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Decreased water quality in coastal environments due to land alterations by
human activities has caused stressed and degraded coral reefs worldwide. The
consequences of decreased water quality are not limited to coral reefs but also
affect the quality of people’s lives by increasing the incidence of diseases, so areas
highly impacted have been prioritized for management. The Guánica Bay
Watershed Management Plan was developed to reduce the non-point sources
of pollution that arrive at the bay and to protect adjacent coral reefs, however,
15 years have passed since its creation and management actions have not been
evaluated. The purpose of this study was to evaluate the effectiveness of the
management actions implemented in the Guánica Bay watershed. Therefore, the
objective of this study was to describe temporal trends (2002–2008 and
2016–2022) of remotely sensed diffuse attenuation coefficient at 490 nm
(Kd490), a water quality indicator, in one managed (Guánica Bay) and three
non-managed (Guayanilla Bay, Descalabrado River, and Guanajibo River)
estuaries in Southwestern Puerto Rico. This was achieved by integrating
ocean-color satellite imagery from MERIS-Envisat and OLCI-Sentinel-
3 sensors that were sampled using a beyond-Before-After-Control-Impact
(beyond-BACI) approach. An additional oceanic site was selected to evaluate
continuity between sensors estimates. The imagery was processed using SNAP to
extract Kd490 values in the estuaries. The analysis for the beyond-BACI found
significant differences between periods (before and after) but the changes were
unique to each location within estuary. The lowest Kd490 values and variability
within estuary was observed in Guánica (range 0.05–0.1 m-1) and the highest
Kd490 values were observed in Guayanilla (0.35 m-1). The southern estuaries
showed similar temporal trends, all having a peak in 2018 and a trough in 2020.
Kd490 did not decrease in Guánica after the implementation of management
actions, which can be related to the passage of several hurricanes during the after
period. Further analysis should be done as new data is available and after the
implementation of the last management actions suggested in the plan.
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1 Introduction

Water quality in coastal environments has decreased in many
areas around the world due to anthropogenic impacts (Mallin et al.,
2000; Bordalo, 2003; Ahn et al., 2005; Dwight et al., 2011; Wiegner
et al., 2021). Some of these human activities include watershed
alteration for agriculture, irrigation practices, domestic and
recreational activities, land development, and littering (Khatri
and Tyagi, 2015; Sidabutar et al., 2017; Tavakoly Sany et al.,
2019). Furthermore, according to a recent investigation
conducted by Lin and colleagues (2022), over 80% of sewage
produced by human actions is released into rivers and oceans
untreated, leading to environmental contamination and over
50 different diseases, affecting valuable coastal ecosystems and
the quality of people’s lives (Halliday and Gast, 2011; Freeman
et al., 2019; Nalley et al., 2021; Lin et al., 2022). As a result, efforts to
reverse the effects of poor planning of land alterations have been
made in some regions, one example being the creation of the
Guánica Bay Watershed Management Plan (CWP, 2008).

The Guánica BayWatershed is a 151 square miles system located
in southwest Puerto Rico, encompassing Guánica’s municipality, a
portion of Yauco, Sabana Grande, San Germán, Maricao, Adjuntas,
and Lares municipalities, and a segment of the Lajas Valley
Agricultural region, all of which drain to the bay through the
Loco River (CWP, 2008; Viqueira and Rios, 2018). Watersheds in
southern Puerto Rico have been highly developed to sustain
domestic activities, irrigation, and hydroelectric power
infrastructures (CWP, 2008; Gómez-Gómez et al., 2014).
Specifically, in Guánica, the Guánica Lagoon, which covered an
area of approximately 1,200 acres, was drained in the 1950s as part of
the Southwest Puerto Rico Project for agricultural and hydroelectric
power purposes (Viqueira Rios et al., 2012). These developments
come with a cost to marine coastal ecosystems, as impacts such as
marine sedimentary deposition, eutrophication, and shifts on coastal
species composition have been reported in some countries (Morais,
2008; Sanger et al., 2013).

One of the most impacted ecosystems of watershed
development are adjacent coral reefs that face challenges like
the introduction of pollutants causing nutrient enrichment
beyond tolerance of reefs, along with marine sedimentary
deposition, pathogens, and toxic contaminants (Richmond
et al., 2007; CWP, 2008). In Puerto Rico, stressed and degraded
coral reefs have been reported along the insular shelf, particularly
in the Guánica to Guayanilla region in the southwest (Warne et al.,
2005). As a result, the Guánica Bay Watershed was selected as a
priority area for management by the U.S. Coral Reef Task Force
(Whitall et al., 2013; Takesue et al., 2021). The Guánica Bay
Watershed Management Plan was developed in 2008 to reduce
the non-point sources of pollution that arrived at the bay and
protect adjacent coral reefs (CWP, 2008). Some of the
recommendations in the plan included the restoration of the
Guánica Lagoon, agricultural outreach, the creation of
treatment wetlands, among others (CWP, 2008). Reports
created by Viqueira Ríos, 2018, Viqueira Ríos, 2021) highlight
the management actions implemented from 2012 to 2022, which
include the application of hydroseeding (2013–2017), training
farmers on Best Management Practices (BMP) and shade coffee
farming, and the creation of infiltration systems in farms using

native trees and vetiver grass (2010–2016), to name a few.
However, some of these management actions, i.e., the
restoration of the Guánica Lagoon and the creation of the
treatment wetlands, which were the first two most important
recommendations from the management plan, had not yet been
implemented by the end of this work.

Assessment of watershed management requires integrating a
broad range of spatial and temporal data (Wang et al., 2016).
Although no reports assessing the effectiveness of the
management actions in Guánica were found, refinements and
suggestions to improve the management plan considering
stakeholder concerns have been made (Carriger et al., 2013;
Smith et al., 2017). Therefore, the goal of this work was to
evaluate the effectiveness of the management actions
implemented from the Guánica Bay Watershed Management
Plan created to protect adjacent coral reefs using remote sensing
techniques. We aimed to describe temporal trends of the diffuse
attenuation coefficient at 490 nm (Kd490) in one managed
(Guánica Bay) and three non-managed (reference) estuaries in
Southwest Puerto Rico before and after the implementation of the
Guánica Bay Watershed Management Plan. It is noteworthy to
mention that during the after period of this study the following
major events affected our area of study: Hurricanes Irma and
María in 2017, and Fiona in 2022, with significant impacts to the
area. Also, the Covid-19 pandemic outbreak and associated
lockdowns, and a magnitude 6.4 earthquake near Guánica, all
of which could result in decreased human impact in the watershed
and coastal waters.

The diffuse attenuation coefficient (Kd) of downward irradiance
is an apparent optical property of water widely used in
oceanographic studies, a good indicator of turbidity, and one of
the parameters for which ocean color algorithms have been
developed using satellite sensors (Lee et al., 2005; Wang et al.,
2009; Tomlinson et al., 2019; Y; Wang et al., 2022). For this
purpose, the European Space Agency (ESA) launched in 2002 the
Medium Resolution Imaging Spectrometer (MERIS) on board the
Envisat satellite to provide ocean color observations. The Ocean
Land Colour Instrument (OLCI) was launched in 2016 and 2018 on
Sentinel-3 A and B, respectively, as successors of MERIS to ensure
long term monitoring with improvements such as additional
spectral bands, mitigation of sun-glint by tilting the sensors, and
improved signal to noise ratio (Nieke et al., 2015). In Puerto Rico,
satellite estimates have been used to study long term trends and
disturbance impacts (e.g., hurricanes) in coastal water quality using
chlorophyll-a, Kd at 490 nm (Kd490), and absorption of colored
dissolved organic matter (Gilbes et al., 2001; Amirrezvani, 2016;
García-Sais et al., 2017; Hernández et al., 2020; Ortiz-Rosa et al.,
2020). Furthermore, an inverse relationship between Kd and percent
coral cover was observed in Ponce, Guayanilla, La Parguera,
Mayagüez Bay, and other areas, which suggests that Kd can be
used for indirect assessment of the percent living coral cover in coral
reefs (Cardona-Maldonado, 2008; García-Sais et al., 2017; Freitas
et al., 2019). While Puerto Rico has no coastal water quality
standards of light attenuation, Hernández et al. (2020) suggest
using 0.1 m-1 to reference degraded water quality adopted from
Hawai’i standards.

If management actions implemented in the Guánica Bay
watershed have been effective, it was expected that: i) values of
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Kd490 decreased in Guánica Bay after the implementation of
management actions, and ii) this temporal change would be
observed only in Guánica Bay as compared to reference estuaries. It
is important to note that the matter in question was not to compare
estuaries as they are part of different watersheds and might change
through time but to detect whether trends in Guánica Bay were unique
when compared to reference estuaries which could be attributable to the
implementation of management actions to this watershed.

2 Materials and methods

2.1 Study area

The areas of interest for this study were one managed and three
not managed estuaries located in south and southwest Puerto Rico
(Figure 1). Puerto Rico has two defined seasons, the dry (December-
April) and wet (May-November) seasons (Hernández Ayala and
Méndez Tejeda, 2023). Guanajibo River, located in southwestern
Puerto Rico, has a relatively humid climate and prevailing winds are
from the west, however, the southern estuaries, Guánica Bay,
Guayanilla Bay and Descalabrado River, have a semi-arid climate
and wind direction is from the northeast from midnight to early

morning, and from the southeast during the day (Gómez-Gómez
et al., 2014). Guánica and Guayanilla Bays are estuaries classified as
semi-closed bays where exchange between fresh and seawater is
direct. On the other hand, Guanajibo and Descalabrado estuaries are
river mouths, which tend to be stratified as seawater is denser than
fresh water (DNER, 2016). Seawater temperatures in Puerto Rico do
not change much since solar radiation is nearly constant throughout
the year, with October having a mean maximum water temperature
of 28°C, and January having the mean minimum of 24°C (Gómez-
Gómez et al., 2014). Three of the study sites are in regions where
stressed coral reefs have been reported, these sites are Guanajibo
River, Guánica, and Guayanilla Bays, in contrast, coral reefs from the
south where Descalabrado River is have been classified as “healthy”
(Warne et al., 2005). The water depth of the estuaries was assessed
using bathymetry data for Puerto Rico derived from Sentinel-2
imagery and the apparent optical depth (AOD = 1.3/Kd), which
is the depth at which light penetration is optically significant, was
calculated (Figure 2; Supplementary Table S1) (Bailey and Werdel,
2006; Li et al., 2021). Lastly, the shelf sediment composition in the
southern estuaries is carbonate clastic, which has the effect of
increasing Kd, and in the western estuary is mixed terrigenous
and carbonate clastic sediments (Warne et al., 2005; Hochberg
et al., 2020).

FIGURE 1
Map of the study area in Southwest Puerto Rico consisting of one managed estuary (Guánica Bay) and three not managed estuaries (1: Guanajibo
River, 2: Guayanilla Bay, 3: Descalabrado River).
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2.2 Study design

To assess changes of Kd490 related to the implementation of the
Guánica Bay management plan, a beyond-Before-After-Control-
Impact (beyond-BACI) design was used (Figure 3). This method,
proposed to evaluate environmental impacts, consists in measuring
the variable of interest before and after the occurrence of an
anthropogenic disturbance at the location of the disturbance and
reference location/s (Green, 1979; Hurlbert, 1984; Stewart-Oaten
et al., 1986; Underwood, 1994). It has been described as one of the
most powerful models for assessing environmental impacts when
well-designed (Smokorowski and Randall, 2017; Bertocci et al., 2021).
Additionally, the BACI design has been combined with novel remote
sensing techniques to develop a web-based application to monitor
changes in vegetation using the MODIS sensor (Poortinga et al.,
2018). BACI studies in the ocean have been in acoustical studies, but it
is not a widely used method in oceanography (Seger et al., 2021).

The before period for this study consists of 6 years before the
development of the Guánica Bay Watershed Management Plan
(2002–2008) and the after period consists of 6 years after
(2016–2022) in which management actions were implemented in

the Guánica Bay Watershed (Viqueira Rios, 2018). There is an 8-
year gap between both periods because of a gap between sensors
(2012–2016) and to ensure implementation of the management
recommendations. In each estuary, the managed and three not
managed, four locations were selected in terms of proximity to
the river mouths. These locations were classified as Close, East,
West, and Far from the river mouths (Figure 2). The Far locations at
all estuaries were selected outside of the insular shelf (offshore).
Bailey and Werdell (2006) recommend the use of a pixel box for
more accurate satellite estimations, nonetheless, at each location the
plot consisted of three pixels randomly selected instead of a pixel
box, avoiding land and bottom reflectance interference, due to
limitations in the spatial resolution of the satellite sensors
(300 m) used for the proposed study sites.

2.3 Remotely sensed data collection
and analysis

Level 2 Water Full Resolution Imagery for Puerto Rico was
obtained from two sensors, MERIS on board Envisat and OLCI on

FIGURE 2
Map showing the four estuaries selected for the study with the locations and their bathymetries. The red arrows indicate the river mouths and where
the bathymetry layer ends it is the shelf break.
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board Sentinel-3 A and B. MERIS imagery was downloaded through
the MERIS Online Dissemination Service and OLCI imagery was
downloaded from the EUMETSAT Data Services portal
(EUMETSAT, 2017; ESA, 2020; EUMETSAT, 2022). The MERIS
dataset for this study covers the years 2002–2008 and the OLCI
dataset covers 2016–2022. Using different sensors would not affect
data analysis as the fourth MERIS reprocessing was focused to align
with Sentinel-3/OLCI data processing chains to allow for continuity of
the products derived from the instruments (Alhammoud and Meris
Validation Team, 2019). Nonetheless, an oceanic site was selected in the
northwest of Puerto Rico, where terrestrial input is unlikely to affect the
continuity evaluation of the sensors (Supplementary Figure S1). The
satellite imagery was processed using the SeNtinel Application Platform
(SNAP), where a series of stepswere built using the graph builder tool to
allow for batch processing of the imagery (Figure 4). The pixel
extraction of Kd490 values for each location within estuary and the
additional oceanic site was done using the Kd fail mask as a filter to
remove contaminated pixels, but any value higher than 1 m-1 was
removed from the dataset before analysis because they corresponded to
contaminated pixels, e.g., land contamination (Figure 4). Lastly, the
Level-3 Binning tool was used to generate Kd490 averages for the before
and after periods and the Band Maths tool was used to generate a
differencemap for our area of interest. The algorithm used to derive the
Kd490 product was developed by Morel et al. (2007) and is suitable for
non-turbid ocean waters (Kd490 < 0.3 m-1) as is the case in our area of
study (Wang et al., 2009; García-Sais et al., 2017; Hernández et al., 2020;
Ortiz-Rosa et al., 2020). It uses a ratio of the irradiance reflectance at
490 nm and 560 nm:

Kd 490( ) � Kw 490( ) + 10∑
n

i�oBi log10
R490
R560

( )
i

A permutational multivariate analysis of variance
(PERMANOVA) was used to analyze the reduced data for which
a centroid was calculated for each season (wet and dry) per year
using PRIMER v7 (Clarke and Gorley, 2015). This multivariate
model considers that Kd490 can respond differently to multiple
factors, specifically the condition of managed and not managed,
localization of the estuary, and location/proximity to the mouth of

the river within the estuary (Figure 2). The analyses used
9,999 permutations of the residuals under a reduced model to
produce a null distribution (Anderson et al., 2008).

3 Results

3.1 Oceanic site

A total of 269 valid pixels of Kd490 estimates were extracted from
the MERIS dataset (2002–2008) and a total of 1,276 estimates were
extracted from the OLCI dataset (2016–2022) at the oceanic site to
allow comparison between sensors. The analysis to evaluate the
continuity of the sensors estimates in the oceanic site shows that
there is not a significant change (p = 0.06) between sensor
estimates (Table 1).

3.2 Patterns of Kd490 in the estuaries

As for the results of the main goal of this study, the
PERMANOVA results indicated that interaction at the lowest
level, year by estuary, is statistically significant (p = 0.001)
(Table 2); indicating that the patterns of temporal variation were
not the same for each estuary (Figure 5). Interaction at the second
lowest level, period by location, was also significant (p = 0.0001); also
indicating that temporal changes detected between periods were
unique for each location within estuary. The interactions between
year and condition, period by estuary, and period by condition were
not statistically significant (p > 0.05).

Overall, the lowest Kd490 values were observed in Guánica, while
the highest values were observed in Guayanilla Bay, particularly in
the Close location (Figures 5A, B). In Guánica Bay, Kd490 values
ranged from ~0.05–0.15 m-1 and in Guayanilla ranged from
~0.05–0.3 m-1 except for two anomalies in 2016 and 2018
(Figures 5A, B). In Descalabrado they ranged from ~0.05–0.25 m-

1 and in Guanajibo from ~0.05–0.3m-1 (Figures 5C,D). From Figures
5A–D a general pattern of Kd490 in the estuaries can be seen, which

FIGURE 3
The beyond-BACI approach used to evaluatemanagement efforts for the Guánica BayWatershed. The locations are classified as C: Close, E: East, W:
West, and F: Far from the river mouths. The plot boxes indicate the number of pixels selected for analysis at each location (3).
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was the Far location having lower Kd490 values than other locations,
as expected. Another generalized pattern was the Close location
having the highest Kd490 values at all estuaries in the southern
region, but this was not observed in the Guanajibo River, probably
due to differences between wind patterns and that the West location
was closest to land in this site. In the southern estuaries, a peak can
be observed in 2018, the year after the passage of Hurricane Maria

on the island, and a decrease in 2020, the year of the Covid-19
pandemic outbreak and a 6.4 magnitude earthquake offshore of
southwest Puerto Rico, indicating less human impact during this
year (Figures 5A, B, D). The averages from the before and after
period showed Kd490 values ranging from 0.02 m-1–1 m -1 and the
difference plot (After-Before) showed increasing values in the
insular shelf and decreasing values in the open ocean (Figure 6).

FIGURE 4
Workflow used to download and process satellite imagery using the SeNtinel Application Platform and to extract Kd490 values in southwest
Puerto Rico.

TABLE 1 Analysis of variance for the oceanic site of the diffuse attenuation coefficient at 490 nm (Kd490) values in the Before (2002–2008) and After period
(2016–2022).

Source of variation df SS MS Pseudo-F P (perm) Unique perms

Period 1 0.006 0.006 5.613 0.062 994

Year (Period) 12 0.009 0.001 0.597 0.831 999

Residual 1,531 1.977 0.001

Total 1,544 1.995
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3.2.1 Guánica Bay
The Guánica Bay estuary showed the least variability within

locations of all estuaries, having Kd490 values close to 0.1 m-1 in all
locations, except in the Far (offshore) location where values were
closer to 0.05 m-1 (Figure 5A). Observations from the Before period

showed steady trends, i.e., no increase or decrease of Kd490 at all
locations, the West location being the most variable. In the After
period, more variability and a subtle upward trend can be observed
in all locations except for the Far location. The Close, East, andWest
locations followed similar patterns of temporal variability in the

TABLE 2 Permutation multivariate analysis of variance on a mixed multifactorial model for the managed and not managed estuaries before and after the
implementation of management actions.

Source of variation df SS MS Pseudo-F P (perm) Unique perms

Period = P 1 0.0157 0.0157 3.6043 0.0413 9,958

Condition = C 1 0.1763 0.1763 4.0594 0.0338 9,947

Year(P) = Y(P) 26 0.0852 0.0033 8.7921 0.0001 9,916

Estuary(C) = E(C) 2 0.0866 0.0433 0.2726 0.7676 9,948

PxC 1 0.0004 0.0004 0.5226 0.8036 9,954

Location (E(C)) = L (E(C)) 12 1.9095 0.1591 789.87 0.0001 9,920

PxE(C) 2 0.0024 0.0012 1.08 0.3538 9,931

Y(P)xC 26 0.0064 0.0002 0.6581 0.8442 9,921

PxL (E(C)) 12 0.011 0.0009 4.5356 0.0001 9,912

Y(P)xE ((C) 52 0.0194 0.0004 1.8511 0.0016 9,865

Residual 312 0.0629 0.0002

Total 447 2.4012

FIGURE 5
Kd490 distributions in (A)Guánica Bay, (B)Guayanilla Bay, (C)Descalabrado River, and (D)Guanajibo River. The legend to identify each location within
estuary is in panel (A). The red line separates the before and the after periods.
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After period, more noticeably in the last 5 years. In these locations,
an increase of Kd490 can be observed in the 2016–2018 period, and a
decrease in the 2019–2020 period, after which it started to
increase again.

3.2.2 Guayanilla Bay
Guayanilla Bay showed significantly higher Kd490 values,

~0.3 m-1, in the Close location as compared to the rest of
the locations where not much variability was observed
(Figure 5B). In the Before period, all locations remained
steady throughout time. The Close location had noticeable
peaks in the 2016–2018 period, which showed a ~0.05 m-1

increase when compared to the rest of the period.
Similar patterns as those of Guánica Bay can be observed
at all locations in the after period, where the
2016–2018 period followed an upward trend and the
2019–2020 period followed a downward trend after which it
started to increase again. In the After period, the East and West
location followed a more similar pattern and closer values than
the Before period.

3.2.3 Descalabrado River
The second most variable estuary within locations was the

Descalabrado River estuary ranging from ~0.5–0.25 m-1

(Figure 5C). The Before period showed steady trends of Kd490 at
the East, West, and Far locations while the Close location showed an
upward trend up to 2005 after which it started to decrease. In the
After period, similar patterns as the ones described for Guánica and
Guayanilla Bays are observed in the Close, East, and West locations.
The 2016–2018 period showed an upward trend and the
2019–2020 period showed a downward trend after which it
started to increase. The Far location appeared to show a slight
decrease of Kd490 for this period.

3.2.4 Guanajibo River
The Guanajibo River estuary showed the most variability of

Kd490 within locations with a range of ~0.5–0.3 m-1 (Figure 5D). All
of them followed very similar patterns at different amplitudes. This
estuary was the only where the West location reported the highest
Kd490 values. The West and Close locations showed a downward
trend in the Before period. In the After period, a peak can be

FIGURE 6
Maps of Southwest Puerto Rico showing the average Kd490 values for the before and after periods with the difference between periods
(after-before).
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observed in 2016, except for the East location where it is not
noticeable, and no upward or downward trend can be observed.

4 Discussion

To evaluate the effectiveness of the Guánica management
actions, it was hypothesized that Kd490 values would decrease in
Guánica after the implementation of the management actions. The
temporal distribution patterns observed were not consistent with an
improvement, i.e., a decrease of Kd490, following the management
actions, thus, the hypothesis is rejected. The results of the analysis
indicated that there were differences between the before and after
periods, but they were unique to each location within the estuary.
This means that variability within the estuaries was high, and each
location followed different patterns of temporal variability of Kd490
driven by conditions unique to the location. Even in the managed
estuary, Guánica Bay, variability of turbidity between the locations
(Close, East, West, and Far) was high. The oceanic continuity
analysis indicated that there was not a significant difference
between sensor estimates, which allows for the integration of the
sensors estimates for long-term trend monitoring and time series
analysis. Any differences between sensor estimates can be explained
by the improvements applied in the OLCI sensor (mitigation of sun-
glint, improved signal-to-noise ratio) and improved revisit times,
thus being able to detect more variability and accurate estimates
than the MERIS sensor (See Supplementary Figure S2 showing the
increase in frequency sampling) (Nieke et al., 2015).

Waters in the estuaries can be considered non-turbid oceanwaters
(Kd490 < 0.3 m-1) (Wang et al., 2009). Generalized patterns were
observed in the southern estuaries which showed the highest Kd490
values in the Close location and the lowest values in the Far location as
expected. The Guanajibo River estuary, located in southwest Puerto
Rico, followed different patterns which can be attributed by the
difference in prevailing trade winds in this area causing higher
resuspension rates near the shore (Miller and Cruise, 1995;
Gómez-Gómez et al., 2014). The 2018 peak observed in the
southern estuaries coincides with the fact that the impact of
Hurricane Maria in September 2017 has been reported to have
lasted up to 4 months after its passage through the island driven
by mass wasting, sediment runoff, coastal turbidity, and bottom
sediment resuspension (Takesue Sany et al., 2019). Keellings and
Hernández Ayala, (2019) reported the extreme rainfall event
associated with the hurricane while Bessette-Kirton et al. (2019)
reported a low landside density (1–25 landslides/Km2) in the
upland region of the Guánica Bay watershed. In terms of water
quality, Ortiz-Rosa and colleagues (2020) reported that absorption
of colored dissolved organic matter or detrital gelbstoff (aCDOM/
ADG) was high (>0.13 m-1) in Guánica 4 months after the event as
well as the coastal total suspended sediment (TSM) (~5–6 mg/L)
values as reported by Miller et al. (2019). Additionally, Hernández
et al. (2020) reported high Kd490 (>0.1 m-1) and Chlorophyll-a
concentration (>0.45 μg/L) values and Cheriton et al. (2019)
reported increased concentrations of suspended particulate material
(SPM) and polychlorinated biphenyls (PCBs), a highly toxic industrial
contaminant, after the hurricane. This peak was not observed in the
Guanajibo River which could be explained due to the low impact of
the hurricane on the west side of the island and possibly to its

difference in sediment type, i.e., mixed terrigenous and carbonate
clastic. The COVID-19 lockdowns as well as a major earthquake
offshore of southwest Puerto Rico in 2020 caused less anthropogenic
disturbance to the coastal environment in this area, and therefore
improved water quality, which is why a trough can be observed in
2020–2021 in some of the estuaries, a phenomenon also observed in
other areas of the world (Supplementary Figure S2) (Callejas et al.,
2021; Ormaza-González et al., 2021; Vijay Prakash et al., 2021).

This study is limited to changes observed in light attenuation and
does not account for other coral reef threats such as increased seawater
temperature and disease outbreaks (Rogers and Ramos-Scharrón,
2022). Events of resuspension, changes in precipitation, and
tropical cyclone frequency and intensity cannot be eliminated as
sources of change in Kd490 values. Furthermore, Guánica’s water
discharge is managed and not direct and the primary discharge occurs
in Guánica Bay and then flushes out to the south where our stations
were located. Additionally, a recent study found that watersheds
located east of Guánica are a predominant source of sediments to
Guánica’s reefs, suggesting that management efforts should also be
implemented in these watersheds (Takesue et al., 2021). In addition,
the impact of the hurricanes on water clarity probably outweighed the
efforts made in the watershed to improve water quality. It has also
been of discussion that ecosystems follow complicated responses after
restoration efforts because there can be a lag time between efforts and
evidence of recovery as well as other environmental stressors, e.g.,
climate change, affecting water quality, resulting in shifting baselines
(Jeppesen et al., 2005; Duarte et al., 2009).

This work is a preliminary assessment of the management
actions implemented in the Guánica Bay Watershed by 2022, in
which the two most important recommendations by the
management plan, i.e., restoration of the Guánica Lagoon and
construction of treatment wetlands, had not been completed
(Viqueira Rios, 2021). Future assessments should be done after
the implementation of these two management actions and a more
comprehensive analysis that includes other remotely sensed water
quality parameters and in situ measurements is recommended.

This study is the first attempt, to our knowledge, to evaluate the
Guánica Bay Watershed Management Plan in terms of water quality.
Results from this work could potentially contribute to determining
whether current strategies in the Guánica Bay watershed should be
continued, stopped, or modified. Other contributions could include the
implementation of management actions in other watersheds with
anthropogenic impacts like those of the Guánica Bay Watershed or
the refinement of future watershed management plans developed to
improve water quality in Guánica Bay and other areas around the world.
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