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Introduction: This research explores the application of generative artificial
intelligence, specifically the novel ARISGAN framework, for generating high-
resolution synthetic satellite imagery in the challenging arctic environment.
Realistic and high-resolution surface imagery in the Arctic is crucial for
applications ranging from satellite retrieval systems to the wellbeing and
safety of Inuit populations relying on detailed surface observations.

Methods: The ARISGAN framework was designed by combining dense block,
multireceptive field, and Pix2Pix architecture. This innovative combination aims
to address the need for high-quality imagery and improve upon existing state-of-
the-art models. Various tasks and metrics were employed to evaluate the
performance of ARISGAN, with particular attention to land-based and sea ice-
based imagery.

Results: The results demonstrate that the ARISGAN framework surpasses existing
state-of-the-art models across diverse tasks andmetrics. Specifically, land-based
imagery super-resolution exhibits superior metrics compared to sea ice-based
imagery when evaluated across multiple models. These findings confirm the
ARISGAN framework’s effectiveness in generating perceptually valid high-
resolution arctic surface imagery.

Discussion: This study contributes to the advancement of Earth Observation in
polar regions by introducing a framework that combines advanced image
processing techniques with a well-designed architecture. The ARISGAN
framework’s ability to outperform existing models underscores its potential.
Identified limitations include challenges in temporal synchronicity, multi-
spectral image analysis, preprocessing, and quality metrics. The discussion
also highlights potential avenues for future research, encouraging further
refinement of the ARISGAN framework to enhance the quality and availability
of high-resolution satellite imagery in the Arctic.
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1 Introduction

This research explores the application of artificial intelligence in
generating high-resolution (HR, here consider to be sub-10 m)
satellite imagery of arctic surfaces from low-resolution images.
The Arctic landscapes and sea ice rely heavily on satellite Earth
Observations (EO) for regular monitoring because of its remote
nature and harsh conditions. Resolving features in this HR range is
important for modelling developments and validations as several sea
ice parameterizations aim to represent features such as melt ponds,
leads, floe size, and sea ice ridges that span those length scales
(Tsamados et al., 2015). HR imagery is also critical for operational
activities ranging from shipping (Wagner et al., 2020), and iceberg
detection (Soldal et al., 2019), to safe travel on sea ice for local
communities (Segal et al., 2020). Acquiring arctic surface imagery
encompassing detailed surface characteristics at those scales is
possible from optical sensors such as Copernicus Sentinel-2
(10 m resolution) but sampling is limited by the size of the
images (50 km tiles), the cloud coverage or the lack of sunlight.
Coarser optical images such as Sentinel-3 (300 m resolution)
significantly increase the sampling frequency and spatial coverage
but are missing HR features. In short, even with new satellite
missions and better sensors, finding the optimal compromise
between coverage and resolution is likely to remain an issue
(Pope et al., 2014; Gabarró et al., 2023) and the role of
innovative machine learning algorithms to generate realistic HR
data as proposed in this paper or to interpolate existing satellite data
(Gregory et al., 2021) will remain important.

The objective of this study is to evaluate the ability of deep
learning models to generate super-resolved (SR) arctic surface
images from low spatial resolution remote sensing (RS) images.
Recent research on the super-resolution of satellite imagery has
focused on a precise reconstruction of high-resolution imagery
based on lower-resolution input data up to a factor of
approximately a 3.3-fold resolution increase. Geographically,
recent research has focused on data of landscapes in more
moderate climates or urban, built-up environments. In contrast,
we focus on arctic environments and the generation of perceptually
valid HR images with an up to 30-fold resolution increase. This
setting intends to represent and enable real-life applications in
which extremely coarse imagery, e.g., from Sentinel-3 satellites,
can be super-resolved into images of sufficient realism that can
inform model development and operational needs. As such, we
focus on reconstructing the RGB bands of satellite images to
generate perceptually valid and relevant imagery.

We propose the Arctic Remote Imagery Synthesis using a
Generative Adversarial Network (ARISGAN) to generate highly
detailed SR images of the arctic environment, both land and sea
surfaces, with their respective characteristics. The remainder of this
work is organized as follows. Section 2 introduces related work on
the super-resolution of satellite imagery through various state-of-
the-art techniques. Section 3 provides a detailed description of the
ARISGAN framework and the experimental setup in terms of the
dataset, loss function, and training environment. Section 4 presents
and discusses the experimental results. Conclusions are summarized
in section 5, and recommendations for future work are provided in
section 6. The companion source code for this project is provided at
https://github.com/ucabcbo/ARISGAN.

2 Related works/background

2.1 State of the art super-resolving models

Satellite imagery has become essential in various applications, from
environmental monitoring and resource management to disaster
response, military surveillance, or a plethora of further applications
(Liu P. et al., 2022). Super-resolution can be based on single satellite
images, multiple images of the same satellite taken at different revisits,
i.e., multi-temporal images, or various images of the same patch of land
obtained frommultiple satellites. Each satellite image thereby consists of
multiple wavelength bands, which may deviate in their spatial
resolution, dependent on the respective satellite’s imaging
instruments, referred to as multi-spectral images. Different goals and
techniques are used to approach a super-resolution task. One common
approach is to super-resolve a low-resolution band out of a multi-
spectral image to the highest-available resolution band of the same
image. This is useful when the highest resolution band contains essential
information that cannot be obtained from the other bands. Another
objective is to super-resolve an image to a resolution beyond the native
resolution of the respective sensor. This is useful for applications
requiring fine details, such as object detection or identifying and
analyzing surface properties (e.g., (Fernandez et al., 2021a; Lei et al.,
2022; Tarasiewicz et al., 2023)). Traditional super-resolution techniques
are Component Substitution (CS), Multi-Resolution Analysis (MRA),
or Variational Optimization (VO). CS is a simple and widely used
method for SR, where the high-frequency details of the HR image are
transferred to the LR image. Conversely, MRA uses wavelet transform
to decompose the images into multiple scales and fuse them in the
wavelet domain. VO is a more advanced technique that formulates SR
as an optimization problem. The objective is to find the best estimation
of the LR image that matches the HR image (Liu et al., 2021; Lei
et al., 2022).

However, with recent advancements in deep learning,
convolutional neural networks (CNNs) and generative adversarial
networks (GANs) have emerged as promising tools for SR,
including RS imagery. These approaches do not require explicitly
modelling the statistical or spatial relationships between the HR and
LR images and instead learn the mappings between the images directly
from the data. Fundamental work on using CNN and GANmodels for
image super-resolution has been performed by Dong, et al. (Dong et al.,
2015) with the SRCNNmodel and Ledig, et al. (Ledig et al.) with the SR-
GANmodel. Most current state-of-the-art models refer to these works,
adding modular blocks of network elements to improve performance
under given circumstances. Due to their relatively low complexity and
availability of datasets for machine learning research, single-image-
based models are among the most widely researched. Their unique
advantage is that the complex task of co-locating, and co-registering
multiple images is not required and thus provides a more appealing
starting point for machine learning research. Masi, et al. (Masi et al.,
2016) developed the first use of SRCNN specifically for single image
pansharpening of RS images, followed by an extension by Scarpa, et al.
(Scarpa et al., 2018), focusing on feature identification and extraction. It
builds the basis for current CNN models like the ones by Fernandez,
et al. (Fernandez et al., 2021a; Fernandez et al., 2021b). SR-GAN was
enhanced to ESRGAN (Wang et al., 2018) and builds the basis for
several GANmodels developed for the RS context, such as MARSGAN
(Tao et al., 2021a) and RS-ESRGAN (Romero et al., 2020). MARSGAN
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was developed to super-resolve images of Mars. However, it represents
the basis for TARSGAN (Tao et al., 2021b) on Earth satellite imagery,
thus displaying the transferability of models across various types of RS
imagery. S2GAN (Zhang et al., 2020) represents an application of SR-
GAN specifically to Sentinel-2 imagery and has been further developed,
based on additional research on the DSen2 (Lanaras et al., 2018) model,
to a Wasserstein-GAN (Arjovsky et al., 2017) named DSen2-WGAN
(Latif et al., 2022). DSen2 also inspired other current Sentinel-2-based
models like S2Sharp (Ulfarsson et al., 2019), DeepSent (Tarasiewicz
et al., 2023) and SRS3 (Fernandez et al., 2021a). Further, PSGAN was
developed as a specifically pansharpening-focused GAN model (Liu
et al., 2018a) and is the basis for other current models like the one by
Liu, et al. (Liu et al., 2021). CNN and GAN-based models are equally
frequently used across the given applications in current research.
Table 1 provides an overview of investigated state-of-the-art models.

2.2 Application in the arctic context

The state-of-the-art models listed in the previous section could
in principle be adapted to the arctic landscapes. However, a range of
considerations are to be accounted for due to the specific challenges
in these environments (Liu X. et al., 2022; Webster et al., 2022). The

arctic environment is, to some degree depending on the season,
covered by snow and ice. This results in a shallow contrast in RS
imagery, making identifying edges particularly challenging. Further,
as land and water are covered by ice and snow for most of the year,
there is a risk of an unbalanced dataset, as the direct view of the
underlying darker land or ocean surfaces may be underrepresented.
Snow, ice, and cloud cover are perceptually similar when viewed on
satellite imagery. While Sentinel-2 data include cloud information,
this data is unreliable in arctic environments, which currently makes
manual cloud identification necessary. An ice surface can have a
complex texture, particularly on flat surfaces like the sea. Sea ice can
have cracks, leads, and ridges, making distinguishing the ice edge
from other features difficult. The reflectance of sea ice can vary
significantly depending on factors such as snow cover, surface melt,
and impurities, making it challenging to estimate ice surface
properties accurately (Perovich et al., 2002).

Sea ice is a dynamic system that can move and change rapidly
over short time scales, making it challenging to track between
satellite images. Ice and snow characteristics may also vary
rapidly on land but in contrast to sea ice the underlying terrain
is fixed. Due to its reflectance properties, sun position and light
incidence at the time of the image may significantly change the
coloring of the image. Further, specifically on mountainous land,

TABLE 1 Overview of state-of-the-art SR models.

References Model name Based on Target resolution

Zhang et al. (2018) MS-cGAN Highest input

Tao et al. (2021b) TARSGAN MARSGAN (Tao et al., 2021a) Highest input

Latif et al. (2022) DSen2-WGAN DSen2 (Lanaras et al., 2018), S2GAN (Zhang et al., 2020) Highest input

Romero et al. (2020) RS-ESRGAN ESRGAN (Wang et al., 2018) Beyond input resolution

Liu et al. (2022b) PSTAF-GAN Beyond input resolution

Fernandez et al. (2021b) Fernandez et al SRCNN (Dong et al., 2015) Beyond input resolution

Luo et al. (2021) FusGAN Beyond input resolution

Liu et al. (2021) PSGAN PSGAN (2018) (Liu et al., 2018b) Highest input

Pineda et al. (2020) SR-GAN SR-GAN (Ledig et al.) Beyond input resolution

Alboody et al. (2022) DeepSen3 ResNet (Liu et al., 2020), MSDCNN (Yuan et al., 2018) Highest input

Zhang et al. (2020) S2GAN Highest input

Liu et al. (2022c) PMDRnet DConv (Dai et al., 2017) Beyond input resolution

Diao et al. (2022) ZeRGAN Highest input

Liu and Chen (2022) Liu and Chen EEGAN (Jiang et al., 2019), EESRGAN (Rabbi et al., 2020) Beyond input resolution

Lei et al. (2022) MCANet Highest input

Li et al. (2022) PDCNN Highest input

Li et al. (2020) DMNet Beyond input resolution

Zhu et al. (2022) HCNNet ERCSR (Li et al., 2021) Highest input

Zhang et al. (2022) SSE-Net Highest input

Zhang et al. (2021) Tri-UNet Highest input

Tarasiewicz et al. (2023) DeepSent Beyond input resolution

Fernandez et al. (2021a) SRS3 Beyond input resolution
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due to the northern geography, mountains or snow dunes may cast
vast shadows, impeding a direct view of the surface. Consequently,
considering current research findings, specific focus areas to observe
in the study include the following. Edge detection and sharpness of
edges and scene transitions are proposed areas for further research
by Tao, et al. (Tao et al., 2021b) regarding TARSGAN. Observation
on the inclusion of artefacts and repetitive patterns, as
recommended for further research by multiple studies, e.g.,
Tarasiewicz, et al. (Tarasiewicz et al., 2023) and Tao, et al. (Tao
et al., 2021b) regarding DeepSent and TARSGAN, respectively.
Embed quality management in image pre-processing to ensure
high-quality input data relevant to the scene under research, as
suggested by, e.g., Liu, et al. (Liu et al., 2021), Pineda, et al. (Pineda
et al., 2020) and Alboody, et al. (Alboody et al., 2022) in the studies
on PSGAN, SR-GAN, and DeepSen3, respectively. As Liu, et al. (Liu
X. et al., 2022), in the context of PMDRnet propose to ensure
temporal synchronicity between multiple satellite imagery, this
study observes and discusses the impact of images with lower
synchronicity and higher rates of change.

The research objective to super-resolve Sentinel-2 and Sentinel-
3 images to synthetic and realistic high-resolution arctic imagery is
therefore a novel and challenging application of remote sensing
super-resolution techniques. The resolution difference we are
exploring is more extensive than in the typical SR use cases,
while the researched geographic area poses unique properties
dissimilar to more frequently studied landscapes or urban
environments.

3 Data and methods

3.1 Dataset

To attempt super-resolution up to a factor of 30, this study
conducted two main experiments: 1) Super-resolving Sentinel-3
images to the resolution of the RGB bands of Sentinel-2 images,
and 2) super-resolving the downsampled RGB bands of Sentinel-2
images back to their original resolution. Sentinel-3 pixels have a
spatial resolution of 300 m, while Sentinel-2 pixels in the RGB bands
B2, B3 and B4 have a spatial resolution of 10 m, thus representing a

30x higher resolution. For the additional experiment, Sentinel-2
images were downsampled by a factor of 12. Thus, their
reconstruction represents a 12x super-resolution. Sentinel-2 refers
to a single image as a granule. Granule codes define image locations,
each spanning an area of approximately 100 by 100 km. For
Sentinel-2 imagery, a perpetually fixed set of granule codes is
defined, ensuring each code represents a precise location on the
planet’s surface (European Space Agency, 2023b).

All satellite products are downloaded form the Copernicus
Dataspace portal https://dataspace.copernicus.eu/. For this study,
six granule codes surrounding the area of Pond Inlet were used:
17XNB, 17XNA, 18XVG, 18XVF, 18XWG, and 18XWF, covering an
area of approximately 60,000 square kilometers. We chose
Mittimatalik (Pond Inlet) as the wider region of interest for
developing and testing the ARISGAN algorithm. This is
motivated by ongoing collaborations with the local communities
as part of the separately funded research project Sikuttiaq (https://
www.cinuk.org/projects/sikuttiaq/). We downloaded all available
Sentinel-2 and Sentinel-3 imagery since 2017 for the region
defined by the coordinates (min longitude = 83W, max
longitude = 74W, min latitude = 71, max latitude = 74) and we
find that focusing our work on a smaller region of the Arctic reduces
the data burden while remaining sufficient for training ARISGAN.
Figure 1 visualizes the geographic location of the selected granule
codes, and we describe next our data collocation approach.

The goal was to obtain a set of Sentinel-2 images with the
corresponding Sentinel-3 images covering the same area, taken
within a short timeframe, to ensure similar environmental
conditions for accurate super-resolution. The first step in the
process was to conduct a comprehensive search for Sentinel-2
images that covered the Pond Inlet area. The search criteria were
set to identify images acquired within 60 min of a corresponding
Sentinel-3 image to ensure temporal synchronicity and minimize
variations in lighting, ice and snow conditions, and cloud cover
between the two images. The 60-min interval was chosen to identify
a sufficiently large dataset. This search identified 1,691 Sentinel-2
granules with their respective Sentinel-3 counterparts. The images
covered various times of day, dates and months from 2017 to 2023,
in order to provide a diverse representation of the surface conditions
in this region. We note that in the case of mobile sea ice (in contrast

TABLE 2 Modules included in studies or suggested for further research.

Approach Short description Aspired result Related studies

Multi-receptive
field

Application of dedicated multi-scale
procedures in either convolution or
generator blocks

Improved capturing of different abstraction levels in
input images

(Zhang et al., 2018; Fernandez et al., 2021a;
Alboody et al., 2022; Liu et al., 2022c; Diao et al.,
2022; Li et al., 2022)

Attention
mechanism

Inclusion of attention mechanism Improved feature identification - however, Liu, et al.
(Liu et al., 2021) found that self-attention mechanisms
may be counterproductive

(Fernandez et al., 2021a; Zhang et al., 2021; Li et al.,
2022; Zhu et al., 2022)

Multi-band fusion Multi-band fusion mechanism Improved feature isolation (Zhang et al., 2021; Alboody et al., 2022; Liu et al.,
2022b; Liu et al., 2022c; Lei et al., 2022; Zhang et al.,
2022; Tarasiewicz et al., 2023)

Parallelization Parallelization of kernels or branches Improved capturing of features on different levels in the
input image

(Li et al., 2020; Liu et al., 2021; Lei et al., 2022; Li
et al., 2022; Zhu et al., 2022)

Edge detection Utilization of an edge-detection focused
loss function

Increase sharpness and quality around feature edges (Tao et al., 2021b; Liu and Chen, 2022)
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to land ice or fast ice), ice movement may already be noticeable even
within 60 min between these images and might reduce the quality of
the training data.

As Sentinel-2 data cannot accurately predict the cloudiness of
the images in this region, a manual review was conducted to identify
only those images essentially free from cloud coverage, leading to a
final set of 177 Sentinel-2 granules and their Sentinel-3 counterparts,

balanced across the selected six granule codes. The selected Sentinel-
2 and their corresponding Sentinel-3 images were processed using
the ESA SNAP software in version 9.0.0 (European Space Agency,
2023a). SNAP provides tools for Sentinel satellite image processing
and co-registration. Sentinel-2 images were reduced to only bands
B2, B3 and B4, representing the RGB bands. All of these are available
in 10-m resolution; thus, no further resampling was required. The

FIGURE 1
Location of selected Sentinel-2 granule codes.

FIGURE 2
(A, B) Sample Sentinel-2 granules 17XNB and 18XWG.
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Sentinel-3 images were reduced to bands Oa01_radiance through
Oa21_radiance, and any auxiliary bands were removed, resulting in
21 remaining channels, all available in 300 m-resolution.

The Sentinel-2 and -3 images were collocated using the raster
collocation within SNAP and Sentinel-2 as master images, as the
area covered by a Sentinel-2 image is vastly smaller than those of
Sentinel-3 images. The Sentinel-3 bands were upsampled to 10-m
resolution using nearest neighbor resampling, ensuring that the
spatial structure of the original pixels remained intact (Ruescas
and Peters, 2023). After the collocation process, the paired
Sentinel-2 and Sentinel-3 images were further processed to
create a diverse and comprehensive dataset for training the
super-resolution model. The images were randomly cropped
into 200 tiles per granule, each measuring 256 × 256 pixels
and thus an area of 2,560 by 2,560 m. The random cropping
ensured that various regions within the Sentinel-2 and Sentinel-3
images were captured, providing a more representative dataset
for training. Additionally, the cropped tiles were randomly
rotated by 0, 90, 180, or 270° to introduce further variability
and minimize the risk of overfitting.

The image size of 256 × 256 Sentinel-2 pixels represents
approximately 32 × 32 pixels of a corresponding Sentinel-3 image.
Thus, this tile size was chosen to balance computational efficiency and
the amount of input information available, paired with the typical
image sizes used in the reviewed state-of-the-art models. See
Supplementary Table S1 for details on resulting computational
efficiency. Due to the way Sentinel-2 granules are provided by

ESA, not necessarily covering the full area of a defined granule
code, all tiles not fully within a visible image were disregarded.
Likewise, if the collocation with Sentinel-3 resulted in only a
partial overlap, those tiles that did not have full Sentinel-3
coverage were also excluded. These data processing steps finally
resulted in a dataset comprising 26,844 image pairs. Each pair
consisted of a cropped Sentinel-2 tile and its corresponding
Sentinel-3 tile, each aligned in spatial and temporal dimensions as
closely as possible. A large dataset was essential to provide sufficient
training data for the super-resolution model to learn and generalize
effectively. At the same time, it enabled a balance between sufficiently
focused images representing distinct characteristics of the ground
surface under research while representing sufficient diversity within
that domain by coveringmultiple times of day, multiple months, and a
large Earth surface area.

Throughout the pre-processing steps, quality assurance was
performed to ensure the accuracy and consistency of the dataset.
Visual inspection was carried out after each step, e.g., to review
image quality and verify that the collocated image pairs represented
the same area and exhibited similar environmental conditions.
Cloudy and otherwise low-quality images were deselected from
the ground truth.

Due to the significant differences between land- and sea-focused
surfaces in the Arctic region, the dataset was split between land and sea
images using a mask differentiating the two surface types by geographic
location. The mask was applied to all images, creating two separate
datasets for training. See Figure 2 as an example of Sentinel-2 granules

TABLE 3 Overview of frequently used image quality metrics.

Acronym Metric References Employed by

ERGAS Enhanced Global Relative Error in Synthesis (Erreur
Relative Globale Adimensionnelle de Synthèse)

Wald et al. (1997), Marcello et al.
(2013)

Muckenhuber et al. (2016), Romero et al. (2020), Liu et al.
(2021), Zhang et al. (2021), Alboody et al. (2022), Diao et al.
(2022), Lei et al. (2022), Li et al. (2022), Zhu et al. (2022)

SSIM Structural Similarity Zhou et al. (2004), Hore and Ziou
(2010)

Zhang et al. (2018), Ulfarsson et al. (2019), Li et al. (2020),
Pineda et al. (2020), Romero et al. (2020), Luo et al. (2021), Liu
et al. (2022b), Liu et al. (2022c), Latif et al. (2022), Li et al. (2022),
Liu and Chen (2022), Zhu et al. (2022), Tarasiewicz et al. (2023)

SAM Spectral Angle Mapper Yuhas et al. (1992), Pushparaj
and Hegde (2017)

Muckenhuber et al. (2016), Ulfarsson et al. (2019), Romero et al.
(2020), Fernandez et al. (2021a), Fernandez et al. (2021b), Liu
et al. (2021), Luo et al. (2021), Zhang et al. (2021), Alboody et al.
(2022), Diao et al. (2022), Latif et al. (2022), Lei et al. (2022), Li
et al. (2022), Zhu et al. (2022)

SCC (Spatial) Correlation Coefficient Pushparaj and Hegde (2017),
Zhou et al. (1998/01)

Li et al. (2020); Romero et al. (2020); Liu et al. (2021); Zhang
et al. (2021); Liu et al. (2022b); Lei et al. (2022); Li et al. (2022);
Zhu et al. (2022)

Q4 “Q4” Alparone et al. (2004); Marcello
et al. (2013)

Muckenhuber et al. (2016); Liu et al. (2021); Zhang et al. (2021);
Diao et al. (2022); Lei et al. (2022)

RMSE Root Mean Squared Error Sara et al. (2019) Zhang et al. (2018); Ulfarsson et al. (2019); Li et al. (2020);
Zhang et al. (2020); Liu et al. (2022b); Diao et al. (2022); Latif
et al. (2022); Li et al. (2022); Zhu et al. (2022)

UIQI Universal Image Quality Index Zhou and Bovik (2002);
Pushparaj and Hegde (2017)

Muckenhuber et al. (2016); Liu et al. (2022b); Diao et al. (2022);
Latif et al. (2022)

PSNR Peak Signal-to-Noise Ratio Hore and Ziou (2010) Zhang et al. (2018); Pineda et al. (2020); Romero et al. (2020);
Fernandez et al. (2021a); Fernandez et al. (2021b); Alboody et al.
(2022); Liu et al. (2022c); Li et al. (2022); Liu and Chen (2022);
Tarasiewicz et al. (2023)

SRE Signal-to-Reconstruction Error Lanaras et al. (2018) Ulfarsson et al. (2019); Luo et al. (2021); Latif et al. (2022)
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with a land- and sea-focus in granules 17XNB and 18XWG, respectively.
The final land dataset contained 13,662 image pairs, and the sea dataset
contained 13,182 pairs. These were randomly split between training and
test dataset each, resulting in overall 25,457 training and 1,387 test image
pairs. By creating separate datasets for sea and land regions, the super-
resolution model could be trained on targeted data, allowing it to
specialize in enhancing specific areas of interest. This segmentation
also facilitated a more focused analysis and evaluation of the model’s
performance in sea and land areas.

After this step, all location and other auxiliary data except
pixel values across all channels were removed from the image files
to ensure those did not interfere or impact the training task. Next
to the Sentinel-3 input data, a separate set of input data was
prepared by downsampling the Sentinel-2 images by factor 12.
For this task, average Resampling of the rasterio library was used,
ensuring that the resulting downsampled Sentinel-2 images
maintained a balanced representation of the original data
using weighted average pixel representations (Mapbox Inc,

FIGURE 3
Principal GAN architecture.

FIGURE 4
Serialized dense multireceptive field architecture.
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2023). By employing this approach, the training process
effectively accommodated the distinctive characteristics of the
downsampled Sentinel-2 input while ensuring seamless
integration into the overall super-resolution task. In summary,
for all experiments, four datasets were made available. Sea-
focused imagery and land-focused imagery, each with input
data consisting of either 12x downsampled Sentinel-2 images,
or Sentinel-3 images with 30x lower spatial resolution. This setup
was chosen to enable a broad basis for analyzing and identifying
the behavioral strengths and limitations of the models under
research. Each architecture was set up to allow both 3-channel
Sentinel-2 images and 21-channel Sentinel-3 images in its
input layer.

3.2 Network architecture

3.2.1 Generative adversarial networks
CNNs and GANs have been employed in recent research in

almost equal split. The main differentiation factors between the
models are their concrete network architectures, included
modules, and the applied loss functions. A broad range of
modules has been applied to the baseline models in different
studies and achieved superior results in their specific context
compared to other state-of-the-art models (see overview in
Table 2). A common challenge for the super-resolution task,
independent of the technical implementation, is the availability
of ground truth data. As a typical approach, available high-

resolution data is downsampled to a lower resolution using
either Wald’s Protocol (Wald et al., 1997) or Bicubic
Interpolation (Keys, 1981). However, using real-world data is
assumed to deliver more realistic results and is thus preferred.
Especially for the super-resolution task beyond the input
resolution, imagery from other satellites or available datasets
with higher resolution is used instead (Garzelli, 2016; Cai
et al., 2019).

In recent years, the efficacy of Generative Adversarial Networks
(GANs) in super-resolution tasks has been widely recognized, owing to
their capacity to produce high-quality outputs enriched with intricate
textures. In his foundational work, Goodfellow, et al. (Goodfellow et al.,
2014) proposed a framework where two neural networks, Generator G)
and Discriminator D), are concurrently trained. The primary objective
of the Generator network is to create new data samples by capturing the
underlying distribution present in the training data. Meanwhile, the
Discriminator network assesses the generated samples’ authenticity. It
evaluates the likelihood of the generated data corresponding to the
actual training distribution rather than being synthesized by G. This
training process entails a dual optimization process: minimizing the
error between generated and real samples while simultaneously
maximizing the ability to distinguish real from generated (fake)
samples. This optimization objective involves both networks, G and
D, thus creating a symbiotic learning dynamic.

Figure 3 illustrates the interconnectedness of these networks.
Notably, the Generator solely interacts with input data, whereas the
Discriminator accesses real and generated data (Creswell
et al., 2018).

FIGURE 5
Attention-based wavelet residual dense block architecture.
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3.2.2 Deep network modules
In addition to reviewing recent research findings, several models

with promising properties for the research at hand have been identified
and set up to assess their performance in the specific context of arctic
imagery. The models under evaluation included TARSGAN, SRS3,
DMNet, Pix2Pix, SR-GAN, PSGAN, and DSen2-WGAN. Each model
was subjected to a series of experiments, focusing on their performance
in capturing fine details, preserving edge information, and handling the
monotonous coloration often present in arctic images.

We propose a new architecture, ARISGAN which combines
different modules from the above-mentioned architecture in an
effective way. These selected modules aim to address the specific
challenges of edge detection, fine detail preservation on the plain
ice surface, and the monotonous image coloring in ice and snow
imagery. The following components are incorporated into the
ARISGAN architecture and visualized in Figures 4–6.

3.2.2.1 Dense Multireceptive Field (DMF)
The Dense Multireceptive Field in the SRS3 model by

Fernandez, et al. (Fernandez et al., 2021a), similar to the Dense
Multireceptive Network (DMNet) proposed by Li, et al. (Li et al.,
2020), has shown promising results in capturing various abstraction
levels in input images. This characteristic may be particularly
beneficial for handling the coarse resolution of foreseen input
images and effectively capturing edges and transitions between
individual pixels.

By incorporating the DMF, the ARISGAN architecture is
intended to accurately represent the complex variations present

in arctic imagery despite a large resolution variance. The
module has shown capable of capturing diverse feature
representations with varying receptive fields and levels of
abstraction, enabling comprehensive data characterization in
the two previous studies.

The module consists of seven layers, namely, three convolution/
ReLU combinations with varying kernel sizes, each utilizing
64 filters, and one concatenation layer. The convolution layers
are either serialized as in SRS3 or parallelized as in DMNet.
ARISGAN employs the serialized approach.

The convolutional layers progressively increase their kernel size
from 5 × 5 to 9 × 9 and 13 × 13, respectively. The DMF module
fosters dense connections through the concatenation layer,
facilitating the extraction of feature maps with different receptive
fields. By expanding the initial small receptive field hierarchically,
the module generates multiple representations at various levels of
abstraction, encompassing broader spatial contexts and features.
This ability proves particularly beneficial in addressing the low
spatial resolution challenges posed by Sentinel-3’s Ocean and
Land Color Instrument (OLCI) sensor.

3.2.2.2 Dense block (DB)
TARSGAN by Tao, et al. (Tao et al., 2021b) incorporates an

Attention-Based Wavelet Residual in Residual Dense Block
(AWRRDB). The AWRRDB enhances the more traditional
Residual Dense Block (RDB) as used by Romero, et al. (Romero
et al., 2020) and the Residual in Residual Dense Block as proposed by
Liu and Chen (Liu and Chen, 2022) with attention mechanisms and

FIGURE 6
Principal GAN architecture.
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wavelet transforms. These are intended to help themodel to focus on
relevant features in the underlying imagery, particularly for
preserving details and patterns that may otherwise be lost in the
low-resolution input images.

Inspired by the promising ESRGAN (Wang et al., 2018) and
AWSRN (Wang et al., 2019) models, AWRRDB introduces two
essential modifications. Firstly, the concept of Adaptive Weighted
Residual Units (AWRU) is applied, where instead of using a fixed
residual scaling value, AWRRDB employs eleven independent
weights for each RDB in the structure. These adaptive weights
are learned during training, allowing for more effective
information flow and improved gradient propagation throughout
the network. The second modification introduces Gaussian noise
inputs after each RDB, adding stochastic variation to the generator
while maintaining localized effects without altering the global image
perception.

Together, these enhancements are intended to enable ARISGAN
to efficiently capture and model complex relationships between the
input and output in the generator, contributing to improved super-
resolution performance for arctic imagery.

The block has shown promising results in capturing the
relationship between the different output channels of the
generated image in initial experiments while not being able to
reach the resolution of the ground truth images. However,
experiments using the entire AWRRDB block in combination
with other modules were prone to mode collapse, which resulted
in only the dense block (DB) itself being adapted for the final
generator architecture, as outlined in Section 3.2.3 below.

3.2.2.3 Pix2Pix
Pix2Pix, as proposed by Isola, et al. (Isola et al., 2018), is a

conditional GAN that has successfully generated high-quality
images at the correct target resolution.

It employs a U-Net structure with skip connections, allowing it
to capture fine-grained details and maintain contextual information
during image translation. The skip connections facilitate the fusion
of high and low-level features, generating realistic and visually
appealing outputs. Dropout layers are included to enhance
generalization and mitigate overfitting. These elements are
intended to assist in preserving fine details and sharp edges in
the super-resolved arctic images.

While Pix2Pix has not been explicitly developed for super-
resolution but merely for image translation purposes, its features
are intended to aid the generation of perceptually well-defined
output images in line with the variability of input images.

Pix2Pix’s discriminator network assesses the realism of the
generated images compared to the ground truth, enhancing the
adversarial training process. The conditional GAN framework
enables Pix2Pix to learn mappings between input and output
domains. As such, the discriminator architecture will also serve
as the basis for ARISGAN’s discriminator.

By combining the selected modules, the final architecture is
intended to address the specific challenges associated with the
super-resolution of arctic imagery. The Pix2Pix model’s ability to
generate high-quality images at the target resolution is
complemented by the DB block’s capability to focus on
relevant features and output channel coherence. At the same
time, the DMF’s capacity to capture different abstraction levels

supports the manifold super-resolution. The integration of these
components is intended to ensure that the model can produce
super-resolved sea ice imagery with enhanced edge detection,
preserve fine details, and provide appropriate perceptual quality
and channel cohesiveness.

3.2.3 Generator architecture
This study explores the effectiveness of three generator

configurations, each comprising the modules identified above.
The goal is to evaluate the performance of these configurations,
denoted as ARISGAN-A, ARISGAN-B, and ARISGAN-C, by
investigating how the arrangement of these building blocks
impacts the quality of the super-resolved images. An element
shared across all configurations includes an extra skip connection
after the DMF layer, extending through the Pix2Pix module.
Figure 7 shows the schematics for all three architectures.

Configuration ARISGAN-A: DMF-Pix2Pix-DB. In this setup, the
DenseMultireceptive Field is placed at the beginning, followed by
the Pix2Pix model, and finally, the Dense Block. The skip
connection after DMF spans the Pix2Pix module, allowing for
integrating features learned from the DMF into the subsequent
DB module.
Configuration ARISGAN-B: DB-DMF-Pix2Pix. The architecture
starts with the Dense Block, followed by the DenseMultireceptive
Field, and finally, the Pix2Pix module. Like the previous
configuration, a skip connection after the DMF ensures the
propagation of relevant features into the final convolution
layer post the Pix2Pix module.
Configuration ARISGAN-C: DMF-DB-Pix2Pix. The Dense
Multireceptive Field starts in this setup, followed by the Dense
Block and the Pix2Pix module. In this case, the skip connection
spans both DB and Pix2Pix, ensuring the flow of features from
DMF to the final convolution layer, allowing the model to
leverage the advantages of both DMF and DB in the super-
resolution process.

All three configurations utilize the same discriminator and
loss functions.

The training process for all configurations employs an Adam
optimizer with a learning rate 2e-4 and a beta value of 0.5 for both
Generator and Discriminator. This optimization scheme ensures
effective updates, contributing to the convergence and enhancement
of the model’s performance during the training iterations.

3.2.4 Discriminator Architecture
The Pix2Pix discriminator has promising applications in super-

resolving arctic satellite imagery. Arctic satellite imagery, especially
in regions like sea ice, often requires preserving fine details to
capture essential features accurately. The Pix2Pix discriminator
can evaluate the local structural coherence of images, ensuring
that the super-resolved images retain fine details like cracks,
ridges, and surface texture on the ice.

Arctic satellite images may have poor spatial alignment,
especially with multi-temporal data or images from different
sensors. The Pix2Pix discriminator, by focusing on local
structures, aids in aligning the generated high-resolution
images with the ground truth, ensuring that features like ice
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edge or melt patterns are accurately represented in the super-
resolved images.

The discriminator’s ability to adapt to specific domain
characteristics makes it suitable for addressing the unique
properties of arctic satellite imagery. It can learn to capture the
distinctive features of arctic regions, such as the low contrast
between ice and open water, variations in reflectance due to

different surface snow and ice conditions, and the dynamic
nature of sea ice, enabling the generation of super-resolved
images that match the visual and structural attributes of high-
quality arctic imagery.

The Pix2Pix discriminator may be prone to mode collapse or
unstable training in case of unbalanced training datasets or
inadequate choice of loss function, which is why this study

FIGURE 7
(A–C) Generator architectures for ARISGAN-A, -B and -C.
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focuses on preparing a balanced, focused dataset and selection of
loss function.

Figure 8 shows the discriminator architecture schematic.

3.3 Loss functions

3.3.1 Generator loss
Loss functions guide the training process by quantifying the

difference between the generated super-resolved images and the
ground truth high-resolution images. This study uses a
combination of L1 Loss, Wasserstein Loss, and Structural
Similarity Index (SSIM) Loss to create a balanced loss
function between reproducing the original ground truth
image, an image with structural similarity and following the
training dataset’s overall distribution.

The L1 loss, also known as Mean Absolute Error (MAE), is a
straightforward and widely used loss function that computes the
absolute pixel-wise difference between the generated image and the
ground truth image. The mathematical formulation of L1 loss is
given as follows.

L1Loss x, y( ) � x − y
∣∣∣∣

∣∣∣∣

The Wasserstein loss, also known as Earth Mover’s Distance
(EMD), is a distance metric used in GANs to measure the
discrepancy between two probability distributions. In the context
of GANs, it encourages the generator to produce more realistic
images following the training data distribution. The mathematical
formulation of Wasserstein loss is expressed as:

WassersteinLoss x, y( ) � E Discriminator x( )[ ]
− E Discriminator y( )[ ]

where E denotes the expectation, and Discriminator(x) and
Discriminator(y) represent the discriminator’s output for the
generated image and ground truth image, respectively. Arjovsky,
et al. (Arjovsky et al., 2017) identify increased stability and a
reduction in mode collapse in Wasserstein GANs.

Structural Similarity Index (SSIM) Loss is a perceptual metric
that quantifies the structural similarity between the generated and
ground truth images. It considers luminance, contrast, and structure
information, making it a valuable loss function for image quality

assessment. The following formula gives the mathematical
formulation of SSIM loss.

SSIMLoss x, y( ) � 1 − SSIM x, y( )

By combining these loss functions with respective weighting
factors, the model optimization process prioritizes the preservation
of fine details through the L1 loss, the realism of the generated
images through the Wasserstein loss, and the structural similarity to
the ground truth images using the SSIM loss. To account for the
focus on generating perceptually realistic images over reconstructing
the ground truth image precisely, L1 Loss is weighted at 50%, while
Wasserstein and SSIM Loss are weighted at 100% each.

The resulting cumulative loss function focuses on perceptual
quality, as Tao, et al. (Tao et al., 2021a) identified that SR models
driven by perceptual considerations tend to generate images
characterized by sharper edges and more intricate textures, resulting
in visually appealing outcomes. However, given the inherently ill-posed
nature of SR, the presence of sharper and richer details in the SR results
introduces a higher degree of stochasticity into the solutions, also
increasing the likelihood of generating artefacts and synthetic textures.

This phenomenon was also discussed in previous studies
(Ledig et al.; Sajjadi et al., 2017), which showcased that Peak
Signal-to-Noise ratio (PSNR)-driven solutions encourage models
to seek pixel-wise averages among the array of potential solutions
characterized by high-quality and sharply defined texture details.
Consequently, these averaged solutions demonstrate smoother
characteristics while exhibiting reduced synthetic attributes.

For the study at hand, perceptual quality is of greater importance
than possible artefacts or textures. At the same time, the existence of these
phenomena will be reviewed and discussed in the results section below.

3.3.2 Discriminator loss
The loss function leverages a combination of real loss, generated

loss, and binary cross-entropy (BCE) loss to enable the discriminator
to differentiate between real high-resolution images and the super-
resolved images produced by the generator.

The real loss term assesses how effectively the discriminator
classifies real high-resolution images as genuine. It calculates the
difference between the discriminator’s output when presented with
real images and a tensor of ones with the same shape. This loss
encourages the discriminator to assign high values to real images
and is essential for grounding the adversarial training process.

FIGURE 8
Discriminator architecture.
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The generated loss term is concerned with how the
discriminator responds to the super-resolved images generated by
the generator. It computes the difference between the
discriminator’s output for the generated images and a tensor of
zeros with the same shape. This loss encourages the discriminator to
classify the generated images as fake, pushing the generator to
produce more realistic and authentic-looking images.

The BCE loss is a commonly used loss function in binary
classification tasks. It combines the real and generated losses to
form a comprehensive loss term for the discriminator. By summing
the real and generated losses, the BCE loss provides an overall
measure of how well the discriminator distinguishes between real
and generated images.

4 Results

4.1 Model training

The training process was carefully split, focusing on two distinct
subsets: land and sea images, which allowed the models to discern the
unique characteristics of these environments. This partition facilitated
the production of contextually relevant super-resolved imagery.
Additionally, recognizing the intrinsic differences in input data, the
training was conducted separately with Sentinel-3 images with
21 channels and Sentinel-2 images with only three channels as input
data. This partition accounted for the variance in spectral information
and resolution between the two sources, empowering the models to
adapt efficiently to the specific attributes of each input type.

Each configuration was trained over a comprehensive dataset of
approximately 12,500 images. These images were divided into
batches of 16 images each, with batch shuffling to ensure a
diverse and balanced training process. Throughout the training,
all three configurations undergo 40,000 iterations. Regarding
epochs, dataset and batch size must be considered. Since there
are 12,500 images in total and each batch contains 16 images,
one epoch encompasses 12,500/16 ≈ 781.25 batches. Thus, over
40,000 iterations, the number of epochs covered is approximately
40,000/781.25 ≈ 51.2 epochs. This comprehensive training
approach, spanning approximately 50 epochs, aims to ensure that

each configuration fully adapts to the data distribution, enabling the
models to learn the concrete features of the arctic satellite imagery.

Figure 9 shows a comprehensive summary of the training
performed, training all three architectures, differentiated by land-
or sea-focused imagery, on both 12x downsampled Sentinel-2 and
Sentinel-3 images, leading to a total of twelve combinations.

The following sections will show and discuss the results of the
previously described experiments by both qualitative and
quantitative means. In this first subsection, the perceptual quality
of the resulting images will be discussed by visual inspection, while
the following subsections will introduce and discuss the models’
performance along quantitative metrics.

4.2 Qualitative evaluation

Figures 10, 11 show exemplary super-resolution results by the
ARISGAN-A, -B, and -C models for super-resolution of both 12x
downsampled Sentinel-2 images and Sentinel-3 images. Each of the
figures shows the original high-resolution Sentinel-2 image as
ground truth on top, followed by one row related to 12x
downsampled images as input and one row related to Sentinel-3
images as input data. Each row shows the respective input image in
its left column, followed by the generated images of the three models
to the right.

Eight 256 × 256px sample tiles have been randomly down
selected and manually chosen to represent samples of various
sceneries in the respective dataset. Four of which with a land
focus (Figure 10), and four with a sea focus (Figure 11). Overall,
visually, while most of the land-focused generated images appear
very similar to actual Sentinel-2 images, most of the sea-focused
generated images seem blurry and lack any meaningful sea
ice content.

4.2.1 Land-focused imagery, 12x downsampled
and Sentinel-3 input data

For land-focused imagery, all models generate qualitatively
sound images in most cases but perform worse in areas lacking
in significant structures. For example, mountainous areas with
sharper edges and contrasts, as in samples L-1 and L-4, appear to

FIGURE 9
Architecture, Input Data, Scene combination overview.

Frontiers in Remote Sensing frontiersin.org13

Au et al. 10.3389/frsen.2024.1417417

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2024.1417417


be reconstructed in more clarity and perceptual detail, compared to
flat or relatively homogenous areas in samples L-2 and L-3.

This seems especially true for Sentinel-3 super-resolution, where
the models are required to reconstruct an area without large-scale
features from a very coarse resolution.

ARISGAN-B tends to hallucinate in those situations across all four
images and create more features and edges than there are, especially in
samples L-1, L-3 and L-4. Specifically in sample L-3, it appears to create
a large-scale artefact not available in the input data. AsDB is assumed to
produce fewer artefacts, chaining the DB before the DMF might void
this effect and indeed tend to produce hallucinations.

ARISGAN-A appears to create solid, perceptually valid high-
resolution images for both 12x downsampled and Sentinel-3 SR;
however, in two instances, the results are overlayed by a spurious
repetitive pattern. This is visible in 12x downsampled SR samples L-2
and L-4. This could indicate its attempt to reproduce the fine granularity
of flat ice surface covers, though inappropriate at the given locations.
Further investigation may uncover the root cause for this behavior.

ARISGAN-C appears to generalize well and create
meaningful patterns in most situations, with a tendency for
tinting images towards false colors, which is also the case for
ARISGAN-A. In both cases, the dense block follows the

multireceptive-field, which might imply that the DB being best
suited to capture the relationship between the input channels if
placed first in the network.

Further, ARISGAN-C appears to recreate perceptually valid,
smooth surfaces, except for some spurious repetitive patterns on the
side of the hill in sample L-2. On the contrary, an understated
texture and depth in sample L-4. However, this may point at its
general ability to generalize well across a multitude of landscapes,
and more specific training on even more focused landscape patterns
could further improve its performance.

4.2.2 Sea-focused imagery, 12x downsampled
input data

On sea-focused imagery, all models perform similarly well on
reconstructing 12x downsampled images. However, it becomes
apparent that in contrast to land-focused imagery, the models
struggle to reproduce the fine details of sea ice imagery, both in
the cracks in the ice surface and the roughness and textures on the
ice surface itself. Both details are too delicate for the downsampled
input image to provide any input data that represent them, leaving it
up to the models’ generalization capabilities to assess whether, and if
so, which types of fine-granular details are generated.

FIGURE 10
(A–D) Land-focused image samples L-1 through L-4.
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Visibly, all models reconstruct darker pixels into fine cracks.
However, these are less sharply defined than in the ground truth.
The models also struggle with situation where one grey input pixel
might contain multiple cracks, as is the case in the left section of
image S-4; ARISGAN-A and -B appear to prefer leaving this section
rather blurred with a low number of cracks only, while ARISGAN-C
is able to create a scene with a higher number of different and more
sharply defined features.

Related to the ice surface structure, in samples S-2 through S-
4, both ARISGAN-B and -C appear to have captured correctly
that a certain structure is required. ARISGAN-C produces a
perceptually valid and multi-faceted surface structure, while
ARISGAN-B appears to resort to repetitive patterns. This
corresponds to the land-focused observation on the DMF
following the DB being at risk of creating unwanted artefacts
or hallucinations.

All models struggle with the relationship between the three
output channels and produce mostly slightly red tinted images.
As for the sea-based training set, there is almost no color other
than various shades of grey in the ground truth, which leads to
the situation that only one color channel being not aligned to
the other two will lead to tinted results. It will be an area for

further research to explore the origins and prevention of
the tinting.

4.2.3 Sea-focused imagery, Sentinel-3 input data
As expected, reconstructing sea-focused high-resolution images

from Sentinel-3 data delivers the least promising results. While
ARISGAN-A and -B generate images preserving a visible
relationship to the input image, ARISGAN-C suffers mode
collapse and produces an almost identical image, regardless of
input: “Mode collapse [. . .] is a problem that occurs when the
generator learns to map several different input z values to the same
output point” (Goodfellow, 2017). A possible reason may be the
mode-collapse prone Pix2Pix module being chained last in
this model.

ARISGAN-A and -B produce the most meaningful output for
samples S-2 and S-4, which are the most feature-rich images in this
selection. Specifically, ARISGAN-A generates a relatively
appropriate channel relationship in this scenario and relative
sharpness. Both are, however not sustained in the other two samples.

Two specific differences between sea- and land-based Sentinel-3
input images might impact this behavior. First, sea-based Sentinel-3
images visually appear more distant from the ground truth

FIGURE 11
(A–D) Sea-focused image samples S-1 through S-4.
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compared to the land-based counterpart. For example, the pixel
colors appear to not match the respective features in the ground
truth images. Notably, the Sentinel-3 images consist of 21 channels,
of which only three are included in the sample representations
below. However, this perceptual difference may require further
investigation.

Second, while land-based features are steadfast, sea ice and its
cracks and fine-granular surface details are mobile. As there is a time
difference of up to 60 min between the ground truth image and the
respective Sentinel-3 image, the scene may not overlap sufficiently
for ARISGAN tomap input features to corresponding features in the
ground truth. For verification, the experiment can be repeated by
narrowing the time window between both images while including a
higher number of Sentinel-2 granule codes into the experiment to
ensure a still sufficiently high number of training image pairs.

4.3 Quantitative evaluation

In this section, a comprehensive evaluation of the performance
metrics of the proposed models is presented. Table 3 lists the metrics
used for evaluation, which are described in Supplementary Data
Sheet S1. Tables 4–7 offer a detailed comparison of the different

models with state-of-the-art models along these performance
metrics. Thereby, the analysis is split between land- and sea-
focused imagery, as well as super-resolving downsampled
Sentinel-2 images and Sentinel-3 images.

The tables list metrics as columns, and the analyzed models as
rows. For better readability, the respective best value in each column
has been highlighted in bold print. All metrics have been provided
with mean and standard deviation.

As expected, 12x downsampled image super-resolution
generally leads to significantly better performance across all
metrics and models, than super-resolving Sentinel-3 imagery.
Further, land-based imagery super-resolution achieves better
metrics than sea-based imagery in most models and metrics.

On a more detailed level, ARISGAN-C leads to overall best
performance on 12x downsampled images across most metrics,
while ARISGAN-A leads to generally best results on Sentinel-3
image super-resolution. ARISGAN-B achieves promising results in
both domains, exceeding the performance of state-of-the-art models
across multiple metrics, however trailing behind one of the other
sub-models.

Overall, the results appear to support the hypothesis that by
combining the dense block, multi-receptive field and Pix2Pix
architecture, current state-of-the-art model performance can be

TABLE 4 Performance Metrics for Land/12x downsampled images.

SAM (↓) ERGAS (↓) SSIM (↑) SCC (↑) HPSI (↑) UIQI (↑) PSNR (↑)

DMNet 0.033 (±0.019) 4.168 (±3.007) 0.514 (±0.191) 0.766 (±0.139) 0.449 (±0.088) 0.546 (±0.151) 17.828 (±4.210)

DSen2-WGAN 0.441 (±0.044) 55.669 (±2.989) 0.503 (±0.203) 0.035 (±0.107) 0.181 (±0.059) 0.012 (±0.012) 13.994 (±3.536)

Pix2Pix 0.021 (±0.009) 3.462 (±2.803) 0.498 (±0.162) 0.839 (±0.121) 0.498 (±0.103) 0.572 (±0.157) 19.049 (±4.478)

SR-GAN 0.079 (±0.039) 66.484 (±955.27) 0.382 (±0.160) 0.412 (±0.142) 0.244 (±0.051) 0.234 (±0.143) 13.336 (±3.346)

SRS3 0.106 (±0.030) 6.559 (±2.279) 0.458 (±0.165) 0.607 (±0.151) 0.351 (±0.065) 0.377 (±0.174) 15.411 (±3.053)

TARSGAN 0.033 (±0.022) 3.267 (±2.050) 0.556 (±0.175) 0.806 (±0.114) 0.321 (±0.058) 0.569 (±0.161) 15.917 (±3.913)

ARISGAN-A 0.027 (±0.022) 4.364 (±3.916) 0.485 (±0.212) 0.822 (±0.134) 0.501 (±0.098) 0.544 (±0.155) 18.343 (±4.030)

ARISGAN-B 0.017 (±0.011) 3.460 (±2.995) 0.539 (±0.214) 0.848 (±0.125) 0.531 (±0.103) 0.582 (±0.156) 20.052 (±4.082)

ARISGAN-C 0.027 (±0.007) 3.590 (±3.061) 0.565 (±0.195) 0.851 (±0.112) 0.496 (±0.088) 0.587 (±0.146) 19.594 (±3.836)

TABLE 5 Performance Metrics for Sea/12x downsampled images.

SAM (↓) ERGAS (↓) SSIM (↑) SCC (↑) HPSI (↑) UIQI (↑) PSNR (↑)

DMNet 0.050 (±0.006) 3.303 (±2.870) 0.428 (±0.154) 0.674 (±0.118) 0.500 (±0.083) 0.422 (±0.220) 16.192 (±3.315)

DSen2-WGAN 0.132 (±0.068) 14.471 (±32.965) 0.413 (±0.166) 0.329 (±0.194) 0.175 (±0.049) 0.126 (±0.139) 12.428 (±3.145)

Pix2Pix 0.022 (±0.017) 3.338 (±3.192) 0.344 (±0.135) 0.692 (±0.153) 0.470 (±0.104) 0.372 (±0.238) 16.960 (±3.226)

SR-GAN 0.099 (±0.080) 24.231 (±116.15) 0.345 (±0.144) 0.306 (±0.138) 0.211 (±0.055) 0.066 (±0.095) 13.476 (±3.550)

SRS3 0.191 (±0.058) 17.908 (±36.359) 0.330 (±0.131) 0.167 (±0.205) 0.206 (±0.068) 0.097 (±0.121) 13.439 (±4.222)

TARSGAN 0.022 (±0.013) 2.818 (±2.303) 0.464 (±0.166) 0.774 (±0.102) 0.300 (±0.065) 0.387 (±0.243) 13.929 (±4.542)

ARISGAN-A 0.027 (±0.013) 3.001 (±3.293) 0.424 (±0.165) 0.765 (±0.115) 0.461 (±0.105) 0.429 (±0.218) 17.418 (±4.145)

ARISGAN-B 0.026 (±0.009) 3.003 (±3.071) 0.400 (±0.164) 0.735 (±0.133) 0.504 (±0.080) 0.421 (±0.229) 19.069 (±3.329)

ARISGAN-C 0.014 (±0.008) 2.852 (±2.971) 0.451 (±0.173) 0.778 (±0.115) 0.534 (±0.101) 0.443 (±0.217) 19.814 (±3.942)
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exceeded across all tasks, while certain models show strengths in
specific disciplines.

On 12x downsampled super-resolution, TARSGAN achieved
good results especially in ERGAS and SSIM, less so in SAM and SCC,
further underlining its assumed superiority in capturing spatial and
spectral similarity between the input and ground truth, respectively
generated image. However, TARSGAN achieved relatively low
scores for HPSI and PSNR, indicating its weakness in
reconstructing perceptually similar images of high image quality.

TARSGAN achieved far lower metric values in Sentinel-3 super-
resolution, as it is not constructed to capture the significant
resolution disparity between Sentinel-3 and Sentinel-2 images by
solely consisting of stride-1 convolutions.

Pix2Pix, while not specifically built for a super-resolution task,
achieves remarkably good results for land-based 12x downsampled
image reconstruction across almost all metrics. This might indicate
that the land/12x downsampled reconstruction task could be
understood as an image translation, rather than an actual super-
resolution task. In all other tasks, including sea-based/12x
downsampled reconstruction, Pix2Pix achieves far lower
performance.

For the super-resolution of 12x downsampled images,
ARISGAN-B and -C outperform ARISGAN-A and the state-
of-the-art models across most metrics. This indicates that the
Pix2Pix image translation module being sequenced after the
multi-receptive field and dense block performs this image
translation best, once the feature abstractions have been
adequately processed by the DMF and the DB has adequately
captured the channel relationships. In this case, the land- and
sea-based imagery appear super-resolvable by a mere image
translation through the Pix2Pix module.

Conversely, considering the promising performance of Pix2Pix
on land-based images, it remains challenging for DMF and DB to
pre-process sea-based images in a way ingestible for Pix2Pix to
reconstruct a perceptually valid image. Further research would be
needed to identify the difference in land- and sea-based imagery
leading to a pre-processing requirement in one case but less in
the other case.

For Sentinel-3 super resolution, ARISGAN-A achieves the best
results in almost all metrics across land- and sea-based imagery. A
notable exception is SSIM, for which DMNet and DSen2-WGAN,
respectively, among others, achieve better performance. This is

TABLE 7 Performance Metrics for Sea/Sentinel-3 images.

SAM (↓) ERGAS (↓) SSIM (↑) SCC (↑) HPSI (↑) UIQI (↑) PSNR (↑)

DMNet 0.033 (±0.015) n/a 0.306 (±0.123) −0.105 (±0.090) 0.133 (±0.049) −0.008 (±0.047) 7.631 (±2.736)

DSen2-WGAN 0.177 (±0.079) 43.089 (±146.39) 0.391 (±0.149) −0.040 (±0.076) 0.167 (±0.056) 0.003 (±0.007) 10.898 (±2.859)

Pix2Pix 1.550 (±0.003) 859.871 (±581.59) 0.051 (±0.014) 0.020 (±0.016) 0.270 (±0.067) 0.000 (±0.000) 10.957 (±2.560)

PSGAN 0.157 (±0.126) 9.652 (±7.696) 0.233 (±0.139) 0.241 (±0.145) 0.269 (±0.064) 0.043 (±0.048) 10.783 (±4.780)

SR-GAN 0.061 (±0.039) 13.201 (±30.366) 0.376 (±0.160) 0.266 (±0.160) 0.221 (±0.053) 0.059 (±0.096) 13.958 (±3.460)

SRS3 0.187 (±0.031) 9.120 (±6.917) 0.342 (±0.126) 0.164 (±0.112) 0.249 (±0.079) 0.083 (±0.123) 11.653 (±3.262)

TARSGAN 1.464 (±0.817) 83.649 (±339.76) 0.324 (±0.142) 0.027 (±0.282) 0.200 (±0.069) 0.000 (±0.000) 9.020 (±2.928)

ARISGAN-A 0.053 (±0.038) 5.613 (±5.751) 0.162 (±0.107) 0.370 (±0.171) 0.351 (±0.088) 0.128 (±0.156) 14.332 (±2.697)

ARISGAN-B 0.052 (±0.061) 6.222 (±6.508) 0.236 (±0.080) 0.352 (±0.188) 0.346 (±0.111) 0.121 (±0.157) 14.713 (±3.089)

ARISGAN-C 0.205 (±0.087) 31.437 (±5.219) 0.232 (±0.103) 0.016 (±0.114) 0.199 (±0.043) 0.013 (±0.065) 7.995 (±3.177)

TABLE 6 Performance Metrics for Land/Sentinel-3 images.

SAM (↓) ERGAS (↓) SSIM (↑) SCC (↑) HPSI (↑) UIQI (↑) PSNR (↑)

DMNet 0.070 (±0.019) 6.099 (±2.577) 0.504 (±0.188) 0.377 (±0.188) 0.265 (±0.061) 0.315 (±0.188) 14.693 (±3.274)

Pix2Pix 0.044 (±0.017) 6.865 (±2.782) 0.288 (±0.104) 0.461 (±0.204) 0.300 (±0.068) 0.262 (±0.170) 12.319 (±3.704)

PSGAN 0.085 (±0.035) 6.724 (±2.929) 0.235 (±0.091) 0.483 (±0.185) 0.329 (±0.054) 0.298 (±0.166) 15.557 (±2.719)

SR-GAN 0.070 (±0.026) 6.813 (±2.909) 0.477 (±0.198) 0.390 (±0.149) 0.220 (±0.059) 0.216 (±0.141) 13.510 (±3.758)

SRS3 0.107 (±0.062) 9.781 (±11.324) 0.415 (±0.151) 0.381 (±0.161) 0.266 (±0.061) 0.276 (±0.176) 15.005 (±3.487)

TARSGAN 1.622 (±0.515) 45.945 (±174.33) 0.384 (±0.150) 0.008 (±0.394) 0.172 (±0.074) 0.000 (±0.000) 8.769 (±1.971)

ARISGAN-A 0.038 (±0.022) 5.802 (±3.517) 0.438 (±0.189) 0.563 (±0.200) 0.364 (±0.077) 0.370 (±0.175) 16.632 (±2.858)

ARISGAN-B 0.038
(±0.021)

6.423 (±2.756) 0.366 (±0.152) 0.546 (±0.210) 0.357 (±0.063) 0.351 (±0.181) 15.920 (±2.867)

ARISGAN-C 0.056 (±0.023) 6.354 (±3.116) 0.415 (±0.181) 0.562 (±0.210) 0.342 (±0.072) 0.362 (±0.181) 14.892 (±3.364)
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particularly surprising as all models have been trained with SSIM-
loss as part of the generator loss function. Thus, this could imply that
other models more strongly isolate the concrete objective at the
expense of other quality metrics. However, while ERGAS is the
metric most closely related to the L1 loss, ARISGAN-A in this case
achieves superior performance.

As a further metric, ARISGAN-A does not outperform all
models in SAM, indicating that other models are able to
reconstruct the spectral similarity between individual
channels better.

ARISGAN-B shows slightly lower performance. However, it still
outperforms many state-of-the-art models in the Sentinel-3 SR
discipline. As both ARISGAN-A and -B share the direct link
between multi-receptive field and the Pix2Pix model, this implies
that this setup is best, out of the tested architectures, to capture the
coarse 21-channel input image in its different abstraction levels and
immediately translate the result into a higher-resolution image, and
performing any channel corrections either before (ARISGAN-A) or
after (ARISGAN-B) this translation.

ARISGAN-A outperforms ARISGAN-B, thus indicating that a
channel alignment using the dense block is advantageous if
performed before translating the result into the target resolution.

The additional HPSI metric corresponds to the majority of other
metrics in most cases, and its outcome is in line with the visual
evaluation performed in section 4.2 above. As such, it may be a
valuable addition or replacement for other metrics, while assessing
human perceptual quality reliably. However, due to the low amount
of comparison values in this study, further research should be
conducted before applying this metric comprehensively for
remote sensing SR tasks.

5 Conclusion

This study conducted a novel exploration of the application
of artificial intelligence for generating high-resolution synthetic
satellite imagery in the challenging context of the arctic
environment. The research addressed the need for realistic
and high-resolution arctic surface imagery for various
applications, from satellite retrieval systems to the wellbeing
and safety of Inuit populations relying on high-resolution
surface observations.

The designed framework, ARISGAN, combined the
advantageous properties of the dense block, multireceptive field,
and Pix2Pix architecture. This innovative approach showcased
promising results, outperforming state-of-the-art models across
various tasks and metrics. The experiments demonstrated the
advantages of leveraging a combination of techniques to enhance
super-resolution, edge detection, and image reconstruction,
particularly in challenging arctic environments.

The key findings from the experiments is that ARISGAN has
the potential to enhance the resolution of satellite images up to a
factor of 12. More experiments and analysis is needed for super-
resolving Sentinel-3 imagery. Furthermore, land-based imagery
super-resolution exhibited superior metrics to sea-based imagery
across most models and evaluation metrics. ARISGAN
outperforming existing state-of-the-art models in super-
resolving 12x downsampled images highlights the approach’s

effectiveness, which combines advanced image processing
techniques and a well-designed architecture.

Among the sub-models, ARISGAN-C performed best on 12x
downsampled images, while ARISGAN-A excelled in Sentinel-3
image super-resolution. ARISGAN-B demonstrated promising
results in both domains, although it fell slightly behind the other
sub-models. The evaluation underscored the strengths of the
ARISGAN framework in capturing the unique characteristics of
arctic imagery and improving super-resolution performance. In
conclusion, our proposed ARISGAN framework has
demonstrated superior performance in generating perceptually
valid high-resolution arctic surface imagery. This research
contributes to the advancement of Earth Observation in polar
regions. The findings encourage further research and refinement
of the ARISGAN framework to address the challenges the arctic
environment poses, ultimately advancing the quality and availability
of high-resolution satellite imagery.

6 Future work

While the findings showcase promising advancements, it is
essential to acknowledge some limitations and avenues for future
research. The study showed that certain aspects of input images
strongly impact model performance. Foremost, high temporal
synchronicity was required to reach adequate SR results, which
was not given in the Sentinel-3 super-resolution of sea-focused
images due to the rapid changes in images of these surfaces.
Techniques should be developed to tolerate unavoidable changes
like sea ice motion in super-resolution models. In ad interim, dataset
compilation should ensure very high temporal synchronicity
between input and target images. Tolerances are larger for
steadfast surfaces.

Visually inspecting multi-spectral images like Sentinel-3 data
showed that input image and ground truth are not necessarily
aligning, even for a human observer, e.g., due to color
mismatches. Moreover, with Sentinel-3 consisting of 21 channels,
visualization always requires reducing these to RGB information.
The impact of multi-channel inputs on lower-channel outputs
should be investigated, along with a consideration to analyze
those multi-channel input impacts on relevance for the super-
resolution task. For the study at hand, as the relevance of each
Sentinel-3 channel for reconstructing the ground truth was not
known, all 21 channels were used as input to the ARISGAN model.

Related to pre-processing, analysis and the ability to identify
cloudy or otherwise images with diminished quality should be
available to avoid models being trained on such data. This study
identified a tinting problem, predominantly on sea-based and
thus relatively plain imagery. The root cause should be
investigated, and avoidance mechanisms explored. HPSI
showed promising results as a relevant metric for measuring
the human-perceptual quality of super-resolved satellite imagery.
Its application in this domain should be further investigated.

Finally, ARISGAN opens many exciting future applications in
remote sensing and modeling. It is too early to use super-resolved
images generated by ARISGAN for operational purposes such as
safe travel on fast ice (Segal et al., 2020) or to help with routing
(Soldal et al., 2019) as the images currently do not faithfully
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represent the exact reality on the ground. Nevertheless, the
ARISGAN super-resolved images can be helpful to generate
statistically representative surfaces at enhanced spatial and
temporal resolution that can inform model parameterizations of
unresolved sub-grid processes such as melt ponds (Driscoll et al.,
2024a; Driscoll et al., 2024b).

While super-resolution in a sea ice context is a niche field of
study, the wider field of RS is under active and dynamic research and
significant advancements are being made, which may have
promising applications in the sea ice context, potentially in
combination with ARISGAN. These include transformer-based
models like SpectralGPT (Hong et al., 2023a), multimodal model
as proposed by (Hong et al., 2024), or self-supervised models like
DC-Net (Hong et al., 2023b), which show promising performance
above other state-of-the-art models. Further, integrating
architectures as proposed with the RSMamba framework (Chen
et al., 2024), namely, a global receptive field, would be an area for
further research to increase computational efficiency while enabling
a wholistic image representation.

More work is needed in ensuring that the statistics of the
super-resolved images are consistent with the ground truth. The
field of ML enabled model parameterizations and emulators is in
its early days and ARISGAN can play an important role in
generating realistic input satellite data for such model
components in the future.
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