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Optically complex waters present significant challenges for remote sensing due
to high concentrations of optically active substances (OASs) and their inherent
optical properties (IOPs), as well as the adjacency effect. OASs and IOPs can be
derived from atmospheric correction processors’ in-water algorithms applied to
data from Sentinel-2 MultiSpectral Instrument (S2 MSI) and Sentinel-3 Ocean and
Land Color Instrument (S3 OLCI). This study compared S3 OLCI Level-2 in-water
products for Case-2 waters with alternative in-water algorithms derived from
ACOLITE, POLYMER, C2RCC, and A4O. Fifty in-water algorithms were evaluated
using an extensive match-up dataset from lakes and coastal areas, focusing
particularly on small lakes with high colored dissolved organic matter absorption
at 442 nm (up to 48 m-1). The Chl a band ratio introduced by Gons et al. (2022)
applied to data processed by ACOLITE performed best for S3 OLCI Chl a retrieval
(dispersion = 23%, bias = 10%). Gons et al. (2022) band ratio also showed
consistent agreement between S3 OLCI and S2 MSI resampled data (intercept
of 6.27 and slope of 0.83, close to the 1:1 line); however, lower Chl a values
(<20 mg/m3) were overestimated by S2 MSI. When estimating errors associated
with proximity to land, S2MSI Chl a in-water algorithms had higher errors close to
the shore (on average 315%) compared to S3 OLCI (on average 150%). Chl a
retrieved with POLYMER had the lowest errors close to the shore for both S2 MSI
and S3 OLCI data (on average 70%). Total suspended matter (TSM) retrieval with
C2RCC performed well for S2 MSI (dispersion 24% and bias −12%). Total
absorption was most accurately derived from C2RCC applied to S3 OLCI
L1 data (dispersion < 43% and bias < −39%), and it was better estimated than
its individual components: phytoplankton, mineral particles, and colored
dissolved organic matter absorption. However, none of the colored dissolved
organic matter absorption in-water algorithms performed well (dispersion > 59%
and bias < −29%).
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1 Introduction

The inherent optical properties (IOPs) of water, such as
absorption and scattering, significantly influence the underwater
light field and water color. These IOPs depend on the type,
composition, and concentration of optically active substances
(OASs) in the water. OASs can be divided into three groups,
namely, phytoplankton and its main pigment chlorophyll-a
(Chl a), total suspended matter (TSM), and colored dissolved
organic matter (CDOM), each interacting differently with light.
Chl a has absorption peaks in the blue (440–500 nm) and red
(650–680 nm) regions of the visible light spectrum (Kirk, 2011).
TSM includes two fractions: suspended particulate inorganic matter
(SPIM) and suspended particulate organic matter (SPOM). SPIM,
composed of mineral particles, mainly scatters light, while SPOM,
which includes phytoplankton cells, non-living cellular matter,
zooplankton, and organic detritus, both scatters and absorbs
light, sharing a similar absorption spectrum shape to CDOM.
CDOM, resulting from decaying organic material (Coble, 2007),
absorbs light most significantly in the blue region of the visible light
spectrum, with absorption decreasing exponentially toward longer
wavelengths (Mobley, 1994; Mobley, 2022). Waters where IOPs are
influenced solely by phytoplankton are classified as Case-1 waters.
Conversely, waters where IOPs are significantly influenced by
other OASs, besides Chl a, such as TSM and CDOM, are
classified as Case-2 waters (Morel and Prieur, 1977). These are
called optically complex waters.

Remote sensing reflectance (Rrs) is the primary parameter
derived from ocean color satellite data. Secondary products, such
as optical water quality parameters, are obtained from Rrs using
various methods, including modeling, empirical algorithms, and
semi-analytical algorithms. Rrs can be derived through an inverse
model using IOPs, which include total absorption and total
backscattering coefficients. Total absorption is the sum of the
absorption by phytoplankton, CDOM, TSM, and pure water,
while total backscattering is the sum of the backscattering by
water, mineral particles, and organic particles. OAS
concentrations and IOPs can be retrieved from Rrs(λ) using a
forward model; different modeling methods are summarized by
Yang et al. (2022). Chl a concentration is a proxy, for example, for
quantifying phytoplankton biomass and monitoring potentially
toxic algal blooms (Duckey et al., 2006). Chl a is also used to
apply the bi-directional reflectance model to derive water reflectance
from water remote sensing products (Morel et al., 2002;
EUMETSAT, 2021a). Sediment resuspension increases TSM
concentrations in water, impacting IOPs and the underwater
light field (Baker and Lavelle, 1984). TSM also plays a crucial
role in geophysical and biological processes in water, such as
flocculation, heavy metal transport, and phytoplankton blooms
(Dyer et al., 2000; Pannard et al., 2007; Burd and Jackson, 2009;
Bourrin et al., 2021). CDOM can be used as a proxy for dissolved
organic carbon to understand the carbon cycle (Osburn et al., 2016)
and identify organic pollution in urban and agricultural catchments
(Tzortziou et al., 2015). Monitoring these parameters on a large scale
helps assess water quality. Phytoplankton pigment concentration,
via Chl a absorption, can be used as a proxy for phytoplankton
biomass and as an indicator of primary productivity (Marra et al.,
2007), despite the large variation present in the Chl a/phytoplankton

biomass relationship due to various light and nutrient conditions
(Kasprzak et al., 2008). CDOM’s absorption at specific wavelengths
(usually at 412 or 442 nm) (aCDOM(412) or aCDOM(442)) allows
estimating CDOM absorption from satellite data and calculating its
concentrations. Backscattering and scattering are proxies of TSM
concentrations in areas where detritus dominates water’s optical
properties (Reynolds et al., 2016). The backscattering ratio provides
indices on suspended particle size distributions, origin, and
composition (Woźniak et al., 2018). The quantities of OASs
and nutrients affect water quality. For example, Chl a concentrations
can indicate the trophic state of lakes: oligotrophic waters (<2.6 mg/m3)
are considered to have good quality; mesotrophic waters
(2.6–20 mg/m3), moderate quality; eutrophic waters (20–55 mg/m3),
poor quality; and hypereutrophic waters (>55mg/m3), very poor quality
(Istvánovics, 2009). Eutrophication, driven by nutrient loads in the
water, leads to increased phytoplankton blooms and is a vast
problem (Downing, 2014; Huisman et al., 2018). Therefore,
monitoring water constituents to estimate and improve water
quality is vital.

Measuring water constituents and IOPs directly from water
samples is time-consuming and costly. Remote sensing offers
advantages with its spatial and temporal resolution, enabling
more efficient monitoring (Schaeffer et al., 2013; Wang and
Yang, 2019; Yang et al., 2022). Monitoring lakes and coastal
areas using satellite data is challenging due to atmospheric
components, OASs in the water, and the vicinity of the land
affecting water pixels. Copernicus Programme’s Sentinel-2 (S2)
and Sentinel-3 (S3) A/B with continuous C/D satellites ensure
continuous availability of data for environmental monitoring at
least until 2035 (ESA, 2016; ESA, 2021). The S2 MultiSpectral
Instrument (MSI) has a spatial resolution of up to 10 m, with
radiometric and spectral resolutions initially designed for land
applications but effectively used for water quality monitoring (Du
et al., 2016; Toming et al., 2016; Grendaitė et al., 2018; Ansper and
Alikas, 2019; Giardino et al., 2019; Bhangale et al., 2020; Sent et al.,
2021). The S3 Ocean and Land Color Instrument (OLCI) has more
suitable radiometric and spectral resolutions for ocean color
monitoring, but its spatial resolution of 300 m could not be
sufficient for small lakes (Pirasteh et al., 2020; Soomets et al., 2020).

The atmospheric correction (AC) procedure is essential for
deriving Rrs and has been validated in many studies (Warren
et al., 2019a; Mograne et al., 2019; Pahlevan et al., 2021).
However, since Rrs is the basis for deriving OAS and IOPs, AC
processors also generate these parameters using processor-based in-
water algorithms. These algorithms have not been validated with a
large amount of match-up data. According to the S3 mission
requirements document (Drinkwater and Rebhan, 2007),
accuracy requirements for Case-1 and Case-2 waters have been
established for OASs and water-leaving reflectance. When deriving
Chl a, TSM, and CDOM products for Case-2 waters, the accuracy
should be at least 70%, with a goal of 10% accuracy. In addition to
S3 OLCI Level-2 (L2) Rrs and water quality products, alternative AC
processors suitable for S2 MSI and S3 OLCI data have been
developed. These include the POLYnomial-based approach
established for the atmospheric correction of MERIS data
(POLYMER) (Steinmetz et al., 2011) and ACOLITE
(Vanhellemont and Ruddick, 2018), both of which derive OASs
and are applicable to both S2MSI and S3 OLCI. The Case-2 Regional
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Coast Color (C2RCC) algorithm (Brockmann et al., 2016), suitable
for both S2 MSI and S3 OLCI, and Atmospheric Correction for
Optical Water Types (A4O) (Hieronymi et al., 2017) for S3 OLCI
derive OAS and IOPs. Since water pixels are influenced by the
vicinity of the land, the capability of AC processors to work under
these conditions should be considered during the validation of in-
water algorithms (Bulgarelli et al., 2014; Bulgarelli and
Zibordi, 2018b).

In this work, we focus on algorithms whose application limits
can, in principle, include the local conditions but not, for example,
on algorithms that have been optimized for the open ocean.We have
a number of in situ measured concentrations of water constituents
and associated inherent optical properties from lakes with a
relatively high Chl a and CDOM concentration. We compare
some water algorithms that derive these parameters directly from
satellite data based on the recommendations of the original
developers; there may be other algorithms or combinations of
AC and water retrieval that are not considered here. Therefore,
the objectives of the study are to 1) compare OASs and IOPs derived
fromAC processors’ in-water algorithms with in situmeasured data;
2) determine whether the distance from the shore is associated with
the errors between in situ and satellite data; and 3) determine the
consistency of in-water algorithms between S2 MSI and S3 OLCI.

2 Materials and methods

2.1 Area of interest

The study area comprises Estonian lakes and the Baltic Sea,
which are optically complex waterbodies (Figure 1). Lake Peipsi, a
shallow and well-mixed transboundary lake between Estonia and
Russia, is Estonia’s largest lake (3,555 km2) and the fourth largest in
Europe (Kapanen, 2018). Lake Peipsi is divided into three parts: the
largest, mesotrophic Peipsi sensu stricto (s.s.) in the north; the

hypertrophic Lake Pihkva in the south; and the eutrophic Lake
Lämmijärv, which connects the northern and southern parts.
Cyanobacterial blooms occur annually in the summer–autumn
period. Lake Võrtsjärv, Estonia’s second largest lake (270 km2), is
a shallow, very turbid, well-mixed, and non-stratified waterbody
(Nõges and Nõges, 2012). Forty small lakes across Estonia were used
for match-up analysis, ranging from relatively clear waters with low
quantities of OASs (e.g., Secchi depth of 5 m) to extremely absorbing
waters with high aCDOM(442) (48 m-1) (e.g., Secchi depth of 0.3 m,
data collected by Tartu Observatory’s water remote sensing team).
Their depths varied from 1 to 38 m (Keskkonnaagentuur, 2024).
Match-up data were gathered from two areas of the Baltic Sea: Pärnu
Bay, a shallow bay in south-western Estonia dominated by TSM and
CDOM (Paavel et al., 2011), and the Western Gotland Basin
(Kyryliuk and Kratzer, 2019) near the Swedish coast, where the
water depth at measurement sites was approximately 30 m.

2.2 In situ data

OASs varied on a large scale in the studied waterbodies. Chl a
concentrations ranged from 1.5 to 341 mg/m3 (average 24.8 mg/m3),
TSM concentrations ranged from 0.005 to 143.3 mg/L (average
9 mg/L), and aCDOM(442) ranged from 0.4 to 48m-1 (average 3.8 m-1).
The maximum values of the in situ OAS in match-ups for each AC
were 125 mg/m3 (C2RCC, L2, POLYMER, and ACOLITE) and
30 mg/m3 (A4O) for Chl a; 143 mg/L (C2RCC), 34 mg/L (L2),
and 14 mg/L (A4O) for TSM; and 5 m-1 (A4O) and 43 m-1

(C2RCC) for aCDOM(442 nm). The summary statistics of all
measured in situ data are provided in Supplementary Table S1.

The majority of water samples were gathered from the surface
layer (all small lakes and coastal waters). However, during the
national monitoring of Lakes Peipsi and Võrtsjärv, integrated
water samples were gathered. Lake Võrtsjärv, being shallow,
turbid, and well-mixed, showed no difference between surface

FIGURE 1
Locations of OAS and IOPmatch-up data in Estonia and the Baltic Sea. S2 MSI match-up data are shown in dark yellow, and S3 OLCI match-up data
are shown in blue. The size of the circle indicates the number of concurrent match-ups between in situmeasurements and satellite overpasses during the
study period from 2015 to 2022.
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and integral water samples. In Lake Peipsi, differences in Chl a and
TSM concentrations occurred at deeper points during specific
conditions, such as quiet weather and algal blooms, when surface
concentrations were higher than integral values. Nevertheless, this
was a negligible amount compared to the general number of match-
ups. As for the match-up points, where both surface and integral
samples were collected during specific optics field work
accompanying national monitoring activities, the surface sample
was finally used. Sampling was performed according to ISO 5667-3
(The International Organization for Standardization, 2018), and
laboratory analyses were performed according to ISO 10260 (The
International Organization for Standardization, 1992). Water
samples were filtered through pre-combusted Whatman GF/F
filters to obtain TSM concentrations, which were then measured
gravimetrically after drying (1 h at 104°C). The precision of the
weights of the filter for TSM was 0.01 mg. SPIM was measured
gravimetrically after combustion at 550°C for 30 min. SPOM was
obtained by subtracting SPIM from TSM (ESS, 1993).

For Chl a concentration, water samples were filtered using
Whatman GF/F filters and refrigerated at −20°C until
measurements. Pigments were extracted for 24 h with 5 mL of
96% ethanol, centrifuged for 10 min at 4,000 rpm, measured using
Hitachi U-3010 UV-VIS (Hitachi, Japan) and PerkinElmer
LAMBDA UV/VIS (PerkinElmer, USA) spectrophotometers, and
calculated according to Jeffrey and Humphrey (1975).

Absorption coefficients of phytoplankton pigments (apig(442))
and non-algal particles (aNAP(412 and 442)) and total absorption
(atot(442)) were measured in the laboratory using a Hitachi U-3010
UV-VIS Spectrophotometer with a Spectralon®-coated integrating-
sphere attachment using the method by Tassan and Ferrari (1995).

aCDOM(412 and 442) as with aNAP were retrieved after filtration of
the filtrate using a Millipore filter (pore size 0.2 µm) and measured
using the Hitachi U-3010 UV-VIS Spectrophotometer.

The calculations of scattering and backscattering coefficients in
the studied waterbodies are detailed by Uusõue et al. (2022). Total
scattering (btot(442)) and particle scattering (bpart(442)) were
calculated from absorption and attenuation coefficients measured
using WETLabs AC-S (WETLabs, USA), following the user manual
(WET Labs, 2011). Backscattering coefficients were calculated from
the volume scattering function measured withWETLabs ECO-VSF3
(WETLabs, USA) at three wavelengths (470, 532, and 660 nm),
following the user manual (WET Labs, 2007). The particle
backscattering coefficients (bbpart) at specific wavelengths
(510 and 550 nm) were obtained by interpolation. Phytoplankton
and mineral mass-specific scattering coefficients (bphyto(442) and
bmineral(442) m2/g) were obtained by dividing the scattering
coefficients by SPOM and SPIM concentrations, respectively
(Snyder et al., 2008).

2.3 Satellite data

S2 MSI Level-1 (L1) and S3 OLCI L1 and L2 full-resolution (FR)
non-time critical data were downloaded for the period 2016–2022:

• S2 A/BMSI data were downloaded from the Copernicus Open
Access Hub (https://scihub.copernicus.eu) with processing
baselines of 02.04–04.00.

• S3 A/B OLCI L1 data were downloaded from the EUMETSAT
Data Store (https://data.eumetsat.int) for 2016–2019
(reprocessed) and 2021–2022, or from the EUMETSAT
Data Centre (https://archive.eumetsat.int/) for 2020 with
processing baseline 002. L2 data were downloaded from the
EUMETSAT Data Store (https://data.eumetsat.int/) for
2016–2020 (reprocessed) and 2021–2022 with processing
baseline 003.

L1 data for both S2 MSI and S3 OLCI were processed using
ACOLITE, C2RCC, and POLYMER processors. S3 OLCI data were
additionally processed with A4O. For S2 MSI L1 data, IdePix (9.0.2)
(Wevers et al., 2021) was additionally used to identify invalid pixels
before applying the C2RCC AC processor. S3 OLCI A/B FR data
(300 m) and S2 MSI A/B (10 m) were extracted for match-up
analyses. Processor-based flagging was used (Supplementary Table
S2). A description of AC processors’ products for deriving OASs and
IOPs is shown in Table 1, and the background of each product is
provided in the references. A brief description of the AC processors,
their methodologies, and in-water algorithms is provided in the
following sections.

C2RCC (v2.1) consists of a processing chain of several neural
networks (NNs) and is designed for optically complex Case-2 waters
(Doerffer and Schiller, 2007; Brockmann et al., 2016). Although
originally developed for MERIS, it can be used for S2 MSI, S3 OLCI,
and other satellite missions. The basis for the NNs is large amounts
of simulated training data for radiative transfer in the atmosphere
and water. In the NN atmospheric correction process, the water-
leaving reflectance is estimated from the top-of-standard-
atmosphere reflectance. The water part uses an NN that
estimates five IOPs at 443 nm from the water-leaving reflectance
spectrum; these IOPs are the absorption coefficient of
phytoplankton pigments at 443 nm (apig), the absorption
coefficient of detritus at 443 nm (adet), the absorption coefficient
of CDOM (also known as gelbstoff) at 443 nm (aCDOM), and the
scattering coefficients of particles (bpart) and a white scatterer (bwhit).
Concentrations of Chl a and TSM are derived from these IOPs using
bio-geo-optical models with scaling factors determined primarily
from measured data from the North Sea and adjacent regions
(Röttgers et al., 2023). These parameters are listed in Table 1 but
can be adapted regionally. For both S2 MSI and S3 OLCI data,
processor-based default settings were used except for salinity, which
was changed to 0 PSU in lakes. The NNs for S2MSI and S3 OLCI are
slightly different according to the sensor characteristics.

L2 is the standard S3 OLCI water product for Case-2 waters
(*_NN). This is essentially the same processing chain as C2RCC,
based on Doerffer and Schiller (2007). Small differences arise due to
the use of System Vicarious Calibration gains and the lack of options
for influencing salinity and ancillary data (EUMETSAT, 2024).With
this alternative processing for Case-2 waters, however, not all
products are provided.

A4O-ONNS (v1.0) is a further development of C2RCC. The
OLCI Neural Network Swarm (ONNS v0.23) water algorithm uses
several NNs that are each optimized for defined optical water types
(OWTs) (Hieronymi et al., 2017). It is designed for all natural
waters, from clear oceanic to extremely absorbing or scattering
waters, and considers diverse phytoplankton communities. The
ONNS algorithm was created for S3 OLCI but can be used for

Frontiers in Remote Sensing frontiersin.org04

Ansper-Toomsalu et al. 10.3389/frsen.2024.1423332

https://scihub.copernicus.eu/
https://data.eumetsat.int/
https://archive.eumetsat.int/
https://data.eumetsat.int/
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2024.1423332


TABLE 1 Overview of selected water quality parameters from satellite data with applied atmospheric correction and description of underlying methods.
C2RCC and L2 contain the same processing chain and bio-geo-optical models with onlyminor differences. C2RCC/L2 and A4O-ONNS use the entire visible
Rrs spectrum but with slightly different band configurations. ACOLITE-based water algorithms utilize red and red-edge bands.

AC Satellite Original name of
the water product

Method Range Reference In situ

C2RCC S2 and S3 conc_chl Chlorophyll concentration derived from pigment
absorption at 443 nm with Chl a = 21 apig

1.04

0.1–100 mg/m3 Doerffer and Schiller
(2007)
Brockmann et al. (2016)

Chl a

conc_tsm TSM concentration derived from particulate
scattering at 443 nm with TSM = 1.06 btot

0.942

0.1–1,000 mg/
m3

TSM

iop_apig NN retrieval of pigment absorption at 443 nm 0–51 m-1 apig

iop_adet NN retrieval of detritus absorption at 443 nm 0–60 m-1 aNAP

iop_agelb NN retrieval of CDOM absorption at 443 nm 0–60 m-1 aCDOM

iop_adg Sum of derived detritus and CDOM absorption at
443 nm

adg

iop_atot Total non-water absorption coefficient at 443 nm atot

iop_bpart NN retrieval of phytoplankton scattering at 443 nm 0–60 m-1 bpart

iop_btot Total non-water scattering at 443 nm from NN-
derived phytoplankton scattering + white scatterer

0–590 m-1 btot

L2 S3 CHL_NN Chlorophyll concentration derived from pigment
absorption at 443 nm with Chl a = 21 apig

1.04

0.1–100 mg/m3 Doerffer and Schiller
(2007)
EUMETSAT (2021b)

Chl a

TSM_NN TSM concentration derived from particulate
scattering at 443 nm with TSM = 1.06 btot

0.942

0.01–400 mg/L TSM

ADG443_NN Sum of derived detritus and CDOM absorption at
443 nm

0.001–22.0 m-1 adg

apig
a (CHL_NN/21) (25/26) 0.001–6 m-1 apig

atot
a apig + ADG443_NN 0.003–50 m-1 atot

A4O S3 CHL_IOP_ONNS Chlorophyll concentration derived from
phytoplankton absorption at 440 nm with Chl a =
21 apig

1.04

Hieronymi et al. (2017)
Hieronymi et al. (2023)

Chl a

CHL_ONNS NN retrieval of chlorophyll (concentration nets) 0–200 mg/m3

TSM_ONNS NN retrieval of inorganic suspended matter
(concentration nets)

0–1,500 mg/m3 TSM

a_p_440_ONNS NN retrieval of phytoplankton (pigment) absorption
at 440 nm

0-36 m-1 apig

a_m_440_ONNS NN retrieval of mineral (detritus) absorption at
440 nm

0-100 m-1 aNAP

CDOM_ONNS NN retrieval of CDOM absorption at 440 nm
(concentration nets)

0–20 m-1 aCDOM

a_g_440_ONNS NN retrieval of CDOM absorption at 440 nm (IOP
nets)

0–20 m-1 aCDOM

a_dg_412_ONNS NN retrieval of detritus + CDOM absorption at
412 nm (AOP-IOP nets)

0–80 m-1 adg

a_tot_440_ONNS Total non-water absorption at 440 nm (IOP nets) atot

b_tot_440_ONNS Total non-water scattering at 440 nm (IOP nets) btot

b_p_440_ONNS NN retrieval of phytoplankton scattering at 440 nm
(IOP nets)

0–10 m-1 bpart/
SPOM

b_m_440_ONNS NN retrieval of mineral (detritus) scattering at
440 nm (IOP nets)

0–1,000 m-1 bpart/
SPIM

b_bp_510_ONNS NN retrieval of total particle back-scattering at
510 nm (AOP-IOP nets)

0–10 m-1 bbpart at
510 nm

(Continued on following page)
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other satellite sensors via a band adapter, although not for S2 MSI
(Hieronymi, 2019). A4O is a novel atmospheric correction for
S3 OLCI by Hieronymi et al. (in prep), which is optimized to
exploit the optical water type requirements of the ONNS water
algorithm. A4O also consists of an ensemble of NNs to output fully-
normalized remote sensing reflectance. Moreover, some unique flags
are provided, e.g., to indicate uncertainties in the case of eutrophic
waters (floating algae) and possible optically shallow waters
(adjacency). Further details of A4O and a comparison with other
AC methods are described by Hieronymi et al. (2023). The ONNS
water products (Table 1) are derived from various OWT-specific net
structures and are essentially based on Hydrolight radiative transfer
simulations and bio-geo-optical relationships comparable to
C2RCC, but ONNS delivers a few more products that are not
part of this inter-comparison, like the diffuse attenuation
coefficient of downwelling irradiance, Kd490.

ACOLITE (v20221114.0) uses a dark spectrum fitting method
and is designed for turbid Case-2 waters, applicable to both
S2 MSI and S3 OLCI. Its methodology involves identifying
dark pixels on the image to select the band with the lowest
atmospheric top-of-atmosphere reflectance. The processing
scheme is image-based and does not require external data,
such as aerosol optical thickness, which is calculated based on
the dark pixels. Deriving Chl a and TSM parameters is based on
calculated water-leaving reflectances, where band ratio
algorithms are applied (Table 1). A more detailed processing
scheme for calculating water-leaving reflectance is provided by
Vanhellemont and Ruddick, (2018) and Vanhellemont (2019).
For S2 MSI, the “fixed” option for aerosol optical depth at 550 nm
was used, which calculates only one single value for an image
previously defined by regions-of-interest (ROIs). For S3 OLCI,
the default “tiled” option was used, dividing the image into 6 × 6 km
tiles, calculating each tile value, and then interpolating the full
image. Additionally, Ancillary and Shuttle Radar TopographyMission
Digital Elevation Model data from the Earthdata database (https://
earthdata.nasa.gov) were used. Other processor-based settings for
both satellites were used as “default.”

POLYMER (v4.16) uses a spectral matching method based on a
polynomial model with sun glint removal and an ocean reflectance
model, designed mainly as an ocean color product but also suitable
for Case-2 waters for S2 MSI and S3 OLCI. For deriving water-
leaving reflectance, top-of-atmosphere reflectance is corrected (for
gases, ozone, Rayleigh scattering, and sun glint). The spectral
matching method is used to obtain the best spectral fit for
corrected top-of-atmosphere reflectance. Chl a concentration and
the backscattering coefficient of non-covarying particles are derived
based on the ocean reflectance model calculating water-leaving
reflectance (Morel, 1988). A more detailed description of the
processing scheme is provided by Steinmetz et al. (2011). Logchl
is a standard Chl a product, which was solved (10 l̂ogchl), but the
product name logchl remained in the study.

The most common in-water algorithms of all ACs were selected
to cover a wide range of parameters, retrievable from satellite
data (Table 1).

2.4 Match-up protocol and statistics

For match-up analysis, the S3 validation protocol was followed
(EUMETSAT, 2021a) for both S2 MSI and S3 OLCI. In situ data
were collected on the same day as the satellite overpass. The
downloaded satellite data were processed with AC processors and
their respective in-water algorithms. Then, 1 × 1 and 3 × 3 ROIs were
exported using the Pixel Extraction tool in Sentinel Application
Platform (SNAP) (v9.0) software. To compare the consistency
between S2 MSI and S3 OLCI data, the S2 MSI products were
resampled to 300-m pixel resolution using the Resample tool (v2.0)
in SNAP. The comparison was made on 3 × 3 ROIs. Statistical
analysis was done using R software (v2022.12.0). Standard
deviations for error estimation were calculated for in situ data
when multiple measurements were available for one water sample
or one measurement station.

For the 3 × 3 ROIs, outliers were removed before further
calculations. First, the mean (μ) and standard deviation (σ) of

TABLE 1 (Continued) Overview of selected water quality parameters from satellite data with applied atmospheric correction and description of underlying
methods. C2RCC and L2 contain the same processing chain and bio-geo-optical models with only minor differences. C2RCC/L2 and A4O-ONNS use the
entire visible Rrs spectrum but with slightly different band configurations. ACOLITE-based water algorithms utilize red and red-edge bands.

AC Satellite Original name of
the water product

Method Range Reference In situ

ACOLITE S2 and S3 chl_re_gons (740) Red-edge band algorithm 3–185 mg/m3 Gons et al. (2002) Chl a

chl_re_moses3b (740) Three red-edge band algorithm 1–108 mg/m3 Moses et al. (2012)

chl_re_mishra Normalized difference Chl index 1–60 mg/m3 Mishra and Mishra
(2012)

chl_re_bramich Red-edge band algorithm 2–70 mg/m3 Bramich et al. (2021)

SPM_Nechad2016 Red band algorithm 1–110 mg/L Nechad et al. (2009)
Nechad et al. (2010)

TSM

POLYMER S2 and S3 logchl Chlorophyll concentration estimated from spectral
matching between the polynomial atmospheric
model and a bio-optical ocean water reflectance
model

0.01–100mg/m3 Steinmetz et al. (2011) Chl a

aComposed of different derived outputs.
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each ROI were calculated. Second, pixels were discarded if they met
the conditions provided in Eqs 1, 2.

pixel value[ ]< μ − 1.5σ, (1)
or

pixel value[ ]> μ + 1.5σ. (2)

Only ROIs where 50% + 1 pixels (at least five pixels) remained
were used for further calculations. Finally, the coefficient of variation
(CV) of each ROI was calculated to obtain the final match-ups
(Eq. 3).

CV � σ

μ
× 100%, (3)

where μ and σ were calculated for each ROI after eliminating
outliers. When CV > 20%, the match-up was discarded.

Uncertainties for the 3 × 3 ROIs were retrieved as average
satellite-derived uncertainty values after the elimination of the
outliers, which were described above. For 1 × 1 ROIs,
uncertainty for one pixel was exported. Not all products had
uncertainty values.

The following statistics were calculated between in situ and
satellite (S2 MSI and S3 OLCI) data:

The primary metrics used for the validation of the in-water
algorithms were errors, estimated using Eqs 4, 5. First, the median
percentage error (MdPE) was calculated to estimate the bias,
indicating how much the data were underestimated or
overestimated by the in-water algorithms (Eq. 4).

MdPE � median
1≤ i≤N

xsatellite,i − xin situ,i

xin situ,i
{ } × 100. (4)

Second, the median absolute percentage error (MdAPE) was
calculated to estimate the dispersion of the data around the 1:1 line
(Eq. 5):

MdAPE � median
1≤ i≤N

xsatellite,i − xin situ,i

xin situ,i

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣{ } × 100. (5)

The absolute percentage error (APE) (Eq. 6) was calculated
between in situ and satellite match-up data to estimate the difference
between the in situ measured and satellite-derived values:

APE � xsatellite − xin situ( )
xin situ

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ × 100. (6)

To analyze the adjacency effect on satellite data, the distance was
measured from the in situ point to the closest shoreline.

Linear regression was used to estimate, both visually and
quantitatively, with the determination coefficient (R2), slope, and
intercept, how well the model predicts satellite-derived parameter
values (dependent variables) as a function of observed in situ values
(independent variables). Depending on the context, a high R2 value
(Eq. 7) indicates a good fit of the model to the data. The slope (b1)
shows the steepness of the regression line and how far the data
points are from the 1:1 line. The higher the b1, the steeper the slope,
and the farther the data points are from the 1:1 line. The intercept
(b0) shows where the regression line intersects the y-axis of the
dependent variable (satellite-derived parameters). The independent
variable in that location is 0.

R2 � 1 − ∑N
i�1 xin situ,i − xsatellite( )2

∑N
i�1 xin situ,i − xin situ,average( )2. (7)

The slope and intercept can be expressed in the form of a linear
equation (Eq. 8) as follows:

y � b0 + b1x, (8)
where b0 is the y-intercept, b1 is the slope, y is the dependent
variable, and x is the independent variable. For all the previous
equations, N represents the number of match-ups, xsatellite
represents the parameter obtained with the in-water algorithm
(S3 OLCI or S2 MSI), and xin situ represents the parameter
measured in situ.

Frequencies were calculated to estimate the percentage
of the remaining match-ups after the flagging process. Data
(1 × 1 pixel) were used for the calculations for all in-water
algorithms. The number of match-ups retained by each
algorithm was divided by the total match-up data on each
parameter specific to each AC.

3 Results

3.1 Water quality parameters

3.1.1 Chl a
Seventeen Chl a in-water algorithms applied to S3 OLCI and

S2 MSI data were validated (Table 1). Satellite-derived Chl a
concentration was limited to 250 mg/m3 (the maximum in situ
Chl a concentration in usable match-ups was 125 mg/m3) to remove
large outliers. Indeed, ACOLITE had outliers above 400 mg/m3,
reaching 6,000 mg/m3 for both S3 OLCI and S2 MSI. C2RCC had
four outliers above 200 mg/m3 for S2 MSI. The dispersion (MdAPE)
and bias (MdPE) for 1 × 1 and 3 × 3 ROIs are presented in Table 2,
and R2, slope, and intercept within the linear equation are shown in
Figures 2, 3.

Generally, the in situ vs. 1 × 1 ROI data hadmore outliers, higher
error estimates (MdAPE andMdPE), and lower R2 values than the in
situ vs. 3 × 3 ROI data (Table 2; Figures 2, 3). Therefore, the focus
will be on the statistics of 3 × 3 ROIs . The chl_re_gons algorithm
(ACOLITE) showed the best accuracy when applied to S3 OLCI and
compared to in situ data (Figure 2). This algorithm had the lowest
dispersion (MdAPE = 23%) among all the Chl a in-water algorithms,
with a slight overestimation (MdPE = 10%) compared to in situ
measurements. The dispersion increased for Chl a concentrations
above 40 mg/m3. Data aligned closely with the 1:1 line, with
a slope of 1.02 and an intercept of 2.30 (R2 = 0.70). Similarly, the
chl_re_mishra algorithm (ACOLITE) had a slightly higher
dispersion than the chl_re_gons algorithm (MdAPE = 24%),
particularly for in situ Chl a concentrations above 20 mg/m3. It
produced values closely aligned with the 1:1 line, with a slope of
0.95 and an intercept of 2.31 (R2 = 0.58). The chl_re_bramich,
chl_re_moses3b (ACOLITE), and CHL_IOP_ONNS (A4O) algorithms
showed a systematic overestimation (MdPE > 45%). In contrast, the
conc_chl algorithm (C2RCC) and CHL_NN product (L2)
systematically underestimated Chl a concentrations, especially for
concentrations above 20 mg/m3 (MdPE ~ −35%). The logchl
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algorithm (POLYMER) showed increased dispersion for in situ
values above 20 mg/m3. The chl_ONNS algorithm (A4O)
significantly overestimated all Chl a concentrations (MdPE = 175%).

For S2 MSI, all Chl a algorithms exhibited high dispersion
(MdAPE up to 62%) in the vicinity of the land, with either
underestimation (C2RCC and POLYMER) or overestimation
(ACOLITE) (MdPE ranging from −49% to 62%). The accuracy
of ACOLITE in-water algorithms tended to improve in more
productive waters (Chl a > 25 mg/m3) (Table 2; Figure 3). The
slopes were below 0.6, and the intercepts were above 18, showing
high dispersion for small Chl a concentrations.

Next, we studied how AC processors were impacted by
different flags and analyzed how many match-ups remained
for each AC in-water algorithm (frequencies) after applying
flags. There are several algorithm-specific flags for invalid
pixel expression and additional warnings, although it is often
unclear how these are to be used (Hieronymi et al., 2023).
Considering retrievals deviating from in situ measurements,
we have chosen to apply the available warning flags. This
excludes many possible match-ups, especially for A4O near
land. For S3 OLCI, low percentage of match-ups remained
after applying flags (up to 28%). More than 20% of match-ups
remained for each ACOLITE in-water algorithm, while only 9%
of match-ups remained for the A4O algorithms. In addition, a
low percentage (18% and 19%) of match-ups remained for
C2RCC and L2, respectively. For S2 MSI, the remaining
match-ups’ frequencies were higher than those for S3, ranging
between 49% and 78% (POLYMER and ACOLITE, respectively).

3.1.2 TSM
Five TSM in-water algorithms were validated for S3 OLCI and

S2 MSI (Figure 4). All the algorithms applied to S3 OLCI data
overestimated TSM concentrations (MdPE > 88%) (Table 3). The
TSM_NN product (L2) showed the best accuracy in terms of bias
(MdPE = 88%) and dispersion (MdAPE = 88%). TSM
concentrations retrieved with the TMS_NN product (L2) and
conc_tsm algorithm (C2RCC) were closer to the 1:1 line for in
situ values below 10 mg/L (Figure 4A). However, the dispersion
increased above 80% for concentrations above 20 mg/L, where most
measurements were performed close to the shore (within 5 km).
Error bars showed that high TSM concentrations and outliers were
associated with high satellite-derived uncertainties. TSM
concentrations retrieved with the TSM_IOP_ONNS algorithm
(A4O) showed high dispersion (MdAPE = 129%) across all in
situ concentration ranges and had 2.5 times fewer match-ups
(N = 66) compared to the conc_tsm algorithm (C2RCC)
(N = 170) and TSM_NN product (L2) (N = 177).

For S2 MSI, the conc_tsm algorithm (C2RCC) provided the
most accurate results, aligning well with the 1:1 line for all values
(intercept −0.69, slope 0.97, and R2 = 0.74) with an overall dispersion
of 24% (Table 3). The SPM_Nechad2016_665 algorithm
(ACOLITE) underestimated TSM concentrations (MdPE = −9%),
but TSM concentrations below 10 mg/L were close to the 1:1 line.

The analysis of the remaining match-ups after applying flags
showed that the highest frequencies were observed with the S2 MSI
ACOLITE algorithm (79%), while the lowest frequencies were with
the S3 OLCI A4O algorithm (9%). C2RCC performed better on

TABLE 2 Statistics of Chl a in-water algorithms derived from S3OLCI and S2 MSI 1 × 1 and 3 × 3 ROIs. AC stands for atmospheric correction, N is the number
of match-ups, MdAPE is dispersion, MdPE is bias and freq is % of remaining match-ups after applying flags.

Satellite AC In-water algorithm N MdAPE (%) MdPE (%) Freq (%)

1x1 3x3 1x1 3x3 1x1 3x3 1x1

S3 A4O Chl_IOP_ONNS 69 67 51 50 50 46 9

S3 A4O Chl_ONNS 69 62 172 175 172 175 9

S3 ACOLITE chl_re_bramich 251 193 62 59 62 59 11

S3 ACOLITE chl_re_gons 252 194 24 23 7 10 21

S3 ACOLITE chl_re_mishra 332 253 30 24 −2 −5 28

S3 ACOLITE chl_re_moses3b 296 206 57 50 51 50 26

S3 C2RCC conc_chl 202 178 41 40 −33 −34 18

S3 L2 CHL_NN 229 185 50 47 −33 −35 19

S3 POLYMER logchl 195 170 37 37 −20 −15 16

S2 ACOLITE chl_re_bramich 108 74 96 62 96 62 78

S2 ACOLITE chl_re_gons 91 71 46 40 44 37 63

S2 ACOLITE chl_re_gons740 91 71 47 40 45 37 63

S2 ACOLITE chl_re_mishra 113 85 54 49 20 1 78

S2 ACOLITE chl_re_moses3b 71 19 69 17 34 17 63

S2 ACOLITE chl_re_moses3b740 70 20 76 56 44 55 61

S2 C2RCC conc_chl 145 58 59 42 −18 −26 56

S2 POLYMER logchl 157 90 54 52 −43 −49 49
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S2 than on S3 when there were 56% and 18% of match-ups,
respectively.

3.1.3 IOPs
3.1.3.1 Absorption parameters

Twenty absorption in-water algorithms were validated for
S3 OLCI (Figure 5; Table 4) and S2 MSI (Figure 6; Table 4). A
description based on the different processing schemes is provided in
the following section. adg(412 and 443) represented the sum of aNAP
(412 and 443) and aCDOM(412 and 443).

3.1.3.1.1 A4O in-water algorithms. apig(440) derived with the
a_p_440_ONNS algorithm was the closest to the 1:1 line with an
intercept of 0.10 and a slope of 1.64 (R2 = 0.43) (Figure 5), but it
was systematically overestimated (MdPE = 72%) (Table 4). The
a_dg_412_ONNS algorithm underestimated adg(412) values below
4 m-1 and overestimated those above 4 m-1. Other A4O algorithms,
including a_dg_440_ONNS (adg(440)) and a_g_440_ONNS
calculated from concentration nets (aCDOM(440)), CDOM_ONNS
calculated from IOPs nets (aCDOM(440)), a_m_440_ONNS

(aNAP(440)), and a_tot_440_ONNS (atot(440)), showed high
dispersion (MdAPE > 55%), with strong tendencies to
underestimation (MdPE < −28%). The correlation of the linear
regression was low (R2 < 0.3), the slope was between −0.51 and
0.34, and the intercept between −0.26 and 0.34.

3.1.3.1.2 C2RCC in-water algorithms. iop_atot (atot(443))
performed better than other C2RCC in-water algorithms for
absorption retrieval, with values close to the 1:1 line (a slope of
0.82 and an intercept of −0.40 (R2 = 0.33). The iop_atot, iop_adg
(adg(443)), and iop_agelb (aCDOM(443)) algorithms systematically
underestimated in situ values (MdPE between −39% and −91%). The
iop_agelb algorithm had the highest correlation among all
aCDOM(443) in-water algorithms (R2 = 0.10). High satellite-
derived uncertainties of the iop_atot, iop_adg, and iop_agelb
algorithms were associated with outliers that strongly
overestimated the in situ values. The iop_adet algorithm
systematically overestimated aNAP(443) values (MdPE = 85%).
iop_apig (apig(443)) overestimated apig(443) values below 1 m-1

and underestimated apig(443) values above 1 m-1.

FIGURE 2
Chl a concentration match-ups derived from S3 OLCI L2 and alternative processing schemes (A4O, ACOLITE, C2RCC, and POLYMER) applied to
S3 OLCI L1 data. The satellite-derived Chl a concentration is limited to 250 mg/m3 to eliminate outliers. Horizontal error bars represent the standard
deviation of in situ-measured values, and vertical error bars represent satellite uncertainty.
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3.1.3.1.3 L2 products. The apig (apig(443)) product was derived
using the CHL_NN (L2) formula (Eq. 9):

CHLNN � 21 × apig1.04. (9)

This algorithm overestimated low apig(443) values (below 1 m-1)
and underestimated high apig(443) values (above 1 m-1) with high
dispersion (MdAPE = 61%). The atot (atot(443)) product was
derived by adding the apig product to the ADG443_NN product
(adg(443)). Both atot and ADG443_NN products were well-aligned
with the 1:1 line with negative biases (MdPE = −17% and −35%,

respectively). Highly overestimated ADG443_NN retrievals were
associated with higher uncertainties. Among all absorption
parameters, atot(443) was derived with the lowest bias
(MdPE = −17%) and dispersion (MdAPE = 35%).

For S2 MSI, only the C2RCC algorithms could derive
absorption parameters (Figure 6). The iop_apig values were
generally close to the 1:1 line (slope of 1.42), but four outliers
contributed to the elevated bias (MdPE = 30%) (Table 4). The
iop_adet, iop_adg, iop_agelb, and iop_atot algorithms
systematically underestimated absorption values (MdPE was
below −44%), especially for adet(443) values above 0.5 m-1 and

FIGURE 3
Chl a concentration match-ups derived from in-water algorithms (ACOLITE, C2RCC, and POLYMER) using S2 MSI data. The satellite-derived Chl a
concentration is limited to 250mg/m3 to eliminate outliers. Horizontal error bars represent the standard deviation of in situ-measured values, and vertical
error bars represent satellite uncertainty.
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adg(443), aCDOM(443), and atot(443) values above 10 m-1. High
satellite-derived uncertainties were associated with outliers in the
iop_apig, iop_adg, and iop_atot algorithms.

After flagging, C2RCC had the overall highest number of match-
ups (> 50%) after applying flags to S2 MSI data. On S3 OLCI,
C2RCC flags yielded fewer match-ups compared to S2 MSI (only
15%–18% of match-ups remained). Overall, A4O algorithms yielded
the lowest number of match-ups (between 4% and 9%).

3.1.3.2 Scattering parameters
Five in-water algorithms were analyzed to derive scattering

parameters for S3 OLCI and S2 MSI.
For S3 OLCI C2RCC, the iop_btot algorithm systematically

overestimated btot(443) values (MdPE = 308%) (Table 5;
Figure 7A). Conversely, the iop_bpart algorithm underestimated
bpart(443) values (MdPE = −99%). The A4O in-water
algorithms derived only 2–4 match-ups for each parameter

FIGURE 4
TSM concentrationmatch-ups derived from S3OLCI L2 and alternative processing schemes (A4O andC2RCC) applied to S3OLCI L1 data (A) and in-
water algorithms (ACOLITE and C2RCC) applied to S2 MSI (B). The satellite-derived TSM concentration is limited to 80 mg/L, respectively, to eliminate
outliers. Vertical error bars represent the satellite-derived uncertainty.

TABLE 3 Statistics of TSM in-water algorithms derived from S3 OLCI and S2 MSI 1 × 1 and 3 × 3 ROIs. AC stands for atmospheric correction, N is the number
of match-ups, MdAPE is dispersion, MdPE is bias and freq is % of remaining match-ups after applying flags.

Satellite AC In-water algorithm N MdAPE (%) MdPE (%) Freq (%)

1x1 3x3 1x1 3x3 1x1 3x3 1x1

S3 A4O TSM_IOP_ONNS 71 66 134 129 134 129 9

S3 C2RCC conc_tsm 206 170 99 102 99 102 18

S3 L2 TSM_NN 233 177 91 88 91 88 19

S2 ACOLITE SPM_Nechad2016_665 116 95 26 25 −12 −9 79

S2 C2RCC conc_tsm 152 72 44 24 −29 −12 56
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(b_bp_510_ONNS, b_m_440_ONNS, b_p_440_ONNS, and
b_tot_440_ONNS), making comprehensive statistical analysis
challenging. However, Figure 7A shows that A4O in-water
algorithms tended to overestimate in situ scattering values.

For S2 MSI, only the C2RCC in-water algorithms were available
(Figure 7B). The iop_bpart algorithm underestimated bpart(443)
values (MdPE = −21%), and iop_btot overestimated btot(443)
values (MdPE = 105%) (Table 5; Figure 7B).

FIGURE 5
Absorption match-ups derived from S3 OLCI L2 and alternative processing schemes (A4O and C2RCC) applied to S3 OLCI L1 data. Horizontal error
bars represent the standard deviation of in situ-measured values, and vertical error bars represent the satellite uncertainty.
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The analysis of the remaining match-ups after applying flags
showed that C2RCC had overall more match-ups with S2 MSI
(52%). It had only 12%–33% of match-ups with S3 OLCI. The lowest
number of match-ups was obtained with A4O (12%–13%).

3.2 Impact of applying the quality flags

The contribution percentages of the most frequently raised flags
are described in Supplementary Table S3. Four groups of AC in-
water algorithms were studied: A4O, C2RCC, and L2 applied to
S3 OLCI and C2RCC applied to S2 MSI. The highest number of
pixels across all algorithms were eliminated with the A4O AC
processor (87%–96%), and the ACOLITE AC processor
eliminated the smallest number of pixels (21%–39%).

In the case of S3 OLCI, flag contributions were high, up to
93%. The most frequently raised flag for the A4O in-water

algorithms was AC_flag_adjacency (pixels influenced by the
vicinity of the land). It was raised in 83%–93% of cases for overall
match-ups. AC_flag_floating (pixels influenced by the floating algae)
was raised in 22%–56% of cases, and AC_flag cloud_risk (risk of
cloud presence on pixels) was raised in 37%–57% of cases. For
C2RCC, the most frequently raised flag was Cloud_risk (risk of
cloud presence on pixels (51%–63%)). Rtosa_OOS (spectral
shape of top-of-atmosphere radiance not known by the
C2RCC NN) was raised in 18%–50% of cases, Rhow_OOS
(spectral shape of water leaving reflectance input spectrum to
the IOP retrieval neural net is out of training range) in 38%–60%
of cases, and Quality_flag_sun_glint_risk (potential presence of
sun glint on pixels) in 8%–19% of cases. Other flags had a
negligible effect. The most highly contributing flag for L2 in-
water algorithms was WQSF_lsb_OCNN_FAIL (pixels on which
the NN algorithm failed), which was raised in 51%–57% of cases.
WQSH_lsb_CLOUD_MARGIN (pixels influenced by cloud edges) was

TABLE 4 Statistics of absorption in-water algorithms derived from S3 OLCI and S2 MSI 1 × 1 and 3 × 3 ROIs. AC stands for atmospheric correction, N is the
number of match-ups, MdAPE is dispersion, MdPE is bias and freq is % of remaining match-ups after applying flags.

Satellite AC In-water algorithm N MdAPE (%) MdPE (%) Freq (%)

aCDOM 1x1 3x3 1x1 3x3 1x1 3x3 1x1

S3 A4O a_g_440_ONNS 71 67 58 59 −21 −28 9

S3 A4O CDOM_ONNS 71 69 58 59 −30 −30 9

S3 C2RCC iop_agelb 207 154 89 91 −88 −91 18

S2 C2RCC iop_agelb 155 70 92 76 −92 −75 56

aNAP

S3 A4O a_m_440_ONNS 23 22 65 65 −53 −60 5

S3 C2RCC iop_adet 132 111 87 85 87 85 15

S2 C2RCC iop_adet 127 37 67 49 −66 −46 54

adg

S3 A4O a_dg_412_ONNS 18 18 46 45 12 13 4

S3 A4O a_dg_440_ONNSa 23 21 69 69 −48 −49 4

S3 C2RCC iop_adg 134 109 53 54 −47 −51 15

S3 L2 ADG443_NN 160 114 51 48 −16 −35 17

S2 C2RCC iop_adg 131 62 92 66 −92 −65 54

apig

S3 A4O a_p_440_ONNS 19 18 86 72 58 72 4

S3 C2RCC iop_apig 118 100 47 42 37 27 14

S3 L2 apig 143 112 61 59 57 54 17

S2 C2RCC iop_apig 123 58 100 100 40 30 56

atot

S3 A4O a_tot_440_ONNS 23 22 61 60 −31 −33 4

S3 C2RCC iop_atot 134 112 40 43 −34 −39 15

S3 L2 atot 160 117 39 35 −7 −17 17

S2 C2RCC iop_atot 131 70 60 46 −56 −44 54

aComposed of different derived parameters.
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raised in 20%–21% of cases. Other flags’ contribution was between 1%
and 7%—WQSF_lsb_CLOUD_AMBIGOUS (pixels identified with
possible clouds, semi-transparent clouds), WQSF_lsb_AC_FAIL
(pixels with a suspect baseline atmospheric correction), and
WQSF_lsb_HIGHGLINT (pixels with a non-reliable sun glint
correction).

In the case of S2 MSI, flag contributions were low (below 32%
of cases). The Cloud_risk flag (risk of cloud presence on pixels) had
the highest contribution for C2RCC, being raised in 25%–32% of
cases. IDEPIX_POTENTIAL_SHADOW (pixels influenced by
potential cloud shadow) was raised in 14%–21% of cases.
IDEPIX_LAND (pixels identified as land pixels) were raised in

FIGURE 6
Absorption match-ups derived from the alternative processing scheme C2RCC applied to S2 MSI L1 data. Horizontal error bars represent the
standard deviation of in situ-measured values, and vertical error bars represent the satellite uncertainty.

TABLE 5 Statistics of scattering and backscattering in-water algorithms derived from S3 OLCI and S2 MSI 1 × 1 and 3 × 3 ROIs. AC stands for atmospheric
correction, N is the number of match-ups,MdAPE is dispersion, MdPE is bias and freq is % of remaining match-ups after applying flags.

Satellite AC In-water algorithm N MdAPE (%) MdPE (%) Freq (%)

bpart 1x1 3x3 1x1 3x3 1x1 3x3 1x1

S3 C2RCC iop_bpart 25 9 99 99 99 −99 33

S2 C2RCC iop_bpart 16 5 42 36 −35 −21 52

btot

S3 A4O b_tot_440_ONNS 4 3 113 71 113 71 12

S3 C2RCC iop_btot 25 18 297 308 296 308 33

S2 C2RCC iop_btot 16 9 111 105 111 105 52

bmineral

S3 A4O b_m_440_ONNS 4 2 118 25 89 −25 13

bphyto

S3 A4O b_p_440_ONNS 4 3 288 377 288 377 13

bbpart

S3 A4O b_bp_510_ONNS 5 4 57 46 57 46 13
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FIGURE 7
Scattering match-ups derived from alternative processing schemes (A4O and C2RCC) applied to S3 OLCI L1 data (A) and C2RCC applied to S2 MSI
L1 data. (B). Horizontal error bars represent the standard deviation of in situ measured values, and vertical error bars represent the satellite uncertainty.

FIGURE 8
Errors (APE %) of S2 MSI (A) and S3 OLCI (B) associated with the vicinity of the land in all Chl a in-water algorithms based on 3 × 3 ROI. S3 OLCI errors
were limited to 750%.
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11%–13% of cases; however, these pixels were located in the water
but close to shore.

3.3 Errors associated with the vicinity of
the land

To estimate errors associated with the vicinity of the land, APE
(Eq. (6)) was calculated for each match-up (3 × 3 ROI vs. in situ
value) for all Chl a products (Figure 8). S2 MSI (Figure 8A) and
S3 OLCI (Figure 8B) data were analyzed separately for better
visualization. The highest errors were observed near shore
(<5 km) for S2 MSI and S3 OLCI data. Errors decreased as the
distance from the shore increased (>5 km), dropping to below 100%.
Therefore, distance groups were chosen as <5 km and >5 km,
representing equally distributed data.

Mean errors (mean APE %) were calculated for each Chl a in-
water algorithm based on the distance group. The mean errors
were higher for the distance group close to the shore (<5 km)
(S2 MSI: 315% and S3 OLCI: 150%) and lower for the group
farther from the shore (>5 km) (S2 MSI: 35% and S3 OLCI: 80%),
except for the S3 OLCI chl_re_moses3b algorithm (ACOLITE),
where the mean error increased (Figure 9). Comparing the mean
errors of S2 MSI and S3 OLCI for Chl a in-water algorithms
between near-shore and offshore locations, the difference was

higher for S2 MSI (~280%) than for S3 OLCI (~70%). The mean
errors for S3 OLCI were less than 100% in both distance groups,
except for the Chl_ONNS algorithm (A4O). The mean errors for
S2 MSI were less than 100% close to shore and more than 100%
farther from the shore. Only the logchl algorithm (POLYMER)
showed mean errors of less than 100% in both distance groups for
both S2 MSI and S3 OLCI, with a difference in the mean error of
approximately 30% between the two groups. The highest
difference in mean error between distance groups was
observed for the ACOLITE algorithms (~360%) for S2 MSI
and A4O algorithms (~311%) for S3 OLCI.

3.4 S2 MSI vs. S3 OLCI

The consistency of 12 in-water algorithms between S3 OLCI
(3 × 3 ROI) and S2 MSI (resampled to 300 m, 3 × 3 ROI extraction)
was analyzed by comparing match-up data with in situ
measurements (Figures 10A, C). Differences between satellite
data and in situ data were also compared based on the distance
from the shore (Figures 10B, D). Error bars represent the standard
deviation of 3 × 3 ROIs. The ACOLITE Chl a in-water algorithms
showed a high correlation (R2 > 0.8) between S3 OLCI and S2 MSI
data. The chl_re_gons algorithm (ACOLITE) had a slope of 0.8 and
an intercept close to 6, with values close to the 1:1 line. However,

FIGURE 9
Mean error (mean APE %) differences of S2 MSI and S3 OLCI in-water algorithms in two distance groups: <5 km (dark yellow) and >5 km (blue) based
on 3 × 3 ROI data. Arrows indicate the trend of mean APE changes between the two distance groups.
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FIGURE 10
Consistency of S3 OLCI and S2MSI resampled to 300m in different in-water algorithms, where row A consists of satellite-derived Chl a (mg/m3) and
TSM (mg/L) parameters and row C consists of satellite-derived absorption (m-1) and scattering (m-1) parameters. Error bars represent the standard
deviation of the 3 × 3 ROI. Gray dots indicate the absence of in situ values. The differences between in situ-measured and satellite-derived OASs and IOPs
(B and D) were compared based on the distance from the shore.
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lower Chl a concentrations (less than 20 mg/m3) were overestimated
by S2 MSI compared to S3 OLCI. In situ Chl a concentrations
were overestimated (up to approximately 10 mg/m3) by both
S2 MSI and S3 OLCI. The chl_re_mishra (ACOLITE) (R2 = 0.83)
and chl_re_bramich (ACOLITE) (R2 = 0.93) algorithms also
exhibited a high correlation between S3 OLCI and S2 MSI, but
with low slopes of 0.4 and 0.6, respectively (intercept greater than 8).
Higher Chl a concentrations (more than 20 mg/m3) were
underestimated by S2 MSI compared to S3 OLCI. Most of the
Chl a concentrations derived by chl_re_bramich (ACOLITE)
applied to both S2 MSI and S3 OLCI were overestimated by
approximately 10 mg/m3 over all Chl a values compared to in
situ measured Chl a. Chl a derived by chl_re_mishra (ACOLITE)
applied to both S2 MSI and S3 OLCI had most similar values to in
situ measured Chl a with some outliers.

The C2RCC in-water algorithms, such as iop_agelb, iop_adet,
and iop_apig, showed high correlations between S2 MSI
and S3 OLCI (R2 > 0.7). However, S2 MSI overestimated the
iop_agelb and iop_apig algorithms aCDOM(443) and apig(443)
values, respectively, and underestimated the iop_adet algorithm’s
aNAP values compared to S3 OLCI. In situ values of aCDOM(443)
were underestimated by both S2 MSI and S3 OLCI. In situ
apig(443) values were slightly overestimated by both S2 MSI
and S3 OLCI. In situ aNAP(443) values were underestimated by
S2 MSI and overestimated by S3 OLCI. Lower concentration
values between S2 MSI and S3 OLCI of the iop_adg (iop_adet +
iop_agelb) (<1.5 m-1), iop_apig (<1 m-1), and iop_atot (iop_adg +
iop_agelb + iop_apig + iop_adet) (<2 m-1) algorithms aligned
well with the 1:1 line. However, higher values resulted in
systematic underestimation or overestimation. The sum of all
absorption parameters, iop_atot, showed good alignment
between S2 MSI and S3 OLCI around the 1:1 line, with a
few outliers near the shore. Other C2RCC in-water algorithms
(iop_btot, conc_tsm) displayed poor consistency between
S2 MSI and S3 OLCI retrievals (R2 < 0.65). Some outliers
indicated higher spatial variation in the ROI, especially at a
distance <5 km. Notable discrepancies were found for the
products of conc_chl (C2RCC), iop_adg (C2RCC), iop_apig
(C2RCC), iop_atot (C2RCC), iop_btot (C2RCC), and logchl
(POLYMER). Differences between satellite data and in situ
data were more pronounced near the shore and decreased
farther from the shore (>5 km).

4 Discussion

This study compared the performance of 50 satellite-based in-
water algorithms. S3 OLCI L2 standard in-water products were
validated together with three commonly used alternative
processing schemes (ACOLITE, C2RCC, and POLYMER) applied
to S3 OLCI and S2 MSI data and a newly developed A4O processing
scheme applied to S3 OLCI. The accuracy of these algorithms was
assessed using an extensive in situ dataset collected from Estonian
lakes and coastal areas, representing eutrophic and absorbing waters.
The performance of the in-water algorithms depended on the water
type, with systematic underestimation or overestimation in some
cases. They were effective for certain ranges of in situ values but
not for others. The adjacency effect increased errors near the shore.

4.1 Chl a and TSM in-water algorithms

In this study, in situ Chl a concentrations ranged from 1.5 to
341 mg/m3 (average 24.8 mg/m3), TSM concentrations ranged from
0.005 to 143.3 mg/L (average 9 mg/L), and aCDOM(442) ranged from
0.4 to 48 m-1 (average 3.8 m-1). The high variability made the
retrieval of Chl a concentrations from satellite data challenging.
S3 OLCI showed the highest accuracy for Chl a retrieval with the
chl_re_gons and chl_re_mishra in-water algorithms (ACOLITE),
achieving MdPE < −10% and MdAPE ~24%; data gathered were
close to the 1:1 line with a slope of 1.02, an intercept of 2.3, and an
R2 > 0.58. However, these algorithms are type-dependent. The
chl_re_gons algorithm performs poorly for concentrations
greater than 40 mg/m3, and the chl_re_mishra algorithm performs
poorly for concentrations above 20 mg/m3. Vanhellemont and
Ruddick (2021) compared the chl_re_gons in-water algorithm
(ACOLITE) applied to different processing schemes over turbid
Belgian waters, finding that all processing schemes (POLYMER,
ACOLITE, and L2-WFR), except C2RCC, yielded good results
(R2 > 0.8). The ACOLITE chl_re_gons algorithm performed
well (R2 > 0.9) due to its similar reflectance spectrum to in
situ radiometric measurements, which is related to the
assumption of spatially consistent aerosols, making the
products less noisy. However, Chl a concentration was slightly
overestimated for in situ values above 20 mg/m3. Schaeffer et al.
(2022) applied the conc_chl in-water algorithm (C2RCC) to
S3 OLCI data over United States lakes, which performed
poorly over highly (hyper) eutrophic lakes, recommending its
use on waters with Chl a above 20 mg/m3. These results aligned
with the current study, where the conc_chl algorithm (C2RCC)
performed poorly for Chl a concentrations above 20 mg/m3. For
S2 MSI, the chl_re_moses3b and chl_re_moses3b740 algorithms
(ACOLITE) performed well for Chl a concentrations above
30 mg/m3. Other in-water algorithms showed high dispersion
for concentrations below 20 mg/m3 and systematic overestimation or
underestimation for concentrations above 20 mg/m3.

In this study, the average in situ TSM concentration was 9 mg/L,
with a maximum match-up value of 143.3 mg/L. The conc_tsm
algorithm (C2RCC) and TSM_NN product (L2) performed well in
retrieving small TSM concentrations (below 10 mg/L) from
S3 OLCI. Higher concentrations were overestimated by all in-
water algorithms applied to S3 OLCI data (MdPE > 88%). In
contrast, S2 MSI’s in-water algorithms provided TSM
concentrations close to the 1:1 line, especially with conc_tsm
(C2RCC) (MdAPE = 24%, MdPE = −12%, slope of 0.97,
intercept of −0.69, and R2 = 0.74), but the accuracy diminished
for the in situ values above 15 mg/L. The SPM_Nechad2016_665
algorithm (ACOLITE) performed well for TSM concentrations
below 10 mg/L. Generally, band ratio methods (Gons et al.
(2002) or Nechad et al. (2010) algorithms of ACOLITE)
outperformed NN methods, particularly in waters with high
concentrations of scattering material (phytoplankton and TSM)
and high Rrs in green-red bands, as ACOLITE in-water
algorithms are developed for such waters.

Salama et al. (2022) studied the Ems Dollard estuary (a hyper-
turbid waterbody) in the Netherlands, comparing in situ Chl a
concentrations with the conc_chl (C2RCC) and Gons model
(ACOLITE) (Gons, 1999) and in situ TSM with the Nechad-705
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model (ACOLITE) (Nechad et al., 2010) applied to S2 MSI and
S3 OLCI data. They found that S2 MSI results had larger errors than
S3 OLCI results, with the Gons model for Chl a retrieval having
fewer errors than the Nechad model for TSM retrieval. In the
current study, the chl_re_gons algorithm had fewer errors for
S3 OLCI than for S2 MSI, but S2 MSI had fewer errors with the
SPM_Nechad2016_665 algorithm. In conclusion, TSM concentrations
retrieved from S2 MSI were accurate, while TSM concentrations
retrieved from S3 OLCI were systematically overestimated.

To achieve more accurate results for OAS concentration
retrieval, a water-type guided approach could be used, as
suggested by Moore et al. (2014); Soomets et al. (2020);
Uudeberg et al. (2020). Soomets et al. (2020) examined TSM, Chl
a, and aCDOM(442) retrieval from C2RCC with standard in-water
algorithms and band ratio models applied to S2 MSI and S3 OLCI
data. Data from four optically different lakes were grouped into five
different optical water types introduced by Uudeberg et al. (2019).
They found that the conc_tsm algorithm was best suited for
moderate and very turbid waters, while band ratio models
performed best for other parameters and water types. Soomets
et al. (2020) showed that the pre-classification into optical water
types improved the performance of in-water algorithms, with
correlations close to 0.9.

This study focused on comparing existing commonly used
processing schemes applicable to S2 MSI and S3 OLCI data. The
A4O approach is based on NN and optical water type classification,
while C2RCC is an NN-based processing scheme applied to L1 top-
of-atmosphere spectra (entire spectra are taken into processing).
When there are high discrepancies in the blue or red part of the
spectrum, OAS retrieval performance is poor, which is often the case
for Case 2 waters. Further analysis could be conducted by applying
band ratio methods, such as the Gons et al. (2002) method, to all AC
processors to see how they improve the retrieval of Chl a and TSM
concentrations in optically complex waters. This approach is likely
to yield better results because specific band reflectance values are
more accurate for estimating OAS concentrations.

4.2 IOP in-water algorithms

Rrs depends on the IOPs (Shi et al., 2018), which contribute to
bio-optical modeling (Lee et al., 2002; Giardino et al., 2017),
including the diffuse attenuation coefficient, TSM, and dissolved
and particulate carbon and Chl a concentration retrieval (Kirk, 1981;
Lee et al., 2005). However, accurately retrieving these parameters in
optically complex waters is challenging.

Previous results indicate that the studied processing schemes
struggled to accurately retrieve different absorption products.
Among all processing schemes, C2RCC was able to derive more
accurate absorption products for S3 OLCI compared to others,
although the retrieved values were not always close to the 1:1
line (slope below 0.8 or above 1.3). Both aCDOM(443) and
adg(443) were significantly underestimated, as was atot(443),
showing similar tendencies. Despite this, atot(443) was still better
estimated (with lower errors) than its individual components.

All processing schemes had difficulties retrieving aCDOM(443). A
low correlation (R2 < 0.1), high dispersion (MdAPE > 59%), and
strong systematic underestimation (MdPE < −28%) of aCDOM(443)

were observed for both S3 OLCI and S2 MSI across all in-water
algorithms. The underestimation of aCDOM(443) increased for values
higher than 1 m-1. The AC results differ depending on the spectral
range. The difficulties of retrieving aCDOM(443) are due to its strong
light absorption and high quantities in the studied waterbodies (e.g.,
a peak value of 48 m-1 in Lake Mustjärv). The in-water algorithms
are not designed for such high absorption levels; for example, A4O is
designed for a maximum aCDOM(440) of approximately 20 m-1. This
high absorption masks the presence of other products, resulting in a
weak signal reflected back to the sensor, making it difficult to capture
(Brezonik et al., 2015).

In conclusion, atot(443) retrieved from S3 OLCI L1 data was
estimated to be the most accurate, but breaking it down into
individual components increased the errors. Absorption products
derived from S2 MSI L1 data were significantly affected by the
adjacency effect, leading to high errors near the shore.

The backscattering coefficient is proportional to the TSM
concentration, making it an essential parameter for generating
TSM algorithms. However, retrieving scattering in-water products
using in-water algorithms for both S2 MSI and S3 OLCI was difficult
due to the significant heterogeneity of particles (organic and mineral)
in the optically diverse water bodies. The iop_btot algorithm (C2RCC)
performed better than iop_bpart (R2 = 0.81 and 0.07, respectively), but
it still showed a high overestimation (MdPE = 308%). The low
performance of iop_bpart could be linked to the calculation
methodology of in situ values.

In addition to S3 OLCI L2 products and commonly used
processing schemes (C2RCC, ACOLITE, and POLYMER), a
recently developed processing scheme, A4O, was studied. A4O
was specifically developed for diverse optical water types
(Hieronymi et al., 2023). In the current study, the waterbodies
were not divided into different water types; instead, the data
were analyzed collectively. Among the A4O in-water algorithms,
CHL_IOP_ONNS (Chl a) and TSM_ONNS (TSM) provided the
most accurate results. Other in-water algorithms had low
correlations, high biases, and high dispersion (Figures 2, 4, 5).
There were 5–7 times fewer match-ups with A4O than other
processing schemes due to the adjacency flag. This was
particularly evident for scattering parameters in Figure 7, where
there were few match-ups. Although the number of match-ups was
not sufficient for comprehensive statistical analysis, they indicated
whether there was systematic underestimation or overestimation of
the products and their suitability for eutrophic and absorbing
waters. In the future, it would be beneficial to test A4O after
dividing waterbodies into similar optical water types.

The number of remaining match-ups used for the validation
calculated from the total number of match-ups showed the effect of
flagging. It was observed that A4O had the fewest match-ups
(frequency < 13%), mainly due to three flags, which were raised
individually or simultaneously, with the adjacency flag having the
highest impact. Approximately 14%–33% of match-ups remained for
the C2RCC in-water algorithms, primarily due to the cloud_risk flag,
whichwas raised in over 51% of cases. The Rtosa_OOS andRhow_OOS
flags were raised simultaneously or individually in up to 60% of cases,
and the quality_flag_sun_glint_risk flag was raised in 8%–19% of cases.
S2 MSI had more match-ups remaining (48%–79%) after flagging than
S3 OLCI. ACOLITE provided the most match-ups compared to other
AC processors for S2 MSI (61%–79%).
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4.3 Accuracy of satellite-derived and in
situ data

Generally, the S3 validation protocol recommends using 3 × 3
ROIs, except for very dynamic areas (Concha et al., 2021). In the
current study, 3 × 3 ROIs were less sensitive to outliers compared to
1 × 1 ROIs, and their statistical results were generally better.

Multiple statistics were calculated to validate the satellite-
derived data. The primary statistical metrics used were MdAPE
and MdPE, which are error estimations providing information on
the dispersion from the correlation line and bias relative to the 1:1
line. For secondary and visual observations, R2, slope, and intercept
were used to indicate how well the values derived with in-water
algorithms fit the actual values in the linear regression. These
statistics should be considered simultaneously to determine
which in-water algorithms can be used in eutrophic and
absorbing lakes. For example, in the case of the chl_re_moses3b
in-water algorithm (ACOLITE) applied to S2 MSI, MdAPE (17%)
andMdPE (17%) had low values, indicating low dispersion and bias.
However, an R2 value of 0.02 showed low correlations, indicating
that the performance cannot be considered good. Figure 3 shows
that there was very high dispersion for low Chl a concentrations
(below 20 mg/m3), increasing the errors close to the shoreline and
causing the low R2 value. The chl_re_Moses3b algorithm performed
well for Chl a concentrations above 30 mg/m3 and for off-shore data.
The CHL_ONNS in-water algorithm from the A4O processing
scheme had a high R2 value (0.67), but the dispersion and bias
were also very high (MdAPE and MdPE = 175%), indicating
systematic overestimation. Therefore, the algorithms’ performance
is poor. In some cases, all statistics showed good consistency, such as
for the chl_re_gons algorithm (ACOLITE), where all statistics
indicated a good performance (R2 = 0.70, MdAPE = 23%, and
MdPE = 10%). In reality, these statistics cannot be used as
definitive indicators of accuracy for evaluating the actual
performance of standard in-water algorithms. In any case, R2

should not be prioritized over bias and dispersion.
Certain satellite-derived products were provided with

associated uncertainties. Generally, no visible tendencies were
observed that could be linked to the proximity of the land or
deviation from the 1:1 line. However, uncertainties for
the ADG443_NN (L2) product and the iop_atot, iop_adg, and
iop_agelb algorithms (C2RCC) derived from S3 OLCI were
higher specifically for outliers that clearly overestimated the
in situ measured values. The Sentinel 3 mission requirements
document (Drinkwater and Rebhan, 2007) provides thresholds
that should not be exceeded to achieve an acceptable accuracy of
the parameters for the S3 OLCI sensor in optically complex
waters. The accuracy threshold for Chl a, TSM concentrations,
and aCDOM(412) is 70%, but the goal is to achieve 10%. To
estimate the accuracy of the S3 OLCI products, uncertainties
should be estimated for both satellite-derived and in situ-
measured OASs and IOPs. Accurate uncertainty budgets have
been estimated for radiometric data (Alikas et al., 2020; Banks
et al., 2020; Lin et al., 2022) but not for OAS concentrations and
IOPs. Therefore, calculating the correct uncertainties for each
satellite-derived product and in situ data is needed in the future.

4.4 Errors associated with the vicinity of
the land

To estimate errors associated with the vicinity of the land, Chl a
match-ups were analyzed in relation to the distance from the shore.
Higher errors appeared closer to the shore (<5 km) and decreased
further away from shore due to the adjacency effect on the pixels
near land (Kiselev et al., 2015; Warren et al., 2019a; Paulino et al.,
2022). S2 MSI algorithms had a higher overall error (~280%)
between distance groups close to the shore (<5 km) and away
from the shore (>5 km) than S3 OLCI (~70%). This could be
linked to the difference in spatial resolution, where the S2 MSI
pixel size (10 m) is 30 times smaller than the S3 OLCI pixel size
(300 m). Steinmetz and Ramon (2018) stated that POLYMER is
robust near land, which is explained by the model’s consideration of
aerosol signals and non-water components (e.g., adjacency effect).
Our study shows that the POLYMER Chl a in-water algorithm had
low errors (APE < 100%) both close to and away from the shore for
S2 MSI and S3 OLCI, with a mean error difference of only ~30%.
Similar results were found by Alikas et al. (2020), where POLYMER
was least influenced by the adjacency effect based on S3 OLCI
reflectance data. S2 MSI ACOLITE Chl a algorithms exhibited high
errors near the shore, potentially due to higher reflectance values in
the red and NIR bands, as reported by Martins et al. (2017) and
Renosh et al. (2020). Several studies have estimated the adjacency
effect on satellite data, this effect on pixels farther than 10 km from
the shore (Beltrán-Abaunza et al., 2014), and even up to 40 km
(Bulgarelli et al., 2014; Bulgarelli and Zibordi, 2018a). Bulgarelli and
Zibordi (2018a) compared S2 MSI and S3 OLCI reflectance data,
finding an adjacency effect up to ~36 km from the shore for S3 OLCI
and ~20 km for S2 MSI. However, these studies focus on seas and
oceans, not lakes. These results indicate that the errors between
satellite retrievals and in situmeasurements tend to be higher in the
vicinity of the land, pointing to the need for adjacency correction
and additional research on this topic.

4.5 S2 MSI vs. S3 OLCI

In-water algorithms applied to S3 OLCI and S2 MSI resampled
data were compared to assess the consistency between the sensors’
outputs for combining data in further studies. Among the 50 in-
water algorithms evaluated, 12 similar algorithms could be applied
to both satellites, with Chl a algorithms comprising the majority
(5 out of 12). The chl_re_gons algorithm (ACOLITE) showed high
consistency (slope of 0.8, R2 = 0.96, close to 1:1 line); however, Chl
concentrations below 20 mg/m3 were slightly overestimated by
S2 MSI data. It means that S2 MSI and S3 OLCI-derived time
series will differ in specific Chl a ranges, even when a similar
algorithm is applied. Other ACOLITE Chl a in-water algorithms,
chl_re_bramich and chl_re_mishra, also had high correlations
(R2 > 0.8), whereas Chl a concentrations above 20 mg/m3 were
underestimated by S2 MSI data. Cazzaniga et al. (2019) compared
S2 MSI and S3 OLCI data over two large Italian lakes using the Bio-
Optical Model-Based tool for Estimating water quality and bottom
properties from Remote sensing images (BOMBER) and found a
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good correlation between S2 MSI and S3 OLCI data (R2 > 0.8). Their
study showed overestimation by S2 MSI for Chl a concentrations
below 1.5 mg/m3 in Lake Garda. However, the study found that
S2 MSI could capture higher concentrations with smaller variations
than S3 OLCI in Lake Trasimeno, where Chl a concentrations
reached up to 100 mg/m3. In our study, other in-water
algorithms showed low consistency, which could be attributed to
the different characteristics of the sensors, such as spectral and
radiometric resolution. Outliers were more common further from
the shore (>5 km), where greater spatial variability within 3 × 3 ROIs
was apparent. Although only a few studies have compared the
S2 MSI and S3 OLCI data, many studies have shown the
integration between the S2 MSI and S3 OLCI (Sòria-Perpinyà
et al., 2021; Salama et al., 2022). The combination of both
satellites could provide more frequent data, with S2 MSI offering
higher spatial resolution to complement S3 OLCI data.

5 Conclusion

The water quality of optically complex eutrophic and absorbing
lakes is influenced by various OASs and their IOPs. These OASs and
their IOPs can be derived from satellite data, such as Copernicus
S2 MSI and S3 OLCI, using in-water algorithms to support the
monitoring of these ecosystems. These algorithms are designed for
water applications to derive water quality products, including Chl a
and TSM concentrations, the absorption of CDOM, phytoplankton,
non-algal particles, and their combinations, as well as scattering. All
these are important inputs for different models.

This study demonstrated that the S3 OLCI chl_re_gons
(ACOLITE) and S2 MSI conc_tsm (C2RCC) algorithms’
retrievals were the most accurate, with low dispersion and biases
(MdAPE = 23% and 24% andMdPE = 10% and −12%, respectively).
Total absorption was retrievedmore accurately than its components,
with aCDOM(443) and adg(443) contributing the most. The
results from 3 × 3 ROIs were almost always better than those
from 1 × 1 pixel data. The study showed a decrease in errors
(APE < 100%) between satellite-derived and in situ-measured
Chl a further away from the shore (>5 km). The mean errors
were higher in the distance group close to the shore (<5 km)
(S2 MSI 315% and S3 OLCI 150%) and lower off the shore
(>5 km) (S2 MSI 35% and S3 OLCI 80%). The POLYMER Chl a
in-water algorithms (logchl) showed lower errors (<100%) even
close to the shore for both S2 MSI and S3 OLCI, with a low and
consistent difference in both distance groups (30%). For estimating
the consistency between the S2 MSI and S3 OLCI in-water
algorithms, chl_re_gons (ACOLITE) showed high consistency
between both satellites, close to a 1:1 line with R2 = 0.96.
However, Chl a concentrations below 20 mg/m3 were overestimated
by S2 MSI data.

The study indicates a need for further development of in-water
algorithms, especially for high-absorbing and eutrophic waters. We
also indirectly showed the strong dependence of the algorithms on
upstream atmospheric correction, particularly for NN-based
algorithms that use almost the entire reflectance spectrum as
input. Algorithms based on fewer bands, preferably in the central
visible range, could offer advantages. Priority should be given to

more reliable discrimination of the optical effects of the water
constituents and a system-adjustment of atmospheric correction
and in-water algorithms. For more precise estimation and
identification of the best in-water algorithms, the classification of
optically complex waters should be considered in further studies.
Additionally, influences related to the vicinity of the land in lakes
and, in particular, the compatibility between S2 MSI and S3 OLCI
should be investigated. Corresponding adjacency warnings and
other flags are evaluated very differently in the algorithms and
are sometimes not recognized, which is reflected in the number of
match-ups. Accordingly, the handling of flags should be better
defined and generalized in matchup analyses, i.e., through a
common best-quality approach. Based on this study, further
investigation is essential for improving the accuracy and
reliability of in-water algorithms.
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