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Nitrogen (N) fertilization is a major management requirement for wild blueberry
fields. Its presence and estimation can be difficult given the perennial and
heterogeneous nature of the plant, low N requirement, and residual N effects,
resulting in the frequent over-application of N, excessive canopy growth, and
resulting reduction in berry yields. Therefore, this study aimed to estimate
nitrogen content and growth parameters using remote sensing approaches.
Three trials were established in three commercial fields in Nova Scotia,
Canada. An RCBD with 5 replicates and a plot size of 6 × 8 m with a 2 m
buffer was used. Treatments consisted of 0, 20, 40, 60, and 100 kg N ha-1 of
fertilizer. Using a DJI Matrice 300 UAV mounted with an RGB and a multispectral
camera, aerial measurements were collected at 30 m altitude. Several field
measurements including leaf nitrogen content (LNC), leaf area, floral bud
numbers, stem height, and yield were conducted. Several vegetation indices
(VIs) were computed for each plot, and correlation and regression analyses were
conducted. Results indicated that treatments with high nitrogen rates had
correspondingly high LAI measurements with the 60 kg ha-1 rate achieving the
best growth parameters compared to the other treatments. LNC, LAI, and berry
yield estimations using VIs [green leaf index (GLI), green red vegetation index
(GRVI), and visible atmospheric red index (VARI)] produced significantly positive R2

values of 0.43, 0.48, and 0.30 respectively. Results from this study illustrated the
potential of using VIs to estimate LNC, LAI, and berry yield parameters. It was
established that the near-infrared VIs are the most effective in estimating
differences in nitrogen rates, making them suitable for use in prescription
maps for N fertilization applications.
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1 Introduction

The wild blueberry also called the sweet lowbush blueberry, is an economically
important ericaceous shrub that thrives in northeastern America. Commercial wild
blueberry fields consist of naturally occurring populations of Vaccinium angustifolium
(the predominate species found in fields) and V. myrtilloides (Percival et al., 2003; Marty
et al., 2022). Wild blueberry plants grow naturally as they are not planted but are managed
through regular management practices. Wild blueberries are calcifuge plants with a large
root and rhizome network that allows them to thrive in harsh conditions (Thyssen et al.,
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2006). The lowbush plant is resilient, lending itself to periodic
pruning, and can thrive in a range of soil types, particularly
acidic soils (Percival and Sanderson, 2004). Several management
practices are used, including pruning, fertilizer application, pest
control, and pollination (Percival and Sanderson, 2004). Upright
plant shoots are periodically pruned in alternate years; thus, fields
are managed on a 2-year systemwith a biennial production cycle of a
sprout year and a cropping year (Percival and Sanderson, 2004).
Thriving in low-nutrient and varied soil types, fertilizers are used to
boost nutrient levels for plant growth and development and to
replenish the nutrients associated with the previous crop. However,
concerns about its carbon footprint and resulting greenhouse gas
emissions persist.

Fertilizer application is a regular practice used in wild blueberry
production with fertilizers being frequently comprised of
ammonium sulfate (AS: 21-0-0), diammonium phosphates (DAP)
(18-46-0), and potash (0-0–60), and the application rate is generally
based on N (Gumbrewicz and Calderwood, 2022). The low nutrient
status of the different soil fertility types has been demonstrated to
cause a positive plant response upon fertilizer application (Percival
and Sanderson, 2004; Smagula and Hepler, 1978) established that
the application of N (43 kg ha-1) in the form of urea increased flower
buds and berry yield by 22% and 25% respectively, over the
unfertilized plots. An increase in stem length, floral buds,
number of berries, and yield were observed in Maine upon
application of N (20–98 kg ha-1) rates (Smagula and Hepler,
1978) with excess application causing negative effects.

Several studies on the wild blueberry fields have demonstrated
many effects of fertilization (Percival and Sanderson, 2004; Marty
et al., 2019) demonstrated that inorganic fertilization increased yield
by 70%. Percival et al. (2003) established that multiple fertilizer
applications increased stem density, leaf nitrogen content, dry
weight, and harvestable yield, however, the poor nature of soils
coupled with environmental losses through leaching, erosion,
volatilization, and greenhouse gas emissions raises concerns.
Commercial wild blueberry fields are mostly patchy or
discontinuous, thus in resolving these challenges, producers are
trying to avoid a broad application of fertilizers. Despite this
traditional approach, producers are now moving away from the
blanket application to spot application of N depending on the spatial
variability of plant coverage and the potential to determine N levels
using remote sensing techniques. Development activities in
agriculture have led to the proliferation of remote sensing
techniques in plant growth monitoring and prediction (Anku
et al., 2023; Hussain et al., 2020). With the adoption of a non-
destructive approach, sensors such as the red-green-blue (RGB),
multispectral, hyperspectral, and thermal sensors have been utilized
(Maes and Steppe, 2019). In addition, several studies have
demonstrated the use of remote sensing techniques in estimating
plant growth and development in the fields. Näsi et al. (2018)
estimated biomass and nitrogen (N) content of barley and grass
using an unmanned aerial vehicle (UAV). The study confirmed a
high regression value of 0.89 and established a relationship between
these parameters. This approach and technique have also been
utilized in several crops including wheat, rice, and soybean (Zhou
et al., 2017). However, little has been done to utilize the multispectral
sensors in estimating N content and determining canopy
characteristics in wild blueberry fields. A recent remote sensing

study on the blueberry field, investigated the sensitivity and impact
of management practices on two vegetation indices, normalized
difference vegetation index (NDVI) and normalized difference red
edge (NDRE) using a multispectral sensor (Marty et al., 2022). The
study established significant differences in vegetation indices (VIs)
between different fertilizer treatments as against different
management practices. However, the study did not consider the
estimation of growth parameters rather it focused on NDVI and
NDRE sensitivity to management practices. Nevertheless, the study
suggests the potential of using VIs to differentiate between fertilizer
treatments, which was the basis for this study.

Given that the potential and application of remote sensing
techniques have been demonstrated in different crops, a
considerable lack of information still exists in wild blueberries.
This study was conducted to primarily provide an approach to
test the effect of fertilizer treatments on vegetation indices using
RGB and multispectral sensors and to further monitor and estimate
growth parameters in the wild blueberry field. Therefore, the
objectives of this study were to (i) determine the effect of
fertilization on spatial variation using vegetation indices, and (ii)
estimate berry yield, LAI, and LNC using a predictive model.

2 Materials and methods

2.1 Study area

Three (3) experimental trials were set up in the 2021 field season
to conduct this experiment (Figure 1). These experimental trials were
set up in Debert (DB), Lemmon Hill (LH), andWentworth (WW), all
within Nova Scotia, Canada, with their geographic coordinates
(45.444,445°N, −63.450,472°W), (45.190,360°N, −62.872,721°W),
and (45.642,327°N, −63.611,735°W) respectively (Figure 1). Despite
Nova Scotia being noted for Queens soil type, the three sites, DB, LH,
and WW are specifically classified as orthic humo-ferric podzol.
Therefore, since all three sites are within this zone, they share the
same soil type (Nowland and MacDougalI, 2013). These trials started
during the plant’s vegetative growth phase and carried through the
crop phase until harvest.

The locations for these trials were wide apart, thus, the distance
between DB and LH was about 84 km, DB to WW location was
about 43.5 km, and WW to LH was about 111 km. These fields
varied in plant density, topography, and weather conditions which
introduced some uniqueness to this study. Unlike DB and LH
locations, the trial set up at the WW location was on a low-lying
field with high moisture content. Generally, the trial set up at the
WW location had a low plant density as compared to the trials set up
in the DB and LH locations. Weed patches and bare areas varied
across the three locations, with WW having the barest areas with
weeds. Apart from fertilizer application, all other management
practices were carried out during the trials.

2.2 Experimental set-up and treatment
applications

A randomized complete block experimental design (RCBD)
with 5 replications, 5 treatments, and a plot size of 6 × 8 m with
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2-m buffers between plots was used. Treatments consisted of (i) an
untreated control (0 kg N ha-1), (ii) 20 kg N ha-1, (iii) 40 kg N ha-1,
(iv) 60 kg N ha-1, and (v) 100 kg N ha-1 using ammonium sulfate
(AS) as an N source. Treatment applications consisted of two
compound fertilizers, a 16-21-8 (partially wet) fertilizer was
provided as a base which was uniformly applied, and then a 21-
0-0 (dry) fertilizer was later applied to the fields according to the
treatment rates in spring during the sprouting phase of the plants
when the shoots were about to develop. These granular fertilizers
were applied 2 weeks apart on the 12th and 26th of June 2021, using
a fertilizer spreader (Lesco High Wheel Fertilizer Spreader). To
achieve uniform application, the spreader made three passes along
the 6 m stretch of each plot with the deflector guard lowered to
minimize applications to areas outside of the plots.

2.3 Field data collection

Field assessment on stem density was determined by collecting
4 samples of wild blueberry stems per plot using a 30 × 30 cm
quadrant. The leaf area was determined for each plot using the LiCor
3100C leaf area meter. An SS1 Sunscan Canopy Analysis System
(Delta T Devices) was used to remotely collect leaf area index (LAI)

measurements from each plot. Physical plant characteristics such as
stem length, vegetative buds, and floral bud numbers were collected.
Leaf tissue N content from each plot was determined using the
protocol of Maqbool et al. (2012).

2.4 Plant sampling and nitrogen
content analysis

Fresh leaf samples were collected from each treatment plot on 5th
August 2021. The leaf tissue samples were oven-dried for 36 h at 60°C.
The dry leaf tissues were ground into a fine powdery sample using the
mortar and pestle. The ground leaf samples were stored in dry labeled
falcon tubes and analyzed for N content using the LECO CNS-1000
elemental auto-analyzer (LECOCorp., St. Joseph, MI). The analysis of
the LNC followed the procedure of Rutherford et al. (2007).

2.5 Aerial image acquisition and
sensory platform

The DJIMatrice 300 UAVwas equipped with a 3-band Zenmuse
X5, a 16-Mega-Pixel (MP) digital camera, and a 5-band Micasense

FIGURE 1
Trial sites, field plots, and the different treatment applications.
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RedEdge™ 3 multispectral camera to collect reflected lights.
Reflected lights from the RGB camera were collected at blue
(448), green (548), and red (650) wavelengths while that of the
Micasense was collected at blue (475), green (560), red (668), red
edge (717), and near-infrared (840) wavelength (Figure 2). The
Matrice Pro 300 was flown at 30 m height with a frontal image
overlap of 75% and a side image overlap of 70%.

Flights on all 3 sites were conducted on 29th July 2021 and 4th
August 2021, about 2 months after treatments were applied to
plots. Imageries were acquired under clear conditions to
minimize the effects of clouds, wind, and rain. Calibration,
corrections, and adjustments were carried out to minimize the
effects of distortion on the quality of the imagery obtained.
Depending on whether the camera was RGB or Micasense, the
imagery was acquired at approximately 0.7 or 2.2 cm/px spatial
resolution, respectively.

2.5.1 Image processing
The raw images collected with the two sensors were processed

using the online Solvi platform (https://solvi.ag/features) and this
consisted of (i) upload of raw images and ground control points
(GCPs), (ii) stitching images into composite orthomosaic images,
(iii) digitizing individual plots, (iv) computation and extraction of
vegetation indices and (v) export of data file for analysis. All analyses
of data were performed using SAS software (version 9.4, SAS
Institute, Inc., Cary, NC).

2.6 Vegetation indices

A vegetation index (VI) is a mathematical computation obtained
using wavebands. Therefore, these index values are important ways
by which information can be sourced from remote sensing data. In
this research, different vegetation indices (VIs) were examined
(Table 1). The capacity to compute a vegetation index is
determined by the sensor’s available bands, so it varies based on
whether a camera is RGB or multispectral, allowing the computation
of certain VIs while others may not be possible. This study focused
on the RGB sensor but utilized the multispectral sensor in
other aspects.

2.7 Statistical analysis

Combined analyses were initially performed, however, results
revealed significant differences between treatments, and locations,
thus the individual locations were analyzed separately. To determine
which of the treatment applications had the highest concentration of
N, an analysis of variance (ANOVA) was performed, and a least
significant difference (LSD) was used for multiple means
comparison to differentiate between treatments for significant
effects. All conditions for statistical testing were performed, thus
normality tests, constant variance, and independence of the error
terms were conducted in Minitab. To establish relationships,

FIGURE 2
UAV remote sensing tools. (A) Calibration panel, (B) DJI Matrice 300 UAV fitted with a micasense camera, and (C) A Real Time Kinematic receiver.

Frontiers in Remote Sensing frontiersin.org04

Anku et al. 10.3389/frsen.2024.1414540

https://solvi.ag/features
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2024.1414540


correlation analysis on aerial data, LAI, LNC, vegetative and
productive yield components, and harvestable berry yield
was conducted.

After the correlation analyses, simple linear regression (SLR)
analyses were conducted, where VIs were used as dependent
variables while the other parameters were set as independent
variables. The statistical analyses were performed using SAS
(version 9.4), Minitab (version 19, Minitab Inc.), and Excel
software. Specifically, SAS was utilized for ANOVA analysis
using the PROC GLIMMIX procedure, Minitab for correlation
and regression analysis, and Excel for graphical designs.

3 Results

3.1 Effect of nitrogen rates on
vegetation indices

Results showed some significant differences between the
various vegetation indices, thus the different nitrogen rates
influenced vegetation indices (Table 2). Across the 7 VIs, it was
observed that the high nitrogen rates, 60 and 100 kg N ha-1, were
significantly different from the other treatments. It was established
that there was a significant variation between the different rates of
the near-infrared (NIR) VIs when compared to the visible (VIS)
light VIs. Therefore, differentiation was established between
100 and 60 kg N ha-1 under the NIR indices compared to the
VIS-VIs (Table 2).

3.2 Leaf nitrogen content

Results showed no significant differences in the LNC of
treatment trials between two locations, Debert and Wentworth,
however, a significant treatment effect (p < 0.05) was observed at
the Lemmon Hill location (Table 3). There were no significant
differences in treatment effects between the DB and WW locations.
Treatment 5 (100 kg N ha-1) exhibited the highest mean LNC value
compared to all the other treatments in all 3 locations (Table 3). At
the LH location, treatment 5 (100 kg N ha-1) was significantly
different from all the other treatments. Although there was no
significance in some locations, there were mean differences in the
LNC values. It was observed that LNC values from the LH location
were almost twice what was contained in the leaves from both DB
and WW, however the mean values between WW and DB were
almost similar.

3.3 Relationship between vegetation indices
and growth parameters

3.3.1 Correlation analysis
Pearson’s correlation between the various parameters showed

significant relationships between specific parameters which were
consistent for all three locations (Table 4). Across all 3 locations,
significant correlations were established between plant density (PD)
and leaf area index (LAI), as well as between leaf nitrogen content
(LNC) and green leaf index (GLI). In DB and WW locations, a

TABLE 1 Vegetation indices used in this study.

Vegetation indices Bandsa Equationb

Green Leaf Index (GLI) R, G, B (2·Rg − Rr − Rb)/(2·Rg + Rr + Rb)

Green, Red Vegetation Index (GRVI) R, G (Rg − Rr)/(Rg + Rr)

Normalized Difference Vegetation Index (NDVI) R, NIR (Rn − Rr)/(Rn + Rr)

Enhanced Normalized Difference Vegetation index (ENDVI) B, G, NIR (Rn + Rg) - (2*Rb)/(Rn + Rg) + (2*Rb)

Normalized Difference Red Edge (NDRE) NIR RE (Rn − Rre)/(Rn + Rre)

Visible atmospheric red index (VARI) G, R (1 + 0.5) (Rn − Rr)/(Rn + Rr + 0.5)

aIndices are grouped based on the major wavelengths of the micasense sensor: NIR (n, 840 nm), red edge of chlorophyll absorption (RE, 717 nm), red (R, 668 nm), green (G, 560 nm), blue (B,

475 nm).
bR is the reflectance at wavelength; Rn, Rre, Rr, Rg, and Rb are the reflectance for NIR, RE, red, green, and blue bands, respectively.

TABLE 2 Analysis of variance on the effects of nitrogen rates on vegetation indices from the Wentworth location [7th October 2021].

Treatment GLI GRVI VARI NDVI NDRE ENDVI SAVI

0 kg N/ha 0.049b 0.017b 0.021b 0.229c 0.097 0.207c 0.344c

20 kg N/ha 0.058b 0.023b 0.033b 0.244c 0.089 0.224c 0.365c

40 kg N/ha 0.074b 0.038b 0.060b 0.278bc 0.103 0.252bc 0.417bc

60 kg N/ha 0.087b 0.049b 0.075b 0.317ab 0.117 0.285ab 0.474ab

100 kg N/ha 0.144a 0.115a 0.179a 0.372a 0.120 0.331a 0.549a

ANOVA Resultsa p < 0.007 p < 0.010 p < 0.018 p < 0.002 NS p < 0.001 p < 0.002

aAnalysis of variance (ANOVA) results refer to treatment effects that were either not significant (NS) or significant at p < 0.05. Mean separation was completed using Fisher’s multiple means

comparison test procedure (α = 0.05).
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significant correlation was observed between LAI and GLI. At the
WW location, yield showed a significant positive correlation with
LNC and GLI, while PD showed a significant positive correlation
with GLI. Therefore, a positive relationship was established between
PD and LAI, and this translates to an increase in GLI. These results
suggest the possibility for some predictions to be achieved; thus, PD
can be used in predicting LAI, GLI can be used to predict LNC and
GLI can be used in predicting LAI (Table 4). At the WW location,
yield showed a significant correlation with all three VIs. A
subsequent assessment of all 3 locations (Table 5) revealed a
strong correlation between stem length and the various VIs,
while floral bud numbers displayed significantly low correlation
values. Despite the relatively low correlation values, floral bud
numbers showed strong correlations with stem length (Table 5).
Stem length and VIs observed a significantly high number of
correlations at WW and DB locations with almost no significant
stem length correlation occurring at the LH location (Table 5).

3.3.2 Relationship between LNC, PD, LAI, and yield
The impact and relationship between plant density, leaf area

index (LAI), and LNC among other parameters can help predict
yield. Generally, the LH and DB locations showed weak but mixed
effects on yield, with both positive and negative relationships,
respectively. However, at the WW location, there was a
moderately strong positive relationship between yield and LNC
(Figure 3B). In contrast, there were no significant relationships

between yield and LAI across all the 3 locations (Figure 3D–F). The
relationship between plant density and yield was positively weak at
all 3 locations (Figure 3G–I) with no significant (p > 0.05)
relationship between the parameters.

3.3.3 Relationship between vegetation indices and
growth parameters

Results showed that plant density and LAI had a positively
strong and significant (p < 0.05) relationship across all three
locations (Figure 4A–C). This suggests that an increase in the
number of plant stands per unit area increases the total leaf
coverage per area of the plant. Furthermore, the relationship
between plant density and GLI was positive at both WW and
DB locations with a significantly negative relationship at the LH
locations (Figure 4D–F). This suggests that, as the number of stems
increased, the green leaf index value also increased. The
relationship between PD and GRVI was a non-significantly
weak relationship, which was across all three locations
(Figure 4G–I). and the same was observed for PD and
VARI, (Figure 4J–I).

A moderately strong significant relationship was observed
between LNC and GLI (Figure 5A–B) across the three locations.
The relationship between the two parameters at LH and DB was
negative with WW showing a positive relationship (Figure 5A–B).
The relationship between LNC and GRVI showed a moderate but
positively strong relationship at WW (R2 = 0.43), with the other two

TABLE 3 Analysis of variance (ANOVA) on LNC in blueberry leaf tissues treated with 4 rates of mixed compound fertilizers at three (3) experimental sites
[Collected: 5th August 2021, sample (n) = 25].

Treatment Debert (DB) Wentworth (WW) Lemmon Hill (LH)

1 (0 kg N/ha) 1.461 1.204 2.108c

2 (20 kg N/ha) 1.478 1.194 2.445b

3 (40 kg N/ha) 1.452 1.287 2.305bc

4 (60 kg N/ha) 1.512 1.242 2.350b

5 (100 kg N/ha) 1.618 1.367 2.729a

ANOVA Resultsa NS NS p < 0.0001

aAnalysis of variance (ANOVA) results refer to treatment effects that were either not significant (NS) or significant at p < 0.05. Mean separation was completed using Fisher’s multiple means

comparison test procedure (α = 0.05).

TABLE 4 Pearson’s correlation between yield, plant density (PD), leaf area index (LAI), leaf nitrogen content (LNC), and vegetation indices (GLI, GRVI, and
VARI).

2021 Lemmon Hill Wentworth Debert

Yield PD LAI LNC Yield PD LAI LNC Yield PD LAI LNC

PD 0.186 0.039 0.321

LAI −0.160 0.589* 0.109 0.829* 0.276 0.695*

LNC 0.138 0.280 0.246 0.510* −0.017 0.158 −0.077 −0.028 0.113

GLI 0.048 −0.216 −0.150 −0.593* 0.694* 0.405* 0.552* 0.606* 0.131 0.228 0.407* −0.501*

GRVI 0.047 −0.116 −0.051 −0.307 0.548* 0.282 0.471* 0.653* −0.355 −0.037 0.275 −0.089

VARI 0.043 −0.115 −0.050 −0.305 0.577* 0.312 0.502* 0.641* −0.364 −0.051 0.272 −0.055

*Significant at p < 0.05.
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locations observing weak relationships (Figure 5D–F). Similar
relationships between LNC and GRVI were observed between
VARI and LNC (Figure 5G–I).

A moderate but significantly positive relationship was observed
between LAI and GLI at bothWW and DB locations, with a negative
relationship at LH (Figure 6A–C). This implied that an increase in

TABLE 5 Correlation analysis on stem length and floral bud numbers from all three (3) locations of thewild blueberry fields [Data collected on December 21,
2021].

Lemmon Hill Wentworth Debert

Floral bud no. Stem length Floral bud no. Stem length Floral bud no. Stem length

NDVI −0.179 −0.016 0.239 0.659* −0.185 0.556*

ENDVI −0.212 −0.101 0.197 0.601* 0.064 0.642*

NDRE 0.334 0.429* −0.014 0.346 −0.171 0.411*

SAVI −0.200 0.003 0.241 0.670* −0.184 0.556*

GLI −0.358 −0.288 0.182 0.484* 0.114 −0.294

GRVI −0.347 −0.254 0.203 0.503* 0.044 −0.425*

VARI −0.325 −0.220 0.185 0.493* 0.064 −0.359

Stem length 0.453* 0.722* 0.314

*Significant at p < 0.05.

FIGURE 3
Linear regression analysis on yield using Nitrogen content, leaf area index (LAI), and plant density (PD) from the three trial sites, Lemmon Hill,
Wentworth, and Debert. Yield and leaf nitrogen content (LNC) (A–C), Yield and LAI (D–F), Yield and PD (G–I), and PD and VARI (J-L) define the different
graphs. The relevance of a relationship was assessed using a 5% significance level.
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the leaf coverage area of the plant increases the green leaf index
value. Furthermore, the relationship between GRVI and LAI was
moderately strong and significantly (p < 0.017) positive at the WW
location, with DB and LH showing very weak relationships
(Figure 6D–F). The relationship between VARI and LAI was
similar to that of GRVI and LAI (Figure 6G–I). Finally, there
were strong relationships between yield and the VIs (GLI, GRVI,
and VARI) (Figure 7B, E, H) at the WW location but weak
relationships at the DB and LH locations were observed. Except
for slight changes in the R2 and p-values, the dynamics between
GRVI, VARI, and yield were similar across the 3 locations.

4 Discussion

High and low nitrogen fertilization in wild blueberries can pose
several challenges given the heterogeneous nature, spatially variable
coverage, and residual N effects of the plant. Therefore, a poor
estimate of the plant’s requirement may lead to an over-application
of the fertilizer product which hinders efforts to reduce the
accumulation of greenhouse gas emissions. Therefore, this study
was carried out to determine (i) N treatment effects on vegetation

indices, and (ii) remote estimation of leaf nitrogen content (LNC)
and productive yield parameters on the wild blueberry fields using
vegetation indices (VIs). The results shown provide a broad but
specific insight into the remote assessment of nitrogen fertilization
in the wild blueberry field. Indications from these results suggest lots
of consistencies, but few variations among the nitrogen treatments
across all three locations.

4.1 Effects of nitrogen fertilization on
vegetation indices

The effect of nitrogen fertilization on vegetation indices
appeared inconsistent, however, significant differences
established at the WW location and the other two locations
(Table 3) indicate a considerable effect of nitrogen fertilization
on VIs. This finding is consistent with the results of Caturegli et al.
(2016) who stated that colour intensity has a significant correlation
with nitrogen fertilization which further correlates with vegetation
indices, specifically NDVI. Nitrogen contributes significantly to
plant growth as it constitutes the chlorophyll molecule content
impacting the green pigments of the plant (do Amaral et al., 2019).

FIGURE 4
Relationship between plant density, LAI, and VIs from the three trial locations. Plant density (PD) and leaf area index (LAI) (A–C), PD andGLI (D–F), PD
and GRVI (G–I), and PD and VARI (J-L), defines the different graphs. The relevance of a relationship was assessed using a 5% significance level.
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Therefore, it is expected that the higher the nitrogen content in a
plant the greener the plant will be, translating to a high VI value.
This finding further supports the conclusion of Caturegli et al.
(2016) that strong correlations can be established between LNC
and VIs. However, some inconsistencies observed at the two other
locations can be attributed to locational differences like moist soil
conditions observed in some areas. Granular fertilizers can achieve
maximum effects over time when the granules are dissolved in
moisture to maximize their mobility and effects on the plant.
Therefore, considering the 3 locations, the WW location been a
low-lying field with a relatively high moisture content, allowed for
easy breakdown of the granular fertilizers, compared to both DB
and LH locations which experienced drier conditions on an uphill
field. Additionally, the sensitivity of the red, blue, and green (RGB)
reflectance values may have contributed to the indifference
between treatments, thus the NIR-VIs reflected the difference in
nitrogen rates (Table 3). The relative difference between an RGB
light camera and a multispectral camera may have influenced the
data collected (Kokhan and Vostokov, 2020; Lu et al., 2021). Based
on previous works with both data sets, it was evident that VIs
computed using multispectral images are usually sensitive and
have higher index values than RGB images. Therefore, their ability
to determine areas of a field with high nitrogen levels can be

utilized in the development of prescription maps for nitrogen
application.

4.2 Remote estimations of plant growth
parameters and yield

This study focused on specific vegetation indices (VIs), the green
leaf index (GLI), Green red vegetation index (GRVI), and the Visible
atmospheric red index (VARI). These VIs showed moderately high
correlation values with the normalized difference vegetation index
(NDVI), consistent with the work of Yamamoto et al. (2005).
However, the predictability of yield using LNC seemed variable
and inconsistent, as negative correlations were observed in two
locations. Conversely, the estimation of LNC using VIs seemed
positive which contrasts with Bourguignon (2007) who states the
inadequacy of NDVI in quantifying N levels assessed in wild
blueberries. From this assertion, this may suggest a difficulty in
generally using VIs in nutrient level estimations in wild blueberries.
However, this finding was consistent with the study ofMaqbool et al.
(2012), who used spectral reflectance bands to establish
relationships, unlike this study which used vegetation indices to
establish relationships. Though VIs consists of spectral data

FIGURE 5
Relationship between Leaf Nitrogen Content (LNC) and vegetation indices at three trial sites, Lemmon Hill, Wentworth, and Debert. LNC and GLI
(A–C), LNC and GRVI (D–F), and LNC and VARI (G–I) define the different graphs. The relevance of a relationship was assessed using a 5%
significance level.
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(wavelength regions), there are limitations as to the light regions
included in the computational process. Maqbool et al. (2012)
established the green peak region as the best for estimating foliar
N. Therefore, this suggests the potential of these VIs (GLI, GRVI,
and VARI) from the light-visible regions to estimate LNC.
Notwithstanding, there is still potential for the other light bands
to generate good estimations. The moderately high coefficient of
determination (R2) values observed at the WW location explain
about 36.7%, 42.7%, and 41.12% variability of the data. Though
better estimations can be achieved, this difficulty can be attributed to
several reasons including the level of variability of the field, image
resolution, and the non-homogenous nature of the canopy
(Daughtry et al., 2000). This finding also agreed with the work of
Lu et al. (2021), who showed that LNC was accurately estimated in
maize (R2 = 0.76) using VIs. While strong correlations have been
found between VIs and LNC in other crops (Caturegli et al., 2016; Lu
et al., 2021), variability in the plant canopy, crop features, and
developmental stage, background noise, topographic effects,
vegetation density, and other intrinsic factors may account for
the difficulty to estimate nitrogen levels (Daughtry et al., 2000;
Kokhan and Vostokov, 2020). This study further agreed with
Bourguignon, (2007), whose work focused on the ability to
estimate N, P, and K levels in wild blueberry leaf tissues using
specific hyperspectral technologies. It was observed that the

possibility of estimating N and P levels using hyperspectral
technology was high yet varied for some instruments
(Bourguignon, 2007).

It could be determined that as the number of stems increases,
plant leaf coverage area increases, and this should directly
impact the vegetation index values. Therefore, the
relationship established between LAI and GLI may suggest
the impact on VIs (Figure 6B). Variability in leaf pigment
and colour intensity becomes a significant contributor to this
phenomenal difference. This is because the absorption and
reflectance peak for the different pigments vary, thus making
it difficult for estimated values to be determined (Sims and
Gamon, 2002). The wild blueberry field is not an ever-green
shrub but has a prevalence of other pigments including
anthocyanins that influence the vegetation index values.
Furthermore, leaf colour variation affects the portion of light
by either being highly absorbed or highly reflected, and this
affects vegetation indices (Marty et al., 2022). However, there is
great potential for the predictability of LAI using GLI or a near-
infrared vegetation index, as these indices are not directly
affected by changes in leaf colour. Percival et al. (2003) found
a strong correlation between LAI and NIR bands. Therefore, NIR
vegetation indices may yield stronger relationships compared to
VIS vegetation indices.

FIGURE 6
Relationship between Leaf area index (LAI) and vegetation indices at three trial sites LemmonHill, Wentworth, and Debert. LAI and GLI (A–C), LAI and
GRVI (D–F), and LAI and VARI (G–I) define the different graphs. The relevance of a relationship was assessed using a 5% significance level.
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As the number of stems increased, GLI was expected to increase,
giving a strong positive relationship. However, the highest R2 value
of the three locations explains only about 16.42% of the data, which
was relatively low compared to other studies (Lu et al., 2021).
However, PD showed a strong correlation (R = 0.83) and
regression (R2 = 0.69) with LAI. Unlike other row crops, plant
density is highly variable across the wild blueberry field, and this
impacts LAI and possibly vegetation index values. This confirms the
variability levels observed in the wild blueberry fields in terms of
population and clonal differences which affect leaf area (Kinsman,
1993). The findings from this study agreed with Lu et al. (2021) that
LAI can be estimated by VIs, despite their description of LAI as
canopy cover.

Yield estimations using vegetation indices have proved
challenging on the wild blueberry field, despite the successes
reported in other crops (Hussain et al., 2020). This finding
agreed with the study of Barai et al. (2021) who assessed the
effects of drought on wild blueberry production. The study
reports that it is difficult and variable to predict harvestable yield
in a wild blueberry field using VIs. This was because several variables
constantly change along the production cycle making it difficult to
use VIs in determining harvestable berry yield. For example, some
factors such as pollination and competitive pressures including

fungal diseases and weeds negate yield, and these vary across the
field and season. However, Maqbool et al. (2012) used optimum
multiple narrow reflectance data in the prediction of harvestable
yield, with very high regression values (R2 = 0.79). Considering the
slight difference in the approaches used, Maqbool et al. (2012)
advocated that consideration should be given to issues of sensor
resolution which affects the levels of detail to be gotten from the
field. Despite the inconsistency in yield prediction, correlation
values from this study (Table 4) have proven positive and have
shown potential in yield predictions.

In conclusion, this study examined the effect of nitrogen on
vegetation indices. The study further examined the potential to
estimate growth parameters using vegetation indices. We have
demonstrated that vegetation indices can be used to estimate
some growth parameters on the wild blueberry field, specifically
LNC, and LAI. Whereas the estimation of PD and berry yield looks
variable, there is therefore a need for further studies into this aspect.
Furthermore, findings from the WW location strongly point to a
future application and adoption of liquid fertilizers on the wild
blueberry field considering the challenges of the granular fertilizer
products. It was established that GLI, GRVI, and VARI vegetation
indices from an RGB sensor showed strong potential in estimating
growth parameters, however, it is expected that NIR-VIs should

FIGURE 7
Relationship between harvestable yield and 3 vegetation indices GLI, GRVI, and VARI using the coefficient of determination values at three trial sites
Lemmon Hill, Wentworth, and Debert. Yield and GLI (A–C), yield and GRVI (D–F), and yield and VARI (G–I), define the different graphs. The relevance of a
relationship was assessed using a 5% significance level.
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outperform visible light VIs. Based on this assessment, the NIR-VIs
established differences between the different nitrogen rates, unlike
the VIS-VIs. Thus, it is recommended that further study should be
conducted to consider predictions and estimations using a
multispectral sensor.
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