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California forests have recently experienced record breaking wildfires and tree
mortality from droughts, However, there is inadequate monitoring, and limited
data to inform policies and management strategies across the state. Although
forest surveys and satellite observations of forest cover changes exist at medium
to coarse resolutions (30–500 m) annually, they remain less effective in mapping
small disturbances of forest patches (<5 m) occurring multiple times a year. We
introduce a novel method of tracking California forest cover using a supervised
U-Net deep learning architecture and PlanetScope’s Visual dataset which
provides 3-band RGB (Red, Green, and Blue) mosaicked imagery. We created
labels of forest and non-forest to train the U-Net model to map tree cover based
on a semi-unsupervised classificationmethod. We then detected changes of tree
cover and disturbance with the U-Net model, achieving an overall accuracy of
98.97% over training data set, and 95.5% over an independent validation dataset,
obtaining a precision of 82%, and a recall of 74%. With the predicted tree cover
mask, we created wall to wall monthly tree cover maps over California at 4.77 m
resolution for 2020, 2021, and 2022. Thesemapswere then aggregated in a post-
processing step to develop annual maps of disturbance, while accounting for the
time of disturbance and other confounding factors such as topography,
phenological and snow cover variability. We compared our high-resolution
disturbance maps with wildfire GIS survey data from CALFIRE, and satellite-
based forest cover changes and achieved an F-1 score of 54% and 88%
respectively. The results suggest that high-resolution maps capture variability
of forest disturbance and fire that wildfire surveys andmedium resolution satellite
products cannot. From 2020 to 2021, California maintained 30,923.5 sq km of
forest while 5,994.9 sq km were disturbed. The highest observed forest loss rate
was located at the Sierra Nevada mountains at 21.4% of the forested area being
disturbed between 2020 and 2021. Our findings highlight the strong potential of
deep learning and high-resolution RGB optical imagery for mapping complex
forest ecosystems and their changes across California, as well as the application
of these techniques on a national to global scale.
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1 Introduction

Climate change introduces increased risk of severe droughts in
California and, consequently, extreme wildfires (Diffenbaugh et al.,
2015). From 2011 to 2016, California experienced severe drought
conditions and in 2020 had a record breaking wildfire season
(McEvoy et al., 2020; Keeley and Syphard, 2021). In normal
climate conditions, these forests play a major role in sequestering
carbon and remain a robust carbon sink of atmospheric carbon of
about 6–10 MT CO2e (Holland et al., 2019; Hudiburg et al., 2019;
Walters et al., 2023). However, disturbance of live trees from
drought mortality and wildfire significantly impact forest carbon
sequestration capacity and California’s state-wide emission
reduction policies. Forests also play an important role in the
region’s economy, where management for timber extraction
moved 135,351.9 m3 and $139,145,423.86 worth of cut timber in
the 2020 fiscal year (Forest Products Cut and Sold from the National
Forests and Grasslands, 2024). However, the capability to map trees
statewide with a scale suitable for local applications is a crucial yet
underexplored tool for effectively managing natural resources
(Knight et al., 2022).

Forest disturbances in California have become increasingly
critical in recent years as wildfires grow more frequent and
intense (Wang et al., 2022). From 2000 to 2020, California lost
approximately 226,000 ha contributing a 3.6% decrease in total
forested area while maintaining 10.8 Mha of stable forest
(Hansen, et al., 2013). Forest loss and disturbance in California is
driven primarily by wildfires which are exacerbated by drought
conditions, specifically increased temperatures and reduced
precipitation (Wang et al., 2022). The risk of drought in
California is also likely to increase as average global temperatures
rise, making monitoring of tree cover and forest loss a crucial aspect
for local conservation efforts and accuracy of global climate models
(Littell et al., 2016). Fires in the last 5 years have moved beyond usual
ranges of variation, destroying entire stands of trees and
complicating fire risk management strategies (Cova et al., 2023).
While wildfires pose a less controllable threat to forests, this
challenge is compounded by historical logging practices, which
have resulted in a 50% decline in large trees from the 1930s to
the early 2000s (McIntyre, et al., 2015). Hence, mapping tree cover
and evaluating changes resulting from disturbances are crucial
pieces of information for conserving and managing these forests,
ensuring their continued function as carbon sinks. There have been
efforts in the past to map forest cover and changes at varying spatial
and temporal resolutions (Hansen et al., 2002; Friedl et al., 2022).
Most studies rely on Landsat (30 m) time series data to detect
changes of forest cover (Hansen et al., 2013; Potapov et al.,
2020). Higher resolution tree cover mapping from Sentinel-1
Synthetic aperture radar (SAR) data and Sentinel-2 optical
imagery have improved the mapping unit to 10 m (Ottosen et al.,
2020; Zhao, et al., 2022). However, the majority of these techniques
are either applied globally, or have not been used to map statewide
tree cover across California. Here, we use optical imagery from the
PlanetScope constellation of CubeSats at 4.77 m spatial resolutions
with daily revisits. The high fidelity in spatial and temporal
resolutions significantly improve the availability of cloud free
images across the state, allowing detection of forest disturbance
at the time of occurrence and at the tree level. However, working

with the PlanetScope imagery may have several disadvantages
including: (i) lack of radiometric and atmospheric calibration of
imagery, making image classification and time series analysis with
conventional tools difficult, (ii) impacts of variations in illumination
and viewing angles, causing difficulty in comparing images for
detecting changes, and (iii) the large volume of data available in
different shapes and sizes, making the data analytic computation
costly. Additionally, the diverse forest landscapes of California,
spanning from Chaparral to Redwoods, present unique
challenges due to varying phenology, snow cover dynamics, and
distribution across complex terrains. These limitations can be
circumvented by using AI and cloud computing optimization
techniques. Application of convolutional neural networks (CNNs)
allow for the segmentation of tree cover at an unprecedented
accuracy when coupled with high resolution satellite imagery
from PlanetScope (Wagner et al., 2023a; Liu et al., 2023).

Specifically, the U-Net model (Ronneberger et al., 2015) has
been widely applied to map a variety of forest processes such as
forest types based on WorldView-3 and Sentinel-2 satellite data
(Wagner et al., 2019; Wagner, 2021), as well as tree cover,
deforestation and forest degradation in the tropics using Planet
NICFI data (Wagner et al., 2023b; Dalagnol et al., 2023). These
techniques require large-scale mosaics of very high-resolution image
tiles for implementation of AI and development of regional or
statewide maps (Kattenborn et al., 2020). The use of PlanetScope
monthly basemap mosaics in the visual spectrum (R, G, and B
bands) provided by Planet Labs at 4.77 m resolution could facilitate
large-scale applications of imagery. By careful training of RGB
imagery as input data, deep learning models have the capability
of learning complex patterns and detect forest loss accurately over
varied landscapes (Han and Sanchez-Azofeifa, 2022).

In this study, we aimed to achieve high-resolution classification
of forest cover across California by leveraging a combination of 4.77-
m resolution monthly mosaic images from PlanetScope, referred to
as basemaps, and employing a deep learning U-Net model for tree
cover segmentation. Our study yielded novel results in several
key areas:

(i) Demonstrating the deep U-Net architecture’s capability to
rapidly and accurately generate annual high-resolution forest
cover maps at 4.77-m resolution.

(ii) Quantifying state-wide and regional annual changes in forest
cover from 2020 to 2022.

(iii) Validating our results through comparisons with
independently estimated tree cover from airborne LiDAR
data, forest loss databases across California, and conducting
comparisons with previous forest loss datasets.

2 Materials and methods

2.1 Study site

Our study site covers the entire state boundary of California,
United States (Figure 1). This study region represents 423,971 km2.
The environment of California is a biodiversity hotspot (California
Floristic Province) containing shrubby forests like the coastal sage
scrub and chaparral, large coniferous forests, deserts, and urban
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regions (Myers et al., 2000). California’s mediterranean climate can
be broken down to three distinct microclimates. First, the coastal
range of California and the western Sierra Nevada mountain range
are characterized by cool summers and cool winters with
precipitation falling in the winter. Second, regions directly on the
coast have a similar climate but often with fog in the summer which
brings moisture to the area. Finally, the San Joaquin Valley and
inland Southern California have hot summers and cool winters more

typical of a desert climate (California Department of Fish and
Game, 2003).

2.2 PlanetScope satellite images

To estimate forest cover over the state of California, we obtained
monthly mosaics of PlanetScope satellite images at 4.77 m spatial

FIGURE 1
Study area at the state of California, United States. Different land types and regions are highlighted: (A) Dense evergreen forest, (B) Urban
development (San Francisco Bay Area), (C) Chaparral, (D) Evergreen forest with lake and logging, (E) Agricultural land, (F) Desert. Background shows true
color composite from PlanetScope RGB basemap.

FIGURE 2
Diagram of the sampling and training process. Beginning with 120 randomly selected tiles, we create 7,141 image patch samples of 256 × 256 pixels
using the K-textures self-supervised algorithm then fed into the U-Net architecture to create binary forest cover maps.
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resolution from January 2020 to December 2022 with red
(0.650–0.682 µm), green (0.547–0.585 µm), blue (0.464–0.517 µm)
downloaded using the Planet API (Planet Team, 2017). These data
are organized in 1,866 tiles of 20 km × 20 km (4,096 × 4,096 pixels)
covering the entirety of California, United States (Figure 1). All images
were in digital numbers (8 bits, 0 to 255 range). No preprocessing was
performed in the imagery.

2.3 Airborne LiDAR data

To validate our forest cover map, we compared our results to
airborne LiDAR canopy height models (CHM) data that were
acquired from the United States Geological Survey (USGS) and
National Ecological Observatory Network (NEON). This dataset is
constituted of discrete-return LiDAR data from flight lines of 10 km
long by 10 km wide distributed over California. The LiDAR dataset
was acquired during 2018–2020 using the Optech Gemini and Riegl
LMS-Q780 laser scanning systems at an average flight altitude of
1,000 m.Multiple LiDAR returns were recorded with a point density
of 64 points per m2. Initially, the point cloud LAS files were obtained
over 11 NEON sites: YosemiteNP, UpperSouthAmerican\_
Eldorado, SantaCruzCounty, SantaClaraCounty, NoCal,
LassenNP, Fresno, CarrHirzDeltaFires, TEAK, SOAP, and SJER
(Supplementary Figure S1). The LiDAR point clouds were
processed into digital terrain models (DTM) and canopy height
models (CHM) with 1 × 1 m cell size following procedures described
in Wagner, et al. (2023a). The median of the data were aggregated at
the resolution of the PlanetScope data (4.77 m). From the total
8113.8 km2 of forest covered by 9188 canopy height tiles, we
randomly selected 1,000 tiles to be used as our reference data
which covered 895 km2. These canopy height model tiles are used
to validate our forest cover map as discussed in section 2.8.

2.4 Neural network architecture

The segmentation of forest cover was created using a classical
U-net model (Figure 2). To train this model, we first selected
120 randomly sampled tiles across the study area, and created
training labels of 256 × 256 pixels using the k-texture self
segmentation model (Wagner et al., 2022). Next, these labeled
training data were fed into the U-Net model which returns a pixel-
wise probability of forest cover in a given input image. The model
inputs for training were 3-bands (RGB) made up of 256 × 256 pixels
and the output was amask of one band and 256 × 256 pixels containing
1 (forest cover, pixel probability≥0.5 or 0 (non-forest, probability<0.5).
The model was coded in R language with RStudio interface to Keras
and TensorFlow 2.8 (Abadi, et al., 2016). The procedures are described
in detail in the next subsections.

2.5 Label production and training

The model training followed an iterative active learning process
of producing labels, training the U-Net model, evaluating results for
inconsistencies, adding more training data and re-training the
model, etc. First, initial training labels of forest cover were

produced by randomly selecting Planetscope images over
California for each monthly mosaic date from June 2020 to May
2022. We randomly select spatially and temporally in order to have
images for all the seasons and distributed across different
environments of California. Then, we performed self-
segmentation with 7 classes using the k-textures model (Wagner
et al., 2022) over the selected images. The k-textures is a deep
learning-based algorithm which provides self-supervised
segmentation of a 4-band image for k number of classes and is
designed to ease the production of training labels for satellite image
segmentation. After self-segmentation, we inspected the results to
define which classes belonged to forest and non-forest classes. After
verifying the k-texture results on the 120 images, the training dataset
consisted of 3930 training samples of 256 × 256 pixels extracted
from 23 images where the forest segmentation was deemed accurate
according to visual interpretation. Small forest mask errors were
manually corrected. The training dataset masks had two classes:
forest (1) and non-forest (0), which contained agriculture, urban
area, water surface, and bare ground.

Second, a U-Net model was trained to map tree cover using the
training dataset. The model was then applied to predict the forest
cover over the 1,866 image tiles in California for the date of June
2020. The results were visually inspected and identified areas with
inconsistencies such as not correctly finding some forest types or
returning false positives over non-forest areas. Two more iterations
of active learning were performed. In our second iteration, we added
21 more images to increase the robustness of the algorithm,
specifically over bodies of water and mixed forests and
shrublands. In our final iteration, we added 69 images that
included burnt regions and images with haze or light cloud
cover. Images with thick clouds and heavy haze were removed
while images with thin clouds and light haze were manually
selected to train the model. Keeping only thin clouds and light
haze allows the model to learn which forest images are recognizable
to the human eye and which are not.

The final training dataset consisted of 7,141 image patches of
256 × 256 pixels and their associated labeled masks for the final
U-net model. A total of 3,524 image patches contained forest and
non-forest and 3,617 only non-forest. Of the total image patches,
80% (5,713) were used for training and 20% (1,428) for model
validation and choosing the final set of weights to be applied for
prediction of forest cover for the rest of California.

We employed a standard stochastic gradient descent
optimization technique for network training. The loss function
was formulated as the sum of the binary cross-entropy and Dice
coefficient-related loss of the predicted masks. Finally, we used the
Adam optimizer with a learning rate of 0.0001. Model performance
was assessed using accuracy which measures frequency with which
the prediction matches the observed value. The network was trained
for 25,000 epochs with a batch size of 256 images and the model with
the best weighted accuracy was kept for prediction (epoch
22,794 and training/validation accuracy of 98.97% and 95.02%,
respectively, and training/validation loss of 0.0141 and 0.0874,
respectively). The training of the model took approximately 12 h
using a g5.4xlarge EC2 instance (GPU is Nvidia A10G Tensor Core
with 24gb VRAM) on Amazon Web Services (AWS). During
training, each image patch went through a data augmentation
process that consisted of random vertical and horizontal flips
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(Chollet et al., 2022). No additional data augmentation was
necessary due to the natural data augmentation provided by
different atmospheric conditions and illumination due the
different dates of the sampling images (Wagner et al., 2022).

2.6 Prediction

For the prediction of forest cover over California at each date,
the borders of the full image tiles (4096 × 4096 pixels) were mirrored
creating an additional 256 pixel border around it, thus having
4,608 × 4,608 pixels at the end. This was done to avoid edge
artifacts during prediction. Mirroring the edges to avoid artifacts
can produce marginally lower quality predictions at the edge but no
noticeable difference was seen. Prediction of forest cover was made
on the entire image and cropped to the original tile size of 4,096 ×
4,096 pixels. Forest class pixels are defined as having a prediction
value greater than or equal to 0.5 otherwise the pixel is classified as
non-forest. For model training and inference we use Amazon Web
Services EC2 instances which provide cloud-based GPU
computation. The prediction of forest cover for one Planet tile
took approximately 9 s using a g5.4xlarge EC2. We predicted over
the 1,866 tiles of California and 36 monthly image mosaics from
January 2020 to December 2022.

2.7 Annual forest cover and change maps

The production of annual forest cover and changemaps considered
a few steps and many challenges associated with the varied vegetation,
terrain and climate of California. First, monthly basemap images show
varying degrees of differential shading and changes in landscape due to

seasonality. In the northern hemisphere, basemap images tend to have
higher differential shading due to high azimuth angle of the sun
resulting in shaded regions on northern aspect slopes that can be
falsely predicted as forested areas. Second, high elevation regions
(>1000 m) may have snow cover during the winter which our
model invariably predicts as non-forest due to abnormally high
reflectance values. Therefore, to create annual forest cover
composites from monthly imagery for 2020, 2021 and 2022, we
developed a temporal filter that takes the majority value of a given
pixel over two time frames, all 12months or 7 summermonths (April to
October), depending on elevation and slope aspect. In our filter, if a
pixel had an elevation greater than 1,000 m or a northern aspect
(>300 or <60°) then we determine the forest cover state by taking
the sum of pixel values between the summer months and attributing a
“Forested” value (in this case a value of 1) in pixels that had a sum
greater than or equal to 4, and “Non-Forested” (0) for pixels with a sum
less than 4. For a pixel outside of these elevation or aspect parameters,
the threshold value for the sum of all 12 months was set to greater than
or equal to 7 months. Elevation data from NASA’s Shuttle Radar
TopographyMission (SRTM) was used to determine which pixels were
above 1,000 m elevation and the aspect (Farr, et al., 2007).

Forest change maps were created by following the trajectory of
pixels based on the three annual maps (2020, 2021, and 2022) and
creating a map with the following classes: stable forest, stable non-
forest, forest loss and forest gain from 2020 to 2022 (Figure 3).

2.8 Validation and comparison with
existing datasets

Independent validation of the monthly predictions was
performed by comparing forest cover map created by our

FIGURE 3
Workflow diagram for the creation of annual tree cover and changemaps. We begin by creating a stack of monthly forest cover predictions for each
tile and adding elevation and aspect data to the stack. The stack is then sent to the annual composite filter where a majority filter is applied either to the
mid-year months or the entire year depending on elevation and aspect of the pixel. The trajectory of pixels in annual composites (forest/non-forest) are
then tracked from 2020 to 2022 resulting in four classes: stable non-forest, stable forest, forest loss, and forest gain.
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mapping approach in 2019 to forest heights from 2019 LiDAR
CHMs. Because the CHM dataset was created for 2019, we created
tree cover maps for 2019 in the interest of temporal consistency
between our validation data and tree cover predictions. The data
were split into pixels predicted as forest and non-forest from our
forest cover map and then the median height of the CHM within
each pixel was calculated to understand the distribution of height in
the forest and non-forest categories.

The location of forest management (logging) and fires in
California were obtained from the CALFIRE database to validate
the predicted forest losses from our model (Fire Perimeters CAL
FIRE, 2024). According to the California State Geoportal website,
“over-generalization, particularly with large old fires, may show
unburned ‘islands’ within the final perimeter as burned. Users of the
fire perimeter database must exercise caution in application of the
data,” (Fire Perimeters CAL FIRE, 2024). The CALFIRE dataset is
the most up to date data on fire and logging available in California
but presents limitations such as areas which may be shown as
undisturbed forest within the disturbed polygons perimeter, or
disturbed forests outside of the perimeter of existing polygons.
We evaluate our model against the logging and fire perimeters
considering the F1-score metric.

To compare our results to a previous existent dataset, we
obtained the Global Forest Change (GFC) global tree loss year
product at 30 m resolution from 2020 to 2022. For our analysis we
use the 2021 GFC year loss product in comparison to forest losses
found by our model from 2020 to 2022. We choose these years of
comparison because of time lag in loss recognition between both
our model and the GFC model. Because forest fires in California
most often occur in the second half of the year, from late July to
October, our method of creating annual composites has a
tendency to pick a burned region as disturbed in the second
composited year. We chose the 2021 years loss data because it is
the center of our period of interest. If a region is burned
according to the year loss data we want to know if our model
identified the region as deforested between 2020 and 2022. Our
data resolution was downscaled to the GFC resolution of 30 m by
assigning 1 (forest loss), if >70% of pixels were predicted as forest
loss, or 0 (no forest loss), if≤70% of pixels were predicted as forest
loss. We compared the similarity of our results to the GFC dataset
by calculating their weighted intersection.

WeightIntersection � ∩ LossPixelsunet,i , LossPixelsGFC,i( )
2

LossPixelsGFC,i∑
n
i�1 ∩ LossPixelsunet,i , LossPixelsGFC,i( )( )

where Loss PixelsOurs,i and Loss PixelsGFC,i represents the number
of pixels in a tile i, that were predicted as forest loss in our time of
interest, and n represents the total number of tiles in
California (1866).

3 Results

3.1 Training validation

Our U-net model has a training accuracy of 98.97%, validation
accuracy of 95.5%, a precision of 82%, a recall of 74%, and an F-1
score of 0.778. This validation is conducted by comparing our
predicted values to our visually assigned labels from the semi-

supervised training dataset. The training accuracy is conducted
over the same dataset on which the U-net model is trained,
representing 80% of all training data. The validation accuracy is
conducted over the 20% of the training dataset that is not included in
the training of the U-net to ensure independence.

3.2 Validation of individual predictions using
airborne LiDAR data

We used an independent validation technique comparing our
individual monthly predictions to a LiDAR canopy height model for
the month of June 2019. Setting the height threshold at 5 m,
according to the International Geosphere-Biosphere Program
(IGBP) definition for forest cover, we saw an overall accuracy of
77.77%, an 82% precision of pixels predicted as forest cover and 74%
precision of pixels predicted as non-forest cover. When the two
forest cover categories were compared, we found the differences of
the mean heights to be 29.871 m with a 95% confidence interval of
29.858 m and 29.884 m and a p-value <2.2*10^-16 (Figure 4). The
first, second, and third quartile values of forested pixels were 10 m,
31 m, and 55 m and the non-forested pixels were 0 m, 0 m, and 6 m
(Figure 5). Figure 6 shows a visual example of the segmentation of
forest cover and non-forest cover achieved by our model.

3.3 Validation of annual forest cover using
airborne LiDAR data

We applied the same validation method to our annual tree cover
composite and found nearly the same results as our individual
predictions. The difference of the mean heights of tree cover and
non-treecover pixels for the annual composite validation was
29.819 m with a confidence interval of 29.815 and 29.820 and a p
value < 0.001 (Figure 7). The annual composite had a 74% precision

FIGURE 4
Box plot showing the average, quartile and range of height values
over non-tree covered and tree covered pixels in individual
predictions.
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of pixels predicted as non-forest cover (Figure 8A) and 82%
precision for pixels predicted as forest cover (Figure 8B). Using
the same 5 m tree height definition for forest, our annual composite
had an accuracy of 77.30%.

3.4 Validation of forest loss regions

Our F1 score, calculated as overlap between what our model
classified as loss and known regions of forest loss (CALFIRE), is
54.5%. It is important to note that inmany logging regions the area is
not completely deforested and our model is capable of picking up
very small patches or even single trees. Similarly, fire shapefiles show
the furthest extent of fire in a region but this does not equate to every
tree inside the shapefile being disturbed. For example, in the Creek
Fire region, Figure 9, we see that the shapefile outlines the maximum
extent of the fire but does not necessarily describe the intensity of the

fire inside as our F1 score in this region is 71.8%. In comparison to
the area mapped by the perimeter as burned for the Creek Fire of
3273.61 km2 by CALFIRE, our map shows 888.15 km2 of forest loss.
By inspecting the overlaid fire perimeter on top of our map
(Figure 9), our map shows that part of the areas (984.01 km2 or
30.01% of total fire area) were in fact non-forest before the fire
occurred. Similar examples can be found in logging concession areas
(Figure 10) where we see some remaining trees within the boundary
of the CALFIRE perimeter.

3.5 Forest cover and change in California

California’s forest cover in 2020, 2021, and 2022, was calculated
at 17,042,653.7, 14,283,221.0, and 16,547,832.1 ha, respectively
(Figure 11). This represents 40.1%, 33.7%, and 39.0% of the total
area of California (Table 1). We see a net decline in the years of

FIGURE 5
Image (A) shows the distribution of CHM height values over pixels predicted as no tree cover while image (B) shows the distribution of height values
over pixels predicted as tree cover.

FIGURE 6
20 × 20 km tile in Northern California from June 2020 side by side with the prediction from our U-net model. Left: RGB image. Middle: Forest
masked in white. Right: Background masked in white.
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2020–2021 of 2,756,432.7 ha and 2,264,611.1 ha of net growth in
forest cover from 2021 to 2022. This loss from 2020 to 2021 is
primarily driven by forest fires of both natural and anthropogenic

causes such as arson, fallen power cables, or lightning strikes.
2020 accounted for 5 of the top 10 largest known fires in
California. The percent loss of forest from 2020 to 2021 is 16.17%.

FIGURE 7
Box plot showing the average, quartile and range of height values over non-tree covered and tree covered pixels in the annual composite for 2019.

FIGURE 8
Image (A) shows the distribution of CHM height values over pixels attributed to no tree cover in the annual composite while image (B) shows the
distribution of height values over pixels attributed to tree cover.
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The total forest loss area from 2021 to 2022 is 1,559,581.31 ha
2021 to 2022 also saw a significant increase in the amount of
“growth” regions (non-forested areas that became forested) when
compared to 2020 to 2021. Many of these areas were in previous fire
regions which were disturbed, but perhaps not completely
deforested. This type of forest loss can be picked up in the first
time period as “forest loss” but then considered “forest gain” in
the next year.

Most forested areas in California are located along the various
mountain ranges in the state, namely, Sierra Nevada, Cascade, and
Coastal Ranges. Within the Sierra Nevada range, 5,138,237.51,
4,231,106.54, and 3,975,634.39 ha had forest cover in 2020, 2021,

and 2022, respectively (Table 2). From 2020 to 2021, the Sierra
Nevada region saw a total disturbed area of 907,130.97 ha and total
forested area of 4,231,106.54 ha. From 2021 to 2022, 674,461.08 ha
were disturbed in the Sierra Nevadas while 3,975,634.39 ha
remained forest between the 2 years. The ratio of forest loss to
stable forested area, which we will refer to as the “forest loss ratio”,
over 2020 to 2021 is 0.214 and for 2021 to 2022 is 0.170. The marked
difference in the ratio of forest loss to stable forested area over the
two time periods is driven by massive fires in California in 2020. The
Creek fire alone, which occurred in September of 2020, contributed
approximately 153,738.052 ha of forest loss in the Sierra
Nevada range.

FIGURE 9
Creek Fire, near Shaver Lake, California, burned in September and October of 2020 and was one of California’s largest fires. Red regions show areas
of forest loss between 2020 and 2021, green shows areas of maintained forest, black are areas of non-forest, and yellow are regions of forest gain.

Frontiers in Remote Sensing frontiersin.org09

Carter et al. 10.3389/frsen.2024.1409400

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2024.1409400


In the Cascade range of Northern California, we see a total
area of 322,265.55 ha and 226,079.33 ha of forest loss and
maintained 1,644,589.68 ha and 1,502,246.47 ha in
2020–2021 and 2021 to 2022, respectively. Like the Sierra
Nevadas, there is significantly less forest loss in the 2021 to
2022 period than the 2020 to 2021 period. The forest loss ratio
from 2020 to 2021 is 0.196, similar to the forest loss ratio seen in
this period in the Sierra Nevadas. From 2021 to 2020 we observe a

forest loss ratio of 0.150. From these ratios, we can conclude that
the Sierras and Cascade mountains had similar levels of forest
loss when compared to each other.

Finally, in the Coastal Range, which spans much of the
western border of the state, we see a total disturbed area of
1,080,670.43 ha and 477,442.85 ha from 2020 to 2021 and
2021 to 2022, respectively. The area of remaining forest in
these two time periods are 7,050,249.91 ha and

FIGURE 10
Image (A) shows regions of forest loss due to logging. Image (B) shows the shapefile of the logging allotment from the state of California. Image (C)
shows our map of forest loss from 2020 to 2021 created from our predictions.

FIGURE 11
Side by side changemaps from 2020 to 2021 (left) and 2021–2022 (right). Black: no tree cover, purple: tree cover, blue: tree cover gain, yellow: tree
cover loss.
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6,973,321.50 ha. The forest loss ratio in 2020–2021 is
0.153 and in 2021–2022 is 0.068.

3.6 Comparison to GFC product

We compare our data to the GFC product first by a direct
comparison of forested area in California and secondly by
calculating the weighted intersection between our forest change
product and the GFC year loss product. In 2020, 2021, and 2022,
GFC estimates that there were 9.2, 8.9, and 8.4 Mha of natural
forest in California. Our model found on average about 55% more

forested area in California from 2020 than GFC in 2020. Our
product in 2020, 2021, and 2022, estimates 17,042,653.7,
14,283,221.0, and 16,547,832.1 ha of forest cover, respectively.
Our forest loss results show strong overlap with the GFC year
loss product. Figure 12 shows the change map for the Creek Fire
region from our model (Figure 12a) from 2020 to 2021 and the
forest loss over the same period from GFC. Using the 2021 GFC
year loss data as a reference, our forest loss prediction has a
weighted intersection of 88.0%.

4 Discussion

4.1 Deep learning approach to mapping
forest cover in California

In this study, for the first time we map forest cover and forest
change of California at high resolution (4.77 m) using PlanetScope
imagery and a deep learning approach. From 2020 to 2022,
California had a net loss of 494821.6 ha of forest cover. Our

TABLE 1 Total forest cover and percentage land cover estimates from
2020 to 2022.

2020 2021 2022

Total forest cover (ha) 17,042,653.7 14,283,221.0 16,547,832.1

Percentage of CA area 40.1% 33.7% 39.0%

TABLE 2 Regional tree cover and forest loss over 3 forest regions of California: Sierra Nevada Mountain Range, Cascade Mountains, and the Coastal Range.

Region Forest loss area
2020–2021 (ha)

Stable forested area
2020–2021 (ha)

Forest loss area
2021–2022 (ha)

Stable forested area
2021–2022 (ha)

Sierra
Nevada

907,130.97 4,231,106.54 674,461.08 3,975,634.39

Cascade 322,265.55 1,644,589.68 226,079.33 1,502,246.47

Coastal
Range

1,080,670.43 7,050,249.91 477,442.85 6,973,321.50

FIGURE 12
Comparison of disturbed area from 2020 to 2021 in Creek Fire region. Image (A) shows our predicted forest loss area, while image (B) shows the
various years of forest loss in 2020 and 2021 from the GFC model.
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findings show that the forest cover of California varied from 44.7%
in 2020, to 33.7% in 2021, and 39.0% in 2022. Using PlanetScope’s
monthly visual datasets (RGB bands) at 4.77 m resolution, our
U-Net model achieved a validation accuracy of 95.02% in the our
validation dataset. The deep CNN model uses the RGB values of the
pixel of interest as well as the structure of surrounding pixels to
determine whether a pixel is forested or non-forested. This allows
the model to accurately assess the state of each pixel over the
36 month period. One of the novelties of this study is the
application of such a model over a complex environment of
various land cover types, such as California, as well as capturing
the spatial and spectral patterns across a wide temporal range using
only RGB mosaics. Previous studies have applied similar methods
using the Planet NICFI analytic data which includes the NIR band to
map dense tropical forests in the Brazilian state of Mato Grosso
(Wagner et al., 2023a). Additionally, Planet analytics data sets in
conjunction with U-Net deep learning models and LiDAR data have
been used to create tree height and biomass models over Europe (Liu
et al., 2023). Limited preprocessing of the images and faster training
data collection using the K-textures (Wagner, et al., 2022) model
allow for fast and accurate estimates of forest cover over diverse
ecosystems. This methodology coupled with large, cloud-based
processing servers (such as Amazon web services or Google
cloud services) could help to make forest cover estimates on a
national, continental, or even global scale.

4.2 Annual change from 2020 to 2022

Approximately 2,756,432.7 ha of California’s forests were disturbed
from 2020 to 2021 and a net forest loss of 494821.6 ha from 2020 to
2022. We expect this large swing from net forest loss in 2020–2021 and
regrowth from 2021 to 2022 has two causes. The first is genuine forest
loss from natural and anthropogenic causes such as forest fires, logging
(USFS, 2020 Annual Cut and Sold Report), and forest management.
According to CALFIRE, approximately 1.7 million hectares of forest
were burned in 2020 across 8648 wildfires (CALFIRE). The extra
1.056 million hectares of forest loss likely comes in part from data
outside of CALFIRE dataset such as smaller-scale logging, and
agricultural regions. Edge regions of forests and trees in cities are
more prone to error in our model because there is less forest context for
the model to work with. However, within a given perimeter of logging
or fire from CALFIRE our model provides a more accurate estimate of
forest loss than the total contained area because of its ability to
distinguish burned and unburned regions within the perimeter
(Figure 10). The second reason for this large discrepancy is
regreening of regions of forest burned in the prior year. Immediately
after a wildfire, short and understory vegetation are completely burned
as well as some of the leaves of the canopy trees, but tree mortality may
not always occur (Hood, et al., 2018). This allows for a regreening effect
in the following year in which the model picks up the texture and color
of the forest as a “regrowth”. Finally, any errors that exist in either
dataset can contribute to the discrepancy as well.

On a regional scale, we see that from 2020 to 2021 the Sierra
Nevadas had the highest forest loss ratio, followed by the Cascades, then
the Coastal Ranges. There are three possible causes for this. First,
because of their proximity to the Pacific Ocean, forests in the coastal
range can remain cooler during late summer when the fire season is at

its peak and additional moisture from the ocean may help quell fire
severity. Second, the southern Coastal range is dominated by Chaparral
forests which are less appealing for loggers compared to the tall conifers
found in the Sierra Nevada and Cascade ranges. Thirdly, also in the
presence of Chaparral regions, the model has a harder time
distinguishing between forested and non-forested areas which can
contribute to inaccuracies in spotting disturbed areas between years.
Using tree height to classify forest and non-forest may improve
accuracy in difficult regions like Chaparral (Liu et al., 2023).
However, the IGBP definition of forest height at 5 m may exclude
regions of Chaparral that have vegetation but are lower than the 5 m
threshold. This could lead to higher error for this biome compared to
other in California. Years with especially large fires and total burn areas
are also associated with higher frequency of lightning storms that ignite
the forest (Miller et al., 2012). Large lightning induced fires in Northern
California, like the August complex and SCU lightning complex,
contributed to the record breaking fire season. Higher temperatures
that increase evapotranspiration and increased risk of severe drought as
climate change develops leaves California at high risk for widespread
wildfires caused by large lightning storms.

4.3 Comparison to GFC data

Our model found on average 55% more forested area from
2020 to 2022 compared to GFC tree cover estimates in 2010. The
discrepancy in forested area estimates is likely due to differences in
spatial resolution. Our map at 4.77 m is capable of picking up more
areas of scattered forest that may not be detected by the 30 m
resolution of Landsat. Tree growth in California from 2010 to 2022 is
a less likely contributor as California suffered drought conditions
from 2011 to 2017 which lead to tree mortality, especially in larger
individuals (Bennett et al., 2015).

We found a strong overlap between our model and the GFC
year loss from 2021 with a weighted intersection of 88%. The
remaining 12% difference is primarily due to regions inside forest
fire perimeters that the GFC model picked up as disturbed but
our model did not. There are two possible sources of error. First,
because the GFC model has 30 m resolution, it may miss
unburned “islands” of forest that occur within a designated
burned perimeter. Our model is capable of properly
distinguishing these regions as undisturbed because of its
higher spatial resolution which results in a non-intersection
over some pixels. Second, our model may erroneously label
regions that were destroyed in fires as forest due to remaining
shading artifacts. Differential shading causes certain regions of
an image to appear especially dark, and can be mislabeled as
forest when contrasted with surrounding burned areas that have
higher reflectance. Given the high intersection value, our model is
capable of finding most of the same regions of forest loss as the
GFC year loss product as well as small scale forest losses outside
of the scope of the GFC product.

4.4 Quality of PlanetScope basemaps data

The 3-band (RGB) data from PlanetScope Basemaps
provided enough data to achieve high accuracy on mapping
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the forest cover of California. However, it provides less spectral
information than other analytic datasets which include the NIR
band, such as the Planet NICFI for the tropical regions, or other
coarser resolution satellite data such as from Sentinel-2 or
Landsat. However, the Planet basemaps are already offered in
a mosaicked format which allows users to easily input the data
into deep learning models with no pre-processing. This tradeoff
can possibly create less accurate results compared to a model that
uses 4-band data that includes the near-infrared (NIR) band
commonly used in remote sensing of vegetation. The inspection
of this difference in quality between 3 and 4-band data with a
deep CNN is an interesting area of focus for future research. In
addition to the lower spectral information, the 3-band Planet
mosaics also contain some haze and clouds which impair our
model’s ability to accurately infer forest cover over these regions.
This issue was mostly resolved by training the model over regions
with light haze and clouds where the forest was still visible to a
human observer as well as our annual filtering process.

4.5 Topography and seasonality of data

A limitation for our model comes from the topography and
seasonality of California. Topology of California can create issues of
differential shading in the images which, in darker areas, the model
often classifies as forested because of the darker characteristics of the
pixels. Even a human cannot distinguish if the given area is a shadow
or a forest in a shadow. This effect may occur more frequently only
in regions with sparse or low canopy vegetation, such as the
chaparral region of southern California (Syphard, et al., 2019).
Seasonality in California also presents the challenge of snow
cover in mountainous, high-altitude regions like the Sierra
Nevada range. In our study, we already took precautions to
minimize these effects in the post-processing step by using
different rules considering elevation and slope data to account
for these effects. However, we acknowledge these areas are still
prone to errors. For the expansion of this methodology to the
contiguous United States (CONUS), deciduousness of the trees in
the eastern half of the CONUS will need to be accounted for by
expanding the training data to contain such seasonal variations in
tree morphology.

4.6 Impact

The combined use of the semi-supervised k-textures model
to produce labeled training samples over California with the
U-Net architecture allowed for a rapid and accurate prediction
of monthly forest cover over California from 2020 to 2022.
Because of its speed, ease of use, and the adaptability of the
U-Net architecture, this methodology can be applied to assess
forest cover and forest change from jurisdictional to continental
scales. Our model was able to create novel high resolution wall
to wall forest cover maps over California that capture both large
scale forests and smaller clumps of trees outside of forests. This
is a first step towards the implementation of inter-annual
monitoring of forest cover in California, which can
contribute to improving estimates of carbon losses and gains

in the region, inform restoration groups and policymakers of
regions potentially more vulnerable to wildfires, which is
important given that managed forests are part of the region’s
economy. The method and maps presented here can be
continually improved in future versions. Future work will
include the use of the Planet visual basemaps to predict
forest height by using lidar training data. Training our model
to use the NIR band found in the PlanetScope analytic data
could help further improve accuracy due to its relationship with
vegetation structure and potentially reduce errors caused by
differential shading or seasonally phenology. Additionally,
separating non-forest classes into water and agricultural
classes could improve our model accuracy by giving direct
examples of these classes. This could reduce the error of
predicting agriculture and water regions as natural forest.
Given California has a wide variety of complex vegetation
from coast to desert and mountains we expect this model has
the potential to be further tested and applied to the continental
United States creating a comprehensive, high-resolution forest
cover and forest change map.

5 Conclusion

Our study produced monthly wall to wall forest cover maps of
California using a deep convolutional neural network and Planet’s
visual basemap imagery from 2020 to 2022. Our individual
predictions showed promising results with a validation accuracy
of 95.02% and an independent validation of 77.77% at 4.77 m spatial
resolution when forests are defined with a height greater than 5 m
based on airborne LiDAR data. We then filtered the monthly maps
to create annual forest cover maps which had an overall accuracy of
82%. The difference between annual forest cover maps created the
change maps from 2020 to 2021 and 2021 to 2022 with a validation
accuracy of 54.5% using CALFire logging shapefiles. From 2020 to
2021, California saw a net reduction of forest cover by 2,756,432.7 ha
while from 2021 to 2022 we saw a recovery of forest cover by
2,264,611.1 ha. This study shows the viability of deep convolutional
neural networks in predicting forest cover in highly diverse biomes,
like California, using only 3-band RGB datasets. Due to the
versatility and speed of the model, these methods can likely also
be upscaled to the national or continental levels. The creation of
such accurate, high resolution forest cover maps at a wide range of
scales can help track and monitor forest changes across
various biomes.
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