to analyze large acoustic data sets.
Detector performance depends on the complexity and
diversity of the sounds being identified. It also depends on the
soundscape of an environment, such as the characteristics of the
background noise. Many methods have been developed to
automatically detect and classify marine mammal sounds in
acoustic recordings (e.g., Mellinger and Clark, 2000; Gillespie,
2004; Roch et al., 2007; Thode et al., 2012; Mouy et al., 2013).
However, much less work has been carried out on automated
detection for fish sounds, and what has been done is restricted to
a small number of fish species. Early studies used energy-based
detection methods (Mann and Lobel, 1995; Stolkin et al., 2007;
Mann et al., 2008). In the last few years, more advanced
techniques have been investigated. Ibrahim et al. (2018),
Malfante et al. (2018), and Noda et al. (2016) applied
supervised classification techniques typically used in the field
of automatic speech recognition to classify sounds from multiple
fish taxa. Sattar et al. (2016) used a robust principal component
analysis along with a support vector machine classifier to
recognize sounds from the plainfin midshipman (Porichthys
notatus). Urazghildiiev and Van Parijs (2016) developed a
detector for Atlantic cod (Gadus morhua) that uses a
statistical approach based on subjective probabilities of six
measurable features characterizing cod grunts. Lin et al. (2017,
2018) investigated unsupervised techniques to help analyze large
passive acoustic datasets containing unidentified periodic fish
choruses. More recently Munger et al. (2022) and Waddell et al.
(2021) used convolutional neural networks to detect damselfishes
in the western Pacific, and six types of fish sounds in the northern
Gulf of Mexico, respectively. A review of recent advances in fish
sound detection can be found in Barroso et al. (2023). Many of
these studies target particular species and focus on specific
regions. Consequently, there is a need to develop a generic
fish sound detector that is species agnostic and can detect
individual sounds (i.e., not fish choruses), and be used in a
wide variety of environments.

The objective of this study is to develop automatic fish sound
detectors that can be used to efficiently analyze large passive acoustic
datasets. We implement two different methods and evaluate how a
deep learning approach performs compared to a more traditional
machine learning approach. We quantify the performance of the
detector using data from two different marine environments with
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completely different fish communities: British Columbia, Canada
and Florida, United States.

2 Materials and methods

Two different fish sounds detection approaches are investigated.
One is based on random forest (RF) classification, a traditional
machine learning technique (Section 2.3). The other is using a
convolutional neural network (CNN) which is a newer deep
learning technique (Section 2.4). Both approaches use the
spectrogram representation of the acoustic signal (Section 2.2).

2.1 Datasets

Three different datasets are used in this work: Data from the
Strait of Georgia, British Columbia, Canada; data from Barkley
Sound, British Columbia; and data from the Port of Miami, Florida,
United States. The Strait of Georgia dataset is used to both train and
test the detectors while data from Barkley Sound and the Port of
Miami are used only for testing detectors. For all datasets,
annotations were created with the software Raven Pro (K. Lisa
Yang Center for Conservation Bioacoustics) and consisted of
manually drawing time-frequency boxes around each fish sound
identified on the spectrogram in the 0–3 kHz frequency band. The
analysts identified fish sounds in recordings based on time and
frequency characteristics of fish sounds described in the literature
(Looby et al., 2021). They typically consisted of grunts, pulses and
pulse-trains with a peak frequency below 1 kHz and a frequency
bandwidth smaller than 800 Hz. Higher frequency impulses
attributed to invertebrates were not labelled as fish sounds and
were considered as “noise.” While fish and invertebrate sounds
overlap in frequency, analysts were most often able to distinguish
them by the much higher peak frequency and frequency bandwidth

of the invertebrate sounds. In case of ambiguities (typically for
sounds with low signal to noise ratios), the analysts used the
temporal context (e.g., similar sound sequence found later of
earlier in the recording) to decide of the origin of the sounds.
Because we could not verify with certainty the source of each sound
in the field (e.g., using an audio-video array, Mouy et al., 2023), some
sounds may have been mislabeled as fish sounds.

2.1.1 Dataset 1: Strait of Georgia, Canada
Dataset 1 is a collection of passive acoustic data collected by the

authors and collaborators in the Strait of Georgia from 2014 to 2019
(Table 1, black dots in Figure 1). Data from deployments 1 and 2
(Table 1) come from the studies carried out by Nikolich et al. (2016)
and Mouy et al. (2023), respectively. Data from deployments 3-
9 were collected by Fisheries and Oceans Canada inside (NC-RCA
in) and outside (NC-RCA out) the Northumberland Channel
Rockfish Conservation Area. Data from deployment 10 was
acquired at the Delta Node of the VENUS cabled observatory
operated by Ocean Networks Canada. Finally, data from
deployments 11 and 12 come from the study carried out by
Nikolich et al. (2021). Data were collected using either
SoundTrap STD300 (Ocean Instruments) or AMAR
(Autonomous Multichannel Acoustic Recorder, JASCO Applied
Sciences) recorders. In all cases, hydrophones were placed near
the seafloor (<1 m) and in water depths less than 20 m, except for
Delta Node which had a water depth of 150 m. Recorders were set
with different sampling frequencies but all acquired data up to a
frequency of at least 16 kHz (i.e., minimum sampling frequency
of 32 kHz).

Data were manually annotated by seven analysts. The
annotation protocol differed slightly depending on the
deployment, but in all cases, the analysts annotated individual
fish sounds rather than grouping several sounds into a single
annotation. Other sounds were also annotated and included
marine mammal calls (e.g., killer whale, harbor seal),

TABLE 1 Description of Dataset 1 collected in the Strait of Georgia, British Columbia Canada.

Dep. ID Location Acoustic recorder Deployment date Fish annot Noise annot Total annot

1 Hornby Island AMAR-G3 Sep. 2014 1,052 57 1,109

2 Hornby Island AMAR-G3 Sep. 2019 7,087 387 7,474

3 NC-RCA in Soundtrap-300 Oct. 2018 8,138 492 8,630

4 NC-RCA in Soundtrap-300 Jan. 2019 86 263 349

5 NC-RCA in Soundtrap-300 Apr. 2019 81 131 211

6 NC-RCA in Soundtrap-300 Aug. 2019 69 77 146

7 NC-RCA out Soundtrap-300 Oct. 2018 678 594 1,272

8 NC-RCA out Soundtrap-300 Dec. 2018 7 89 96

9 NC-RCA out Soundtrap-300 Apr. 2019 70 123 193

10 Delta node AMAR Streamer Sep. 2014 820 950 1,770

11 Fernie Island Soundtrap-300 May 2019 831 0 831

12 spring Bay Soundtrap-300 Aug. 2018 1,173 3,292 4,465

Total 21,032 7,323 28,355

Frontiers in Remote Sensing frontiersin.org03

Mouy et al. 10.3389/frsen.2024.1439995

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2024.1439995


anthropogenic and environmental sounds (e.g., vessels, waves), and
pseudo noise (e.g., flow noise, objects touching hydrophone). Noise
annotations were also performed semi-automatically. First, sections
of audio recordings not containing any fish sounds were identified by
analysts. Then, a detector (Section 2.3.1) was run on the selected
recordings to automatically define the time and frequency boundaries
of all acoustic transients. Recordings used to create this noise dataset
were chosen so it would include a large variety of sounds such as noise
from vessels, moorings, surface waves, and invertebrates.

All fish annotations are labelled as such (“fish”), while all non-
fish annotations are grouped into the label “noise” (Table 1). The
entire dataset includes 21,032 fish annotations and 7,323 noise
annotations, is composed of 670 audio files (each being either 5-
min or 30-min long depending on the deployments) and represents
a total of 133.75 h of accumulated acoustic recordings.

2.1.2 Dataset 2: Barkley sound, Canada
Data from the second dataset were collected in Barkley Sound,

on the West coast of Vancouver Island, British Columbia, Canada
using an M36 hydrophone (Geospectrum Technologies Inc.)
connected to an AMAR recorder (JASCO Applied Sciences)
deployed on the seafloor (water depth: 21 m) from 9 September
2022 to 16 September 2022. The recorder acquired data
continuously with a sampling frequency of 32 kHz. Two analysts
fully annotated four 30-min files per day by selecting each file
randomly within each 6-h period of the day. Thirty files were

fully annotated, representing an accumulated recording duration
of 15 h spread out over a period of 7 days. The dataset contains a
total of 5,431 annotated fish sounds (Table 2).

2.1.3 Dataset 3: Port of Miami, United States
Data from the third dataset were collected in the Port of Miami,

FL, Unitesd States from 7 June 2023 to 15 June 2023, as part of the
2023 World Oceans Passive Acoustic Monitoring (WOPAM) Day
(Figure 2). Data were collected using a HTI-96-Min hydrophone
(High Tech Inc.) connected to a SoundTrap 4,300 recorder (Ocean
Instruments) and placed on the seafloor (water depth: 3 m) near the
Coral City Camera (Coral Mophologic: www.coralcitycamera.com).
The recorder acquired data continuously at a sampling frequency of
144 kHz. An analyst annotated all fish sounds in the first 5 minutes
of each hour for each day of the deployment. One hundred and
ninety (190) files were fully annotated which represents an
accumulated recording duration of 15.8 h spread out over 8 days.
The analyst annotated a total of 19,858 fish sounds (Table 2).

2.2 Spectrogram calculation and denoising

For all detection approaches, spectrogram calculation and
denoising (equalization) is the first processing step. The
spectrograms were calculated using 0.064 s long frames, 0.064 s
long FFTs (i.e., no zero-padding), and time steps of 0.01 s. This

FIGURE 1
Map of the sampling locations for Dataset 1 (black dots) and Dataset 2 (red star) collected in British Columbia, Canada. The red rectangle in (A)
indicates the zoomed-in area represented in (B). NC-RCA In and NC-RCA Out indicate recorders deployed inside and outside the Northumberland
Channel Rockfish Conservation Area, respectively.

TABLE 2 Description of datasets 2 and 3.

Dataset Location Acoustic recorder Deployment date Fish annot Noise annot Total annot

Dataset 2 Barkley Sound AMAR-G3 Sep. 2022 5,431 0 5,431

Dataset 3 Port of Miami SoundTrap-4300 Jun. 2023 19,858 0 19,858
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resolution was selected as it can represent well the different types of
fish sounds (i.e., grunts and knocks). Given that all fish sounds of
interest in this study have frequencies below 1.2 kHz, the
spectrogram is truncated to only keep frequencies from 0 to
1.2 kHz. Magnitude values are squared to obtain energy and
expressed in decibels. To improve the signal-to-noise ratio of fish
sounds and attenuate tonal sounds from vessels, the spectrogram is
equalized using a median filter, calculated with a sliding window, for
each row (frequency) of the spectrogram. The equalized
spectrogram, Ŝ[t, f], at each time bin, t, and frequency bin, f, is
calculated as:

Ŝ t, f[ ] � S t, f[ ] − Smed t, f[ ], (1)
where S[t, f] is the original spectrogram and Smed[t, f] is the
median spectrogram calculated as:

Smed t, f[ ] � median S t − k, f[ ], S t − k + 1, f[ ], . . . , S t, f[ ],(
. . . , S t + k − 1, f[ ], S t + k, f[ ]), (2)

where the median is calculated on a window centered on the tth

sample and has a duration of 2k + 1 bins. Figure 3A shows the
equalized spectrogram. Here, we choose a median window
equivalent to a 3 s duration (k � 150), which removes constant
tonal components from vessels without removing the longer
grunting sounds from fish.

2.3 Approach 1: Random forest

The first approach implemented to detect fish sounds is based on
the RF classification algorithm. It consists of 1) segmenting the
spectrogram to detect acoustic transients, 2) extracting features for
each detected event, and 3) classifying each event using a binary
(“fish” vs. “noise”) RF classifier.

2.3.1 Spectrogram segmentation
Once the spectrogram is calculated and equalized, it is

segmented by calculating the local energy variance on a two-
dimensional (2D) kernel of size ΔT × ΔF. The resulting matrix
Svar (Figure 3B) is defined as

Svar t, f[ ] � 1
ΔTΔF( ) − 1

∑
t+ΔT

2

i�t−ΔT
2

∑
f+ΔF

2

j�f−ΔF
2

|Ŝ i, j[ ] − μ|2, (3)

where μ is the mean over the 2D kernel:

μ � 1
ΔTΔF( ) ∑

t+ΔT
2

i�t−ΔT
2

∑
f+ΔF

2

j�f−ΔF
2

Ŝ i, j[ ]. (4)

In this study, the number of time and frequency bins of the kernel are
chosen to be equivalent to 0.1 s and 300 Hz, respectively. Bins of the
spectrogramwith a local variance less than 10 are set to zero and all the
other bins are set to one (Figure 3C). Bounding boxes of contiguous
bins in the binarized spectrogram are then defined using the outer
border following algorithms described in Suzuki and Be (1985). These
bounding boxes define acoustic events of interest (red rectangles in
Figure 3D) and are used in the next steps to determinewhether they are
fish sounds or not. To speed up the classification process, all detected
acoustic events shorter than 50 ms or with a bandwidth smaller than
40 Hz are discarded. Figure 3 illustrates the detection process on an
acoustic recording containing three fish sounds.

2.3.2 Feature extraction
Each detection is represented by 45 features calculated from the

(equalized) spectrogram, the spectral envelope, and the temporal
envelope of the detected events (Figure 4; Table 3). The spectral
envelope is the sum of the spectrogram energy values for each
frequency (Figure 4B). The temporal envelope is the sum of the
spectrogram energy values for each time step (Figure 4C). The

FIGURE 2
Map of the sampling location for Dataset 3 collected in the port of Miami, Florida, United States. The red rectangle in panel (A) indicates the zoomed-
in area represented in panel (B). The acoustic recorder was located near the Coral City Camera.
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spectral and temporal envelopes are normalized to 1 and
interpolated to have a resolution of 0.1 Hz and 1 ms, respectively
(red dots in Figures 4B, C). Spectrogram features are extracted based
on a time-frequency box that contains 95% of the energy of the
initial detection (white box in Figure 4A). Table 3 describes all
features calculated to represent the detections. Features are
normalized before being used for classification, so all have a
mean of 0 and a variance of 1. These features were selected as
they were shown to successfully represent animal sounds in a
number of studies (e.g., Acevedo et al., 2009; Ross and Allen,
2014; Mouy et al., 2013).

2.3.3 Random forest classification
Features described in Section 2.3.2 are used to classify the

detected events as either “fish” or “noise.” Random forest is a

classification technique based on the concept of an ensemble. A
RF is a collection of decision trees (Breiman, 2001), where each tree
is grown independently using binary partitioning of the data based
on the value of one feature at each split (or node). When features
measured from a sample or, in our case, a sound, are run through the
RF, each tree in the forest produces a classification and the sound is
classified as the class that the greatest number of trees vote for.
Randomness is injected into the tree-growing process in two ways: 1)
each tree in the forest is grown using a random subsample of the data
in the training dataset and 2) the decision of which feature to use as a
splitter at each node is based on a random subsample of all features
(Breiman, 2001). Each tree is grown to its maximum size. Using an
ensemble of trees with splitting features chosen from a subset of
features at each node means that all important features will
eventually be used in the model. In contrast, a single decision

FIGURE 3
Illustration of the detection process on a recording containing three fish sounds. (A) Equalized spectrogram Ŝ[t, f], (B) local variance matrix Svar[t, f],
(C) binarized spectrogram, (D) result of the detection process. Red boxes indicate the time and frequency boundaries of each detected event. Fish sounds
are at t � 0.2 s, t � 1.5 s, and t � 2.8 s (yellow arrows).
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tree is limited to a subset of features (unless the number of features is
small or the tree is large) and can be unstable (small changes in the
dataset can result in large changes in the model; Breiman, 1996). The
ensemble decision approach typically results in lower error rates
than can be achieved using single decision trees (e.g., Bauer and
Kohavi, 1999). In this study, we tested RF models with 5, 10, and
50 trees (noted as RF5, RF10, and RF50, respectively). For all these
test models, the random subset of features used for each splits was
set to 6.

2.4 Approach 2: Convolutional
neural network

The second detection approach implemented is based on
Convolutional Neural Networks (CNN, Goodfellow et al., 2016).
Like the first approach, it relies on the spectrogram representation of
the acoustic signal (Section 2.2). However, contrary to more

traditional machine learning approaches like RF, the features are
not “hand crafted” by a domain expert (as done in Section 2.3.2) but
are directly learned from the data. CNN typically comprise a
sequence of convolutional layers followed by a few fully
connected layers. Convolutional layers are responsible for
detecting features in the input data by applying convolution
operations with learnable filters. These layers capture spatial
hierarchies of features, starting from simple patterns like edges
and textures and progressing to more complex and abstract
representations. Fully connected layers are placed at the end of
the network and are responsible for making final classifications
based on the features learned in earlier layers (Goodfellow et al.,
2016). Here, we use a residual network (ResNet) with the same
architechture as Kirsebom et al. (2020). It uses residual blocks that
contain shortcut connections that allow the network to learn
residual functions, which are the differences between the desired
mapping (the output of a layer) and the input to that layer (He et al.,
2016). By learning these residuals, the network can effectively train

FIGURE 4
Extraction of features. (A) Spectrogram of a fish detection. Red and black crosses denote the median and peak frequency of each time slice of the
spectrogram, respectively. The white box indicates the 95% energy area over which the spectrogram features were calculated. (B) Spectral envelope of
the detection. (C) Temporal envelope of the detection.
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TABLE 3 Description of the features calculated for each detection.

# Feature Units Description Calculated from

F1 Peak frequency Hz Frequency of highest amplitude peak Spectral envelope

F2 Frequency bandwidth Hz Maximum frequency – Minimum frequency Spectral envelope

F3 Frequency bandwidth 90% Hz F8 – F4 Spectral envelope

F4 Frequency – percentile 5 Hz Frequency at which cumulative energy reaches 5% of total energy Spectral envelope

F5 Frequency – percentile 25 Hz Frequency at which cumulative energy reaches 25% of total energy Spectral envelope

F6 Frequency – percentile 50 Hz Frequency at which cumulative energy reaches 50% of total energy Spectral envelope

F7 Frequency – percentile 75 Hz Frequency at which cumulative energy reaches 75% of total energy Spectral envelope

F8 Frequency – percentile 95 Hz Frequency at which cumulative energy reaches 95% of total energy Spectral envelope

F9 Frequency bandwidth 50% Hz F7 – F5 Spectral envelope

F10 Spectral asymmetry None (F5+F7-2F6)/(F5+F7) Mellinger and Bradbury (2007) Spectral envelope

F11 Spectral concentration Hz Difference of maximum and minimum frequencies in cumulative sum
of ranked amplitude values (Mellinger and Bradbury, 2007)

Spectral envelope

F12 Frequency-standard deviation Hz Standard deviation of spectral envelope (about the mean) Spectral envelope

F13 Frequency-kurtosis None Kurtosis of spectral envelope Spectral envelope

F14 Frequency-skewness None Skewness of spectral envelope Spectral envelope

F15 Spectral entropy bits Shannon entropy of the spectral envelope (Erbe and King, 2008) Spectral envelope

F16 Spectral flatness None Tends to 1 for noisy signal and to 0 for pure tone signal (Dubnov, 2004) Spectral envelope

F17 Spectral roughness None Total curvature of the spectral envelope (Ramsay and Silverman, 2005) Spectral envelope

F18 Centroid frequency Hz Frequency of center of mass in spectral envelope Spectral envelope

F19 Overall frequency peak Hz Frequency of maximum amplitude value in spectrogram Spectrogram

F20 Median frequency mean Hz Mean of median frequencies calculated for each time slice of
spectrogram

Spectrogram

F21 Median frequency-standard deviation Hz Standard deviation of median frequencies calculated for each time slice
of spectrogram

Spectrogram

F22 Spectral entropy – mean bit Mean of Shannon entropy calculated for each time slice of spectrogram Spectrogram

F23 Spectral entropy – standard deviation bit Standard deviation of Shannon entropy calculated for each time slice of
spectrogram

Spectrogram

F24 Mean frequency shift Hz Mean of differences between median frequencies of consecutive
spectrogram time slices

Spectrogram

F25 Fraction of upsweep frequency % Percent of time median frequency increases from one spectrogram time
slice to the next (Mellinger and Bradbury, 2007)

Spectrogram

F26 Signal-to-noise ratio dB Calculated from ratio of maximum and 25th percentile energy values in
spectrogram (Mellinger and Bradbury, 2007)

Spectrogram

F27 Time of energy peak s Time of highest amplitude peak Temporal envelope

F28 Relative time of energy peak % Ratio of F27 and F29 Temporal envelope

F29 Duration s Length of temporal envelope Temporal envelope

F30 Time-percentile 5 s Time at which cumulative energy reaches 5% of total energy Temporal envelope

F31 Time-percentile 25 s Time at which cumulative energy reaches 25% of total energy Temporal envelope

F32 Time-percentile 50 s Time at which cumulative energy reaches 50% of total energy Temporal envelope

F33 Time-percentile 75 s Time at which cumulative energy reaches 75% of total energy Temporal envelope

F34 Time-percentile 95 s Time at cumulative energy reaches 95% of total energy Temporal envelope

F35 Duration 50% s F33 – F31 Temporal envelope

(Continued on following page)

Frontiers in Remote Sensing frontiersin.org08

Mouy et al. 10.3389/frsen.2024.1439995

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2024.1439995


very deep architectures without encountering the vanishing gradient
problem. We used residual blocks with batch normalization (Ioffe
and Szegedy, 2015) and rectified linear units (ReLU, Nair and
Hinton, 2010). The number of filters for the initial convolutional
layer was set to 16 and was doubled for each subsequent block. The
final network was composed of one initial convolutional layer,
followed by eight residual blocks, a batch normalization layer, a
global average pooling layer (Lin et al., 2013), and a fully connected
layer with a softmax function for classification. While we used the
same network architecture as Kirsebom et al. (2020), we retrained
the entire model (i.e., all layers, no transfer learning) using the
training dataset.

The ResNet is run on overlapping slices of spectrogram and
provides a classification score betweeen 0 and 1 to indicate the
probability that the slice analyzed contains a fish sound. To
distinguish individual fish sounds, the classification is performed
for every 0.01 s of recording on 0.2 s-long spectrogram slices (with a
frequency band of 0–1.2 kHz). Spectrogram slices with a
classification score exceeding the user-defined threshold are
considered fish sound detections. Consecutive detections are
merged into a single detection and its final classification score is
the maximum score of the merged detections. To ensure that the
spectrogram slices presented to the CNN always have the same size
(20 × 78 bins), all recordings analyzed are first downsampled to
4 kHz (i.e., bandwidth of 2 kHz).

Training was conducted using a NVidia A100SXM4 (40 GB
memory) graphical processing unit (GPU) and was performed with
a batch size of 32 over 50 epochs. Network weights were optimized
to maximize the F1 score using the ADAM optimizer (Kingma and
Ba, 2014) set with its default parameters (learning rate = 0.001,
decay = 0.01, b1 = 0.9, b2 = 0.999). To increase the quantity and
variability of the training samples, time-shift augmentation was
used. This consisted of creating multiple instances of the same
selection by stepping in time, both forward and backward from the
middle point of the original annotation. Augmented samples were
created by shifting 0.2 s long windows by 0.1 s increments and by
ensuring that each of the created samples overlapped in time by at
least 90% with the original annotation.

2.5 Experimental design

Random forest and CNN models were trained and tested by
dividing annotated sounds of Dataset 1 (Section 2.1.1) into two
subsets. One was composed of 75% of the entire dataset and was
used to train the classification models, tune their
hyperparameters, and identify which one performed best. The
other one, representing 25% of Dataset 1, was used to evaluate the
performance of the selected model. These two subsets were
carefully defined so annotations from each subset were
separated by at least 6 hours, had the two classes (fish and
noise) equally represented, and had a similar representation of
all deployments. Data used for testing the performance of the
classification were not used for training the models. In addition
to being tested on part of Dataset 1, the detectors were tested on
Datasets 2 and 3. Testing performance on Dataset 2 provides
information on how well detectors perform on sounds from
similar fish species, but in a different environment. Testing
performance on Dataset 3 provides information on how
versatile the detectors are to new environments and quantifies
their ability to detect sounds from fish species they were
not trained on.

2.6 Performance

The decisions generated from the detectors can be categorized
as follows.

• True positives (TP): A fish sound correctly classified as a
fish sound;

• False positives (FP): Noise classified as a fish sound (i.e., a
false alarm); and

• False negatives (FN): A fish sound classified as noise
(i.e., missed).

To calculate the numbers of TPs, FPs, and FNs, the manual
annotations of fish sounds, which are considered true results, are

TABLE 3 (Continued) Description of the features calculated for each detection.

# Feature Units Description Calculated from

F36 Duration 90% s F34 – F30 Temporal envelope

F37 Temporal asymmetry None (F31 + F33-2F32)/(F31 + F33) (Mellinger and Bradbury, 2007) Temporal envelope

F38 Temporal concentration s Difference of maximum and minimum times in cumulative sum of
ranked amplitude values (Mellinger and Bradbury, 2007)

Temporal envelope

F39 Time – standard deviation s Standard deviation of temporal envelop Temporal envelope

F40 Time-kurtosis None Kurtosis of temporal envelope Temporal envelope

F41 Time-skewness None Skewness of temporal envelope Temporal envelope

F42 Temporal entropy Bits Shannon entropy of a temporal envelope (Erbe and King, 2008) Temporal envelope

F43 Temporal flatness None Flatness of temporal envelope. Tends towards 1 for noisy signal and
towards 0 for pure tone signal (Dubnov, 2004)

Temporal envelope

F44 Temporal roughness None Roughness of temporal envelope (Ramsay and Silverman, 2005) Temporal envelope

F45 Temporal centroid s Time of center of mass in temporal envelope Temporal envelope
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compared with the automated detections. To assess the performance
of the detectors, precision (P) and recall (R) metrics are calculated
based on the numbers (N) of TPs, FPs, and FNs, as:

P � NTP

NTP +NFP
, R � NTP

NTP +NFN
, (5)

where P measures exactness and R measures completeness. For
instance, a P of 0.9 means that 90% of the detections classified as fish
sounds are in fact fish sounds but says nothing about whether all
sounds in the dataset are identified. An R of 0.8 means that 80% of all
fish sounds in the dataset are correctly classified, but says nothing
about how many classifications are wrong. Thus, a perfect classifier
would have P and R equal to 1. Neither P nor R alone can describe
the performance of a detector/classifier on a given dataset; both
metrics are required. The F score is also used to quantify classifier
performance. The F score measures the accuracy of the detector and
varies from 0 to 1, where an F score of 1 corresponds to a perfect
detector. It is defined as

Fβ � 1 + β2( )
PR

β2P + R
, (6)

where β is the relative weight between the recall and precision. A β of
two means the recall has twice the weight of the precision.
Conversely, a β of 0.5 means the recall has half the weight of the
precision. In this work, it is considered that P and R are equally
important, so the unweighted F1 score is used (i.e., β � 1). Note that
we did not assess the performance for each sound type separately
(i.e., pulse, grunts, tones) as the annotation datasets were not labelled
to the sound type level.

All classifiers used in this study provide binary classification
results (i.e., “fish” or “noise”) as well as a confidence of classification
between 0 and 1. The latter can be used to adjust the sensitivity of a
classifier. Accepting classification results with a low confidence leads
to detecting more fish sounds (high recall), but also generates more
false alarms (low precision). Conversely, only accepting
classification results with a high confidence leads to detecting
fewer fish sounds (low recall), but also results in fewer false
alarms (high precision). The optimum confidence threshold is
considered as the one providing the highest F score. It is defined
experimentally by iteratively calculating the performance for small
increments (here 0.001) of confidence threshold values from 0 to 1.

2.7 Signal to noise ratio

Detector performance is characterized for different signal-to-
noise ratios (SNR). The SNR of an annotated fish sound is defined as
the ratio of the signal power (Ps) to the noise power corrupting the
signal (Pn). The SNR compares the level of the desired signal (i.e., a
fish sound) to the level of the background noise. The greater the
SNR, the less obtrusive the background noise is. The SNR is defined
in decibels as:

SNR � 10 log10 Ps/Pn( ). (7)
For this study, Ps is the average power of the fish sound over the
duration in seconds, d, of the sound in the frequency band defined
by the analyst (i.e., frequency boundaries of the annotation box); Pn

is the average of the power within the same frequency band d/2

seconds before and after the fish sound. Both Ps and Pn are
calculated from the waveform filtered in the frequency band
defined by the analyst who generated the annotations (10th order
Butterworth bandpass filter).

2.8 Sound pressure levels

Sound pressure levels (SPL) were calculated on data from
Dataset 2 and Dataset 3 to investigate relationships between
noise levels and detector performance (section 3.4). An end-to-
end calibration was performed for each hydrophone using a piston-
phone type 42AA precision sound source (G.R.A.S. Sound &
Vibration A/S) at 250 Hz. System gains for Dataset 2 (AMAR
recorder) and Dataset 3 (SoundTrap recorder) were −167.3 dB re
FS/μPa and −168.2 dB re FS/μPa, respectively. SPLs were calculated
between 20 and 1,000 Hz (i.e., the frequency band of most fish
sounds) for each minute of recording using the software PAMGuide
(Merchant et al., 2015) in Matlab (MathWorks Inc.).

2.9 Implementation

All algorithms described in this work are implemented in
Python. Spectrogram calculation and denoising (section 2.2) are
conducted using the libraries NumPy (Harris et al., 2020), Dask
(Dask Development Team, 2016) and ecosound (Mouy, 2021). The
RF classification (section 2.3) is implemented using the scikits-learn
library (Pedregosa et al., 2011). The CNN (section 2.4) was trained
using the library Ketos (Kirsebom et al., 2021). Along with this
paper, we provide the open source (BSD-3-Clause License) software
FishSound Finder (https://github.com/xaviermouy/FishSound_
Finder) allowing others to easily run the CNN detector on
acoustic recordings and output detection results as NetCDF files
and Raven tables. FishSound Finder is documented and includes
tutorials for users not familiar with the python language.

3 Results

This section summarizes the performance results of the RF and
the CNN on the three different datasets.

3.1 Dataset 1: Strait of Georgia, Canada

Figure 5 shows the precision-recall curve for RF (blue) and CNN
(black). Three RF models were trained using 5, 10 and 50 trees. The
increase in the number of trees in the RF model from 5 to 50 raises
the maximum F1 score by 0.02 (F1 = 0.68 for RF5 and F1 = 0.70 for
RF50). The model with 50 trees performs the best of all RF models
with a recall R � 0.72 and a precision P � 0.67. Maximum
performance for all RF models is achieved with a detection
threshold of 0.6.The CNN models were always trained using the
maximum number of (augmented) fish sound examples available in
the training dataset (i.e., 20,000), but the number of noise examples
used for training was varied in order to investigate how imbalanced
datasets impact the performance of the CNN. Three CNN models
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were trained: one using 20,000 noise examples (i.e., balanced dataset,
dotted black line, Figure 5), one with 40,000 noise examples (dashed
black line in Figure 5), and one with the entire set of noise examples
available in the training set (i.e., 198,461 noise examples, solid black
line in Figure 5). Note that the number of training examples
indicated here is larger than the number of annotations in
Table 1 because of the time-shift data augmentation process
explained in Section 2.4. Increasing the number of noise
examples from 20,000 to 40,000 raises the maximum F1 score by
0.03 (from 0.82 to 0.85) but has no noticeable effect when increasing
from 40,000 to 198,461 noise examples. The best CNN performance
is achieved by the model trained with the entire noise dataset. The
best F1 score for that model is reached with a detection threshold of
0.99 and has a precision of P � 0.85 and a recall of R � 0.84. Overall,
based on the F1 score, the best CNNmodel performs 1.2 times better
than the best RF model.

Most of the annotated fish sounds in the test dataset have a low
SNR (Figures 6A, C, D). In order to have a more complete
understanding of the performance, Figure 6B shows a break
down of the performance of the best CNN for very faint
(SNR< 3.4 dB, Figure 6C), faint (3.4 dB≤ SNR< 6.3 dB,
Figure 6D) and loud (SNR≥ 6.3 dB, Figure 6D) fish sounds.
Limits for each SNR category were defined such that there is an
equal number of fish sounds in each SNR interval (Figure 6A). At
maximum F1 scores, the CNN can detect very faint fish sounds with

a precision ofP � 0.74 and a recall ofR � 0.72; faint fish sounds with
a precision of P � 0.77 and a recall of R � 0.72; and loud fish sounds
with a precision of P � 0.82 and a recall of R � 0.83.

3.2 Dataset 2: Barkley Sound, Canada

Performance of the CNN on the Barkley Sound dataset was
initially evaluated using the manual annotations performed by the
analyst. The performance obtained, depicted by the dashed line in
Figure 7A, was lower than expected considering the results from
Dataset 1 (Figure 5). From these results, it appeared that the CNN
could detect a large fraction (91 %) of the fish sounds annotated by
the analyst (R � 0.91), but generated a very large number of false
alarms (P � 0.07). Upon further investigation of the detection
results, it appeared that the CNN detected a large number of
faint fish sounds that the analyst did not see/hear (see
Figure 7B). All detections from the CNN were therefore reviewed
by another analyst to decide if they were fish sounds or false positives
(i.e., noise). After this re-annotation process, the dataset went from
1,331 fish annotations to 5,431 (Table 2). Performance of the CNN
was re-evaluated using the updated dataset and showed results
consistent with what was calculated with Dataset 1. For the
detection threshold (0.912) providing the highest F1 score
(F1 � 0.82), the recall is R � 0.94 and the precision P � 0.73.

FIGURE 5
Performance of the RF (blue lines) and CNN (black lines) on the Strait of Georgia dataset (Dataset 1). Dotted, dashed and full blue lines represent the
performance of the RF with 5, 10 and 50 trees, respectively. Dotted, dashed and full black lines represent the performance of the CNN trained with
20,000, 40,000, and 198,461 noise samples, respectively.
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Inspection of the false positives shows that the majority of false
alarms occur on only three recordings and are generated by a low-
frequency tapping sound from a loose cable hitting the instrument
frame during periods of high current (Figure 7).

Performance of the RF on this dataset is substantially lower than
on Dataset 1 with a maximum F1 score F1 � 0.43 (P = 0.38, R � 0.51,
threshold = 0.74, dotted line in Figure 7). The difference in
performance between the CNN and RF is more pronounced than
for Dataset 1, with a best F1 score for the CNN 1.9 higher than for RF.

3.3 Dataset 3: Port of Miami, United States

Figure 8A shows the performance curve of the CNN on the dataset
collected in the Port of Miami. Maximum F1 score (F1 � 0.89) is
reached with a detection threshold of 0.1 and corresponds to a recall
R � 0.86 and precision P � 0.91. False alarms are mostly generated by
broadband pulses from invertebrates (e.g., snapping shrimp) with a low-
frequency component. Fish sounds missed by the CNN are mostly pulse
trains occurring at night that have a higher peak frequency (>800 Hz)
than the typical fish sounds found in Datasets 1 and 2 (e.g., pulse trains in
Figure 8C starting at t � 2 s and t � 6.1 s) and fainter pulse trains (e.g.,fish
sound at t �7.9 s in Figure 8B).

3.4 Influence of noise levels on detector
performance

Detectors are not perfect; however, by characterizing their
limitations, it is possible to better understand in which conditions
their outputs can be trusted and in which conditions they should not
be used without manual verification. Figure 9 shows how the number
of detections from the CNN aligns with the number of fish sounds
manually annotated for different ambient noise conditions. For
Barkley Sound, SPLs in the 20–1,000 Hz frequency band ranged
from 70 to 130 dB re 1μPa. For minutes of recording with a SPL below
100 dB re 1μPa, the number of detections from the CNN is strongly
correlated (R2 = 0.82) with the number of detections found by the
analyst (Figure 9A; Table 2). However, for minutes of recording with a
SPL greater than 100 dB re 1μPa (Figure 9C), this relationship is
highly degraded (R2 = 0.51) and the detector outputs cannot be used
without manual verification. Such degradation of the detector
performance at these SPL is due to the intense mooring noise
reported for this dataset in section 3.2 (Figure 7C).

For the Port of Miami dataset, SPLs in the 20–1,000 Hz frequency
band range from 100 to 140 dB re 1μPa. Despite higher SPLs than the
Barkley Sound dataset, the overall number of fish detections per
minute from the CNN correlates well with the number of fish sounds

FIGURE 6
Performance of the best CNN by SNR interval. (A) Distribution of the SNR of fish sounds in the test dataset. (B) Precision-recall curve for very faint
(SNR<3.4 dB), faint (3.4 dB≤ SNR≤ 6.3 dB) and loud (SNR>6.3 dB) fish sounds. (C–E) show example spectrograms of very faint, faint, and loud fish
sounds, respectively.

Frontiers in Remote Sensing frontiersin.org12

Mouy et al. 10.3389/frsen.2024.1439995

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2024.1439995


found by the analyst (R2 � 0.94, Figure 9D), even for noise levels
greater than 120 dB re 1μPa (R2 � 0.82, Figure 9F).

4 Discussion

We implemented and compared two approaches to detect fish
sounds. One is based on RF, which is a traditional classification
machine learning method that has been successful in previous
bioacoustic classification tasks. The other is based on a deep
neural network architecture which is a technique that recently
outperformed more traditional classification methods (Shiu et al.,
2020). Methods like RF require defining a set of features that
represent the signal of interest and are used to discriminate
between the different sound classes (e.g., fish sounds vs. noise).
This set of features is typically defined (“hand crafted”) by domain
experts who understand which features are the most discriminative.
These features can be hard to define and may be highly dependent

on noise conditions. Even with high-performing classifiers, poorly
chosen features will result in poor classification performance. Deep
neural networks, such as the CNN used in this work, bypass this step
and consider the definition of salient signal features as part of the
training process. The first convolutional layers of the CNN are
responsible for finding the salient features of the signal (filters) that
maximize classification success. Both the features definition and the
classification are optimized in unison and are learned directly
from the data.

We found that CNN performs substantially better than RF on all
datasets. Increasing the number of trees in the RF model increased
the classification performance but not enough to outperform the
CNN. The decrease of 27% in F1 score between the Strait of Georgia
(where the model was trained) and Barkley Sound indicates that the
RF model does not generalize well enough and is not adaptable to
new acoustic environments. Conversely, the CNN had a satisfactory
performance on all datasets. Training the CNN using more noise
examples than fish sounds (i.e., imbalanced training dataset)

FIGURE 7
Performance of RF and CNN on Dataset 2. (A) Precision-recall curves for the CNN on the original dataset (dashed line), for the CNN on the re-
annotated dataset (solid line), and for RF on the re-annotated dataset (dotted lines). (B) Spectrogram of a recording containing eight fish sounds. The red
box indicates the fish sound initially annotated by the analyst and the black boxes show the fish sounds that were detected by CNN, but missed by the
analyst. (C) Example of mooring noise triggering most of the false alarms of the CNN.

FIGURE 8
Performance of the CNN on Dataset 3. (A) Precision-recall curve of the CNN on Dataset 3. (B) Example of fish sounds detected by the CNN. This
example includes 11 fish sounds: nine are detected by the CNNbut 2 fainter fish sounds aremissed (at t � 5 s and t � 7.9 s). (C) Example of higher frequency
fish pulse trains missed by the CNN (t � 2 s and t � 6.1 s). Black boxes indicate detections from the CNN.

Frontiers in Remote Sensing frontiersin.org13

Mouy et al. 10.3389/frsen.2024.1439995

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2024.1439995


improved the classification performance. Despite being trained on
data from the Strait of Georgia, the CNN performed well on the
Barkley Sound data. This result indicates that the model generalized
well and was reliable in environments with different noise
conditions. This is further demonstrated by the consistent
performance of the CNN on data from the Port of Miami, which
include high noise levels due to intense vessel traffic. While the Strait
of Georgia and Barkley Sound share a large number of similar fish
species, the Port of Miami has tropical fish species that are very
different from the Canadian datasets. The consistent performance of
the CNN in the Port of Miami shows that the model not only learned
to recognize Canada-specific fish sounds, but also learned general
fish sound characteristics which can be applied in different
ecosystems.

The Sciaenidae sound detector described in Harakawa et al.
(2018) and the generic fish detector in Malfante et al. (2018) (both
machine learning-based) achieved a F1 score of 0.86 and 0.9 on
their datasets, respectively, which is comparable to the best F1

score we obtained with the CNN (F1 � 0.89). Waddell et al. (2021)
also developed a detector to recognize six different types of fish
sounds in a long-term passive acoustic monitoring dataset from
the northern Gulf of Mexico. The classification was also based on a
ResNet CNN architecture but was trained using transfer learning.
Its performance ranged from F1 = 0.44 to F1 = 0.77 depending on
the sound types targeted. Note that the latter study had a restricted

number of manual annotations available to train some of the call
types and performed a multi-class classification task which is more
complex than the binary classification of our work. Munger et al.
(2022) also developed a detector based on a ResNet CNN trained
via transfer learning and achieved a F1 score of 0.86. The latter was
solely focused on the detection of sounds from damselfishes in the
western Pacific. Using a support vector machine (SVM) based
algorithm, Noda et al. (2016) obtained an F1 score of 0.98 for
classifying sounds from 128 fish species. However, that study was
based on a small dataset of sounds recorded in tanks and did not
include classification of noise (i.e., non-fish) recordings. Several
other fish sound detectors have been developed but many focus on
detecting periodic fish chorusing events rather than individual fish
sounds (e.g., Lin et al., 2018; Siddagangaiah et al., 2019; Kim et al.,
2023). The calculated performance of automatic detectors and
classifiers depends strongly on the datasets used to both train and
test the algorithms. Evaluating algorithms on small datasets (e.g.,
several hundred sounds collected over a few days), where noise
conditions, fish species present, and recording platforms do not
change or are very stable and predictable, can lead to high
performance scores, which may not be representative of how
these algorithms would behave when applied to large
continuous passive acoustic datasets. The large dataset we use
in this work is comprised of more than 53,000 fish and noise
sounds collected over eight different sites in both Canada and the

FIGURE 9
Comparison of the number of fish sounds detected by the CNN and the human analyst in different noise conditions for the Barkley Sound (top row)
and the Port of Miami (bottom row) datasets. (A–C) Correlation plots for the Barkley Sound dataset for SPL intervals [70,130] [70,100], and [100,130] dB re
1μPa, respectively. (D–F) Correlation plots for the port of Miami dataset for SPL intervals [100,140] [100,120], and [120,140] dB re 1μPa, respectively. Solid
black lines and shaded grey areas indicate the linear regression lines and the 95% confidence intervals, respectively. All SPLs are calculated per
minute in the 20–1,000 Hz frequency band (Section 3.4).
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United States, and spanning all seasons of the year, providing
confidence that the detector characterized in this paper would
behave similarly in other areas.

The methods developed here target individual fish knocks and
grunts below 1,200 Hz which are sound types commonly recorded
worldwide. Longer continuous sounds from chorusing fish, such as
plainfin midshipman (P. notatus) hums (Halliday et al., 2018), would
not be successfully detected with the proposed methods. For detecting
fish choruses, approaches such as the Soundscape learning technique
described by Kim et al. (2023) are preferable. As found in the analysis
of the data from the Port of Miami, fish sounds with a higher peak
frequency than fish sounds typically found in British Columbia tend
not to be detected by the CNN (e.g., Figure 8C). To address this
limitation, it would be possible to retrain the model with these new
sound types. Given the current ability of the CNN model to
discriminate noise from fish sounds, it is likely sufficient to freeze
the convolutional layers and only retrain the last dense classification
layers of the network (i.e., transfer learning), whichwould only require
a few new sound examples. While many fish sounds are below
1,200 Hz, some species like Pacific and Atlantic herring (Clupea
pallasii and Clupea harengus) produce sounds at higher frequencies
(Wilson et al., 2004). The CNN we proposed here is not able to detect
these sounds and a different detector would need to be developed.
While the RF detector provides bounding boxes with the minimum
and maximum frequencies of the detected sounds, the CNN does not.
If such information is required by some users, it is possible to apply
the spectrogram segmentation technique from section 2.3.1 on the
detections from the CNN. Alternatively, other architectures of CNN
providing detection bounding boxes such as Yolo (You Only Look
Once, Redmon et al., 2016) could be implemented instead of
the ResNet.

Many analysts rely on hearing cues to recognize fish sounds in
acoustic recordings. Noise in acoustic recordings and the quality of
audio playback equipment (e.g., headphones) can hinder the ability of
the analysts to hear fish sounds which leads to fish sounds not being
manually detected. As shown on Dataset 2 from Barkley Sound

(Section 3.2), the CNN in our work can detect more challenging
(i.e., faint) fish sounds than the analyst.While this may not be the case
for different datasets or analysts, this illustrates how the CNN can be
used as a more consistent way to analyze large passive acoustic
datasets. Additionally, analysts are prone to fatigue which induces
a non consistent bias and variance in the analysis. Detectors have a
bias and variance that are more consistent and predictable than
human analysts and can therefore be more easily corrected for. In
some cases (e.g., analysis of data from a completely new environment),
it may be used as part of the manual analysis to guide the analyst.
Characterizing the performance and the limits of detectors is key for
answering ecological questions. While the CNN is not perfect and can
generate false detections, we show that on the Barkley Sound data
these false detections mainly occur when noise levels between 20 and
1,000 Hz exceed 100 re 1μPa. In the context of an ecological study, an
efficient way to process these data would be to calculate noise levels for
every minute of data and focus the manual analysis on the part of the
data that has SPL greater than 100 re 1μPa. Below that noise level, the
detector can be trusted and will require less manual verification effort.
As shown by the results from the Port of Miami (Figures 9C–F), this
“breaking point” is not always the same and needs to be defined for
each dataset analyzed.

Processing 8 days of continuous data at the Port ofMiamiwith the
CNN took 6.8 h on a Dell laptop equipped with an Intel(R) Core(TM)
i7-8650U CPU at 1.90 GHz and 32 GB of RAM (i.e., 28.2 times faster
than real-time) and did not require any human supervision. In
comparison, it took approximately 50 h for an analyst to manually
analyze 8.3% of the same dataset (Table 2). Visualization of the
outputs from the CNN (Figure 10), allows for quick insights on the
temporal patterns of fish sounds and reveals a clear diurnal pattern in
the occurrence of fish sounds at that location. The explanation of
whether this diurnal pattern is due to fish behaviour or an effect of
masking from higher vessel traffic during the day (or both) is not part
of this study, but this example illustrates how useful the automatic
detector can be to quickly explore passive acoustic datasets, formulate
hypotheses, and answer practical conservation questions. Automatic

FIGURE 10
Fish sounds detections at the Port of Miami. (A) Time series of the number of fish sounds detected per hour on the 8 days of continuous data
collected at the Port of Miami (June 7–16, 2023). Red horizontal bars indicate the times at which the instrument was deployed and retrieved. (B) Box plot
showing the distribution of number of fish sounds for each hour of the day.
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detectors still require some level of manual analysis to validate the
detection results. However, several manual analysis methodologies
(Kowarski et al., 2021) and software solutions (Mouy et al., 2016;
Macaulay, 2021) can be employed to make this process more efficient.

Because the CNN detector we provide is not species-specific, it
can be used to study and discover general fish occurrence patterns in
new environments, help annotate fish sounds in tank or in-situ
studies, or be deployed on audio-video systems (e.g., Mouy et al.,
2023) to help identify new fish sounds. One reason fish sounds are
underused in marine conservation is because the analysis tools
developed by engineers and scientists are not always made easily
accessible to other researchers in the marine conservation field.
Here, we implemented the CNN detector in the easy-to use software
FishSound Finder, which is released under an open source license
and is accompanied by a step by step tutorial showing how to use it.
Our hope is that it will be used, further tested, and improved by
other researchers in the community.

Data availability statement

The CNN detector is implemented in the python software
FishSound Finder that can be found on GitHub (https://github.com/
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