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The Sentinel-3A and Sentinel-3B satellites, launched in February 2016 and April
2018 respectively, build on the legacy of CryoSat-2 by providing high-resolution
Ku-band radar altimetry data over the polar regions up to 81° North. The
combination of synthetic aperture radar (SAR) mode altimetry (SRAL
instrument) from Sentinel-3A and Sentinel-3B, and the Ocean and Land
Colour Instrument (OLCI) imaging spectrometer, results in the creation of the
first satellite platform that offers coincident optical imagery and SAR radar
altimetry. We utilise this synergy between altimetry and imagery to
demonstrate a novel application of deep learning to distinguish sea ice from
leads in spring. We use SRAL classified leads as training input for pan-Arctic lead
detection from OLCI imagery. This surface classification is an important step for
estimating sea ice thickness and to predict future sea ice changes in the Arctic and
Antarctic regions. We propose the use of Vision Transformers (ViT), an approach
adapting the popular deep learning algorithm Transformer, for this task. Their
effectiveness, in terms of both quantitative metric including accuracy and
qualitative metric including model roll-out, on several entire OLCI images is
demonstrated and we show improved skill compared to previous machine
learning and empirical approaches. We show the potential for this method to
provide lead fraction retrievals at improved accuracy and spatial resolution for
sunlit periods before melt onset.
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1 Introduction

1.1 Sea ice and leads

Sea ice is constantly in motion as it is subjected to the forces
resulting from the surface wind, ocean and internal mechanical
stresses (e.g., Heorton et al., 2019). This mobility can result in ice
deformation and divergent fracturing forming open water between
the ice floes known as ‘leads’. Leads are transient features and can
rapidly disappear due to refreezing in winter or due to the sea ice
rearranging around them. Hence they encompass the complex
thermodynamical and dynamical effects inherent to the very
nature of sea ice. Leads are the windows to the ocean in ice-
covered regions and in polar altimetry are essential for sea
surface height and sea ice thickness retrievals.

Understanding and monitoring the formation and evolution of
leads provides valuable insights into the broader sea ice processes
and their interactions with both atmospheric and marine systems.
Leads in winter influence the local and global climate by altering the
exchange of heat and moisture fluxes between the ocean and the
relatively colder winter air temperatures (Marcq and Weiss, 2012).
In the pack ice, leads only cover 1%–2% of the ocean during winter,
but can explain more than 70% of the upward heat fluxes, as
confirmed by satellite observations and lead permitting high
resolution models (Hutter and Losch, 2020; Ólason et al., 2021).

In summer, leads allow for increased absorption of solar
radiation, resulting in enhanced basal and melting of sea ice. The
relatively low albedo of open water in leads (≃ 0.1) relative to snow-
covered sea ice (≤0.8) (Perovich et al., 2002), allows for greater
absorption of solar radiation in leads vs. the surrounding ice. This
difference affects the Arctic’s heat budget and can influence weather
patterns and ocean currents; just a 1% decrease in sea ice
concentration due to a greater fraction of leads has the potential
to escalate near-surface temperatures in the Arctic by 3.5 K (Lüpkes
et al., 2008).

Leads make other important contributions. They are the place
where frazil ice accumulates (Wilchinsky et al., 2015); they are the
main source to atmospheric sea salt, originating from frost flowers
that grow on ice-covered sections (Kaleschke et al., 2004); they serve
as vital hunting areas for marine mammals; and are essential
pathways for shipping (Massom, 1988). Accurately detecting
leads from satellite observation is therefore crucial for enhancing
our understanding of sea ice theromodynamics and dynamics,
which in turn is vital for better predicting weather patterns,
understanding marine ecosystems, and planning maritime
operations in polar regions.

1.2 Leads from space

Identifying leads is a critical step in satellite altimetry for
retrieving sea level and freeboard (Quartly et al., 2019). In the
winter this classification is based on the radar echo shape via
empirical methods using a fixed threshold of key features, such
as the leading edge width, pulse peakiness, and stack standard
deviation or more recently on machine learning approaches
utilising the full echo shape in supervised or unsupervised
classification techniques [(Lee et al., 2018) and references

therein]. Detecting leads in summer using CryoSat-2 was made
first possible using a 1D convolutional neural network (Dawson
et al., 2022), which led to the first full year sea ice thickness product
from radar altimetry (Landy et al., 2022). Similar work with ICESat-
2 has shown that it is possible to detect leads using the full photon
cloud properties as part of the official ATL07 product based on a
decision tree algorithm (Petty et al., 2021) or with more advanced
data-drivenML approaches (Koo et al., 2023). Lead and ice retrievals
were then used to characterise lead (frequency, size) (Wernecke and
Kaleschke, 2015) and sea ice (floe size, concentration) characteristics
(Horvat et al., 2019; Horvat et al., 2023). Here, our lead definition
follows winter/spring lead classification of Lee et al. (2018) which is
based on a waveform mixture algorithm trained with selected echo
characteristics and visually validated with SAR collocated imagery.

Since the 1990s, satellite sensors have become the primary tool
for monitoring leads across the Arctic region, with early efforts
utilizing the Advanced Very High Resolution Radiometer (AVHRR)
and Defense Meteorological Satellite Program (DMSP) to capture
visible and thermal imagery of leads (Lindsay and Schweiger, 2015).
More recently, the Moderate Resolution Imaging Spectroradiometer
(MODIS) has been employed to detect leads using its ice surface
temperature (IST) product, which boasts a 1 km spatial resolution,
enabling the mapping of pan-Arctic lead presence (Willmes and
Heinemann, 2015a). This advancement was further enhanced by the
implementation of a fuzzy cloud artifact filter to reduce cloud
interference and the analysis of lead dynamics through
comparisons with various Arctic Ocean characteristics, including
shear zones, bathymetry, and currents.

Despite the high spatial resolution offered by optical sensors,
their effectiveness is limited during the polar nights of December to
February due to darkness and is further compromised by cloud
contamination. To overcome these limitations, microwave
instruments such as passive microwave sensors and altimeters
have been adopted for lead detection, offering the ability to
generate lead fractions even in challenging conditions (Kaleschke
et al., 2004).

In recent years, the integration of machine learning (ML) and
other forms of artificial intelligence (AI) into the field of remote
sensing has significantly enhanced the detection and analysis of sea
ice and leads. The recent adoption of MLmethodologies in detection
of sea ice characteristics reflects the rapid development of deep
learning models that can interpret multifaceted satellite imagery/
altimetry data. Many studies (Asadi et al., 2020; Han et al., 2021;
Khaleghian et al., 2021; Ren et al., 2021; Liang et al., 2022; Huang
et al., 2024) exemplify the forefront of this research, demonstrating
the application of entropy-based models and deep neural networks
in enhancing the detection capabilities for sea ice and leads.

We note also studies that focus on lead detection frommoderate
resolution thermal infrared (IR) satellite imagery (Willmes and
Heinemann, 2015b; Hoffman et al., 2021; 2019; Reiser et al.,
2020; Qu et al., 2021). Others investigate the use of satellite
imagery from Landsat (30 m) resolution to assess the accuracy of
sea ice concentration products (Kern et al., 2019). Generally, high
resolution optical (Muchow et al., 2021; Denton and Timmermans,
2022), microwave (von Albedyll et al., 2023; Guo et al., 2022) or even
thermal (Qiu et al., 2023) imagery is limited to validation and
regional studies due to its smaller coverage and light and cloud
limitations. In comparison, OLCI offers a good compromise
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between resolution (300 m) and coverage (3 days pan-Arctic
coverage), with the additional advantage of being colocated with
the altimeter Synthetic Aperture Radar Altimeter (SRAL).

1.3 AI methods

In this paper, we propose an innovative approach to sea ice
classification from satellite optical imagery that focuses on the
utilisation of Vision Transformers (ViT) (Dosovitskiy et al.,
2020). Unlike convolutional neural networks, ViTs leverage self-
attention mechanisms to capture dependencies between image
patches, providing a more nuanced understanding of the
complex structures within sea ice and leads. Our method applies
the transformative power of deep learning to classify sea ice and
leads, a task that has been challenging for algorithms including K-
Means Clustering, Random Forests, CNNs, etc. In the growing field
of remote sensing for polar studies, several works have leveraged
machine learning techniques to address challenges posed by the
Earth’s ice-covered regions. For instance (Bij de Vaate et al., 2022),
employed an array of supervised and unsupervisedmachine learning
algorithms to detect fractures, or ‘leads’ in sea ice in the Arctic Ocean
using Sentinel-3 Synthetic Aperture Radar Altimeter data. They
reported high accuracy of up to 92.74%, especially when altimetry
observations included measurements from the open ocean. Their
study highlights the limitations of current classifiers during the
summer months. Similarly (Mugunthan, 2023), underscored the
importance of satellite radar altimetry and the use of machine
learning algorithms for monitoring lake ice conditions,
emphasising its impact on weather, climate, and northern
communities. While their focus was not on sea ice, their work
elucidates the broader applications and utility of remote sensing
technology in Earth Science. This growing number of studies
indicates the burgeoning potential and existing limitations of
machine learning and remote sensing technologies for ice
monitoring, thereby setting the stage for our current investigation.

In this study, our overarching aim is to evaluate the
effectiveness of ViTs in classifying different surface types within
winter sea ice conditions. Specifically we intend to use the SRAL
classification of leads and sea ice as input feature for a ViT model
using the 21 OLCI optical bands. This approach paves the way for a
Spring pan-Arctic lead product using the wide swath of Sentinel-3
OLCI imagery under sunlit conditions. To achieve this, we outline
two main objectives: 1) to introduce the methodology of applying
ViT models to satellite imagery of winter sea ice; 2) to validate the
ViT model’s performance through comparison with traditional
machine learning algorithms, incorporating quantitative metrics
like accuracy as well as qualitative metrics such as full image roll-
out. The latter involves a visual roll-out and expert assessment of
classified images to assess how well each model captures spatial
structures in sea ice and lead categories, complementing
quantitative accuracy metrics for a holistic model evaluation.
The paper is structured as follows: first, we introduce the
methods used for data collection and model training; then, we
present our findings, emphasising both quantitative and
qualitative evaluation metrics; finally, we discuss the broader
implications of using ViT models in geospatial analysis,
particularly in the monitoring of polar regions.

2 Datasets

2.1 Radar altimetry

This research utilises Level 1B data from the Synthetic Aperture
Radar Altimeter (SRAL) aboard the Sentinel-3A and Sentinel-3B
satellites (Donlon et al., 2012). For over three decades, satellite radar
altimetry data have provided information on the state of sea ice in
the polar regions [e.g., (Laxon et al., 2003; Lindsay and Schweiger,
2015; Kwok, 2018; Stroeve and Notz, 2018; Kacimi and Kwok, 2021;
Landy et al., 2022)]. Satellite instruments provide year-round
coverage of these inhospitable regions, and radars operating at
microwave frequencies can penetrate cloud cover, unlike laser
instruments.

Ku-band satellite radar altimeters currently in operation include:
CryoSat-2 (2010 -), HY-2A (2011 -), Sentinel-3A (2016 -), Sentinel-
3B (2018 -), HY-2B (2018 -) and Sentinel-6 (2020 -). Data from the
Sentinel-3 satellite are used in this study, taking advantage of its
payload which includes the Ku-band SAR Radar Altimeter
instrument (SRAL) and Ocean Land and Colour Instrument
(OLCI). The combination of these two instruments on a single
platform provided the opportunity to develop machine learning
techniques for the identification of features within OLCI imagery,
and to make comparisons with the radar altimeter data Bij de Vaate
et al. (2022). The methodology employed in our study mirrors that
of this research, albeit with a pivotal inversion in the utilisation of
data sources for ground truth labels and input features. Specifically,
while prior studies have leveraged Ocean and Land Colour
Instrument (OLCI) imagery data to generate ground truth labels
and utilised altimetry data to inform input features Bij de Vaate et al.
(2022), our approach adopts a converse strategy where we use
instead SRAL echoes to generate ground truth labels following
the method outlined in Lee et al. (2018). In our research, we
harness altimetry data for the generation of ground truth labels,
employing OLCI imagery as the primary source for input features.

Synthetic Aperture Radar (SAR) altimetry represents a
significant advancement in radar technology, offering innovative
means to measure surface topography, especially over oceanic and
icy terrains. SAR altimetry enhances along-track resolution
through synthetic aperture techniques, allowing for the creation
of narrow radar beams (300 m width) without the need for a
physically large antenna. This leads to more accurate and detailed
surface elevation measurements, even in complex and rapidly
changing environments like polar regions. By synthesizing the
return signals from multiple pulses, SAR altimetry can capture
fine-scale features, such as leads in sea ice or small oceanic waves.
This technology has played a crucial role in various satellite
missions, improving our understanding of phenomena like sea
level rise, ocean circulation, and ice dynamics. The SRAL thematic
product is obtained from the Copernicus Dataspace portal https://
dataspace.copernicus.eu/.

2.2 Optical imagery

The Ocean and Land Colour Instrument (OLCI) is installed
aboard the Copernicus Sentinel-3 satellites, designed as the
advancement of the previous Envisat MERIS instrument,

Frontiers in Remote Sensing frontiersin.org03

Chen et al. 10.3389/frsen.2024.1401653

https://dataspace.copernicus.eu/
https://dataspace.copernicus.eu/
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2024.1401653


provides observation of the spectral composition of radiance
emanating from just above the ocean’s surface (Donlon et al., 2012).

Some key features of OLCI are listed below (Donlon et al., 2012):

• Spectral Range: OLCI operates over 21 distinct bands, ranging
from the visible to the near-infrared spectrum. This allows for
detailed observations of land, water, and atmospheric features.

• Spatial Resolution: The Ocean and Land Colour Instrument
(OLCI) on board the Sentinel-3 satellite has an along-track
spatial resolution of about 300 m.

• Integration with Other Instruments: OLCI’s combination with
other tools like the Synthetic Aperture Radar Altimeter
(SRAL) amplifies its capabilities. This synergy results in
enhanced monitoring of sea ice, leads, and other crucial
elements in polar regions.

In the context of this research, the use of OLCI’s datasets, along
with other instruments like SAR radar altimetry, enables the
validation of surface classification algorithms and exploration on
classification based on optical imagery. Specifically, our training
dataset comprises segments of data from March in 2018 and 2019,
corresponding to 80 tracks representative of the pan-Arctic March
sunlit conditions. This selection constitutes approximately
10,000 data points for training and testing purposes. We used all
the 21 bands from OLCI as the input features. The 21 bands provide
rich information about oceanic surfaces, offering a comprehensive
spectral range that enhances the accuracy and detail of our
classification models. All data used in this analysis are available
with this paper on Zenodo. The OLCI satellite product is obtained
form the Copernicus Dataspace portal https://dataspace.
copernicus.eu/.

3 Methods

In this section, we include details of our methodology for
identifying leads in OLCI imagery data. We provide details of the
vision transformer model that we use for sea ice vs. lead
classification, and other baselines for comparing the vision
transformer model against. In addition, we provide details on the
data preparation method; this uses datasets in Section 2 to generate a
labelled dataset for training and testing our models.

3.1 Vision transformer (ViT)

We propose a sea ice vs. lead classification model based on the
Vision Transfomer (ViT) architecture (Dosovitskiy et al., 2020) to
detect leads from OLCI imagery. ViTs are driven by the powerful
Transformer architecture, first introduced by Vaswani et al. (2017)
in the context of natural language processing (NLP), to learn
complex, non-local dependencies between input tokens (i.e., text
input in NLP tasks). While the original Transformer model was
developed to handle sequential data, ViTs extend this by taking
image patches as input tokens to learn dependencies between
different regions of an image. The model architecture of
Transformers/ViTs is designed for parallel computing, which
enables efficient training on GPUs and fast predictions on large

OLCI images. However, they typically require large, diverse training
datasets to reach optimal performance (Dosovitskiy et al., 2020).

We train the ViT model on a labelled dataset comprising local
patches of OLCI images and the corresponding 0/1 label, indicating
whether the corresponding pixel is a sea ice (0) or lead (1). We
explain in Section 3.3 the method that we use to generate these labels
from co-located SAR radar altimetry data.

In Table 1, we outline the main components that form a general
ViTmodel. This consists of (1) a patch encoder layer, (2) a positional
embedding layer, (3) a Transformer layer, and (4) an output
Multilayer Perceptron (MLP) layer. We provide brief
explanations of each of these below.

First, the patch encoder layer takes as inputs images of shape (B,
H, W, C), where B is the mini-batch size, H and W are the image’s
height and width respectively, and C is the number of channels. The
purpose of this layer is to split the input image into a set of P non-
overlapping image patches and to encode each of them to a D-
dimensional vector via a learnable embedding map. We may choose
to up-sample the images first before splitting them up into
patches, which may be necessary if the input image is small. The
number of patches is then calculated as P � � img_x

patch_x� × � img_y
patch_y�

where (img_x, img_y) is the up-sampled image dimensions and
(patch_x, patch_y) is the patch dimensions. The channel sizeC is
fixed during the upsampling and splitting steps. Each image patches
are flattened before applying the linear embedding map to yield the
respective D-dimensional codes, resulting in a tensor of size (B, P, D).

The encoded patches obtained in the first step are then passed
through a positional embedding layer, which adds positional
information of each of the patches. This is achieved by
transforming the indices of the image patches into a D-
dimensional vector by a fixed embedding map, and adding it on
to the respective D-dimensional encoded patch.

Next, the Transformer layer introduces learnable correlations
between the image patches by a so-called multi-head attention
mechanism. This processes the encoded patches to generate K
new representations of it that take into account its context in
relation to the other patches. Here, K is the number of so-called
attention heads. The new representations are stacked and passed
through a Multilayer Perceptron (MLP) layer with KD-dimensional
inputs and D-dimensional outputs. The resulting tensor thus retains
the shape (B, P, D). Typically, the patches are processed through
several of these transformer layers, to increase the expressivity of
the model.

Finally, an output MLP is applied to a flattened output of the
Transformer layers to produce the predictions. These consist of
probabilities over the target classes, obtained by applying softmax
activation in the last layer. Predictions are then made based on
which class was assigned the highest probability. For the purpose of
regularisation, dropout is applied to the hidden layers of the MLP
during training.

For our specific task of classifying sea-ice and leads from OLCI
imagery data, since it is a binary classification task, we set the
number of output classes to O = 2. Furthermore, we utilise all
21 channels of the OLCI imagery, hence we also fix the channel size
to C = 21. For the remaining hyperparameters, we performed a
hyperparameter sweep aided by the AI experiment tracking tool
Weights and Biases. The resulting configuration that gave the best
performance on a held-out validation set is displayed in Table 2. We
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note that in the “training hyperparameters” row, we display the
hyperparameters of the AdamW optimiser used to train the model
and the dropout rates used in the hidden layers of the two
MLPs – one in the transformer layer and another in the output layer.

3.2 Baseline models

To evaluate the ViT model for sea-ice/lead classification, we
compare it against several baselines including standard supervised
algorithms (Convolutional Neural Networks, Random forest, MLP),
a semi-supervised algorithm (label spreading) and an unsupervised
algorithm (K-means clustering). We provide details of each model
below. By using a mix of supervised, semi-supervised and
unsupervised baselines, we can evaluate the added value of the

labelled data generated from SAR altimetry (see the details in Section
3.3). All models were trained on Google Colab, and the CPU/GPU
details varied depending on the availability of resources.

3.2.1 Supervised 1: convolutional neural
networks (CNNs)

The first baseline model we consider is a CNN model (LeCun
and Bengio, 1995) that predicts lead or sea ice from an input image
patch. We performed a hyperparameter sweep to find the optimal
combination of CNN hyperparameters that generalised best on our
validation set. The AI developer platform Weights and Biases was
used to facilitate this sweep. The resulting CNN model architecture
consists of a single convolutional layer with 64 filters, a kernel size of
3, a stride of size (2,1), and ReLU activation. The output of the
convolutional layer is flattened and fed into two dense layers with

TABLE 1 General structure of a Vision Transformer (ViT) model. We display the layers comprising a ViT model, the shape of its inputs/outputs, and the layer
hyperparameters. For the tensor shapes, we denoted: B - minibatch size, H - image height, W - image width, C - channel size, P - number of patches, D -
embedding space dimension, and O - number of output classes.

Layer type Input shape Output shape Hyperparameters

Patch Encoder (B, H, W, C) (B, P, D) Size of up-sampled image

Size of image patch

Positional Embedding (B, P, D) (B, P, D) –

Transformer (B, P, D) (B, P, D) Number of attention heads

Number of MLP hidden units

Number of transformer layers

Output Multilayer Perceptron (MLP) (B, P, D) (B, O) Number of MLP hidden units

TABLE 2 The specific ViT configuration that we use in our task of classifying sea-ice and leads in OLCI images. We display (1) the dimensions of the tensors
being passed through the layers, (2) the hyperparameters of the ViT model, and (3) the hyperparameters of the training process. See Table 1 for reference.
These values are found by performing a hyperparameter sweep aided by Weights & Biases.

Hyperparameter Value

Tensor dimensions Mini-batch size (B) 128

Input image shape (H, W, C) (3, 3, 21)

Number of image patches (P) 64

Embedding space dimension (D) 64

Number of output classes (O) 2

Model hyperparameters Size of up-sampled image 96 × 96

Size of image patch 12 × 12

Number of attention heads 4

Number of hidden units in the transformer MLP (1 layer) 128

Number of transformer layers 32

Number of hidden units in the output MLP (2 layers) 2,048, 1,024

Training hyperparameters Weight decay 0.001

Learning rate 0.001

Dropout rate in transformer MLP 0.1

Dropout rate in output MLP 0.3
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64 and 32 units respectively, with ReLU activation in both layers,
and a softmax activation applied to the output layer. We use inputs
of shape (3,3,21), corresponding to the height, width and channel
size respectively of a single input image patch. For training, we used
the AdamW optimiser with a learning rate of 0.001 and batch
size of 64.

3.2.2 Supervised 2: random forest
The Random Forest (Ho, 1995) model utilises a multitude of

decision trees, each voting for a final class label, with the majority
vote defining the ultimate prediction. An important attribute of
Random Forests is their inherent capability to manage feature
interactions and non-linearity. Moreover, they are less prone to
overfitting compared to a single decision tree, due to the averaging
performed across multiple trees. We used the Random Forest
classifier from the scikit-learn library with 21 dimensional input
feature vector, corresponding to the 21 channels of a single pixel of
an OLCI image. These features are passed through the Random
Forest model to determine whether the pixel corresponds to sea-
ice or lead.

3.2.3 Supervised 3: multilayer perceptron (MLP)
We also consider a standardMLPmodel (Murtagh, 1991), tuned

using Weights and Biases’s hyperparameter sweep to select the
model with optimal performance on our validation set. Our
resulting model consists of three dense layers with 300, 100, and
10 units, respectively, with the ReLU activation applied to the first
two layers, and a softmax activation in the output layer. As inputs,
we used image patches of shape (3,3,21) that is flattened to a 189-
dimensional vector. For training, we used a batch size of 32 and the
AdamW optimizer with a learning rate of 0.001.

3.2.4 Semi-supervised: label spreading
Label Spreading (Zhu and Ghahramani, 2002) is a semi-

supervised algorithm that operates on a given dataset by
constructing a fully connected weighted graph, where each data
point serves as a node in the graph and the weights on the edges are
determined by the affinity of the two data points; the more similar
the data, the higher the weight on the edge connecting them. The
process then involves propagating labels from nodes that are labelled
to those that are not through the edges of the graph. This is done in
such a way that a larger edge weight between two nodes indicates a
higher likelihood of it getting assigned the same label. We used the
implementation for Label Spreading in the scikit-learn
Python package.

3.2.5 Unsupervised: K-means clustering
Finally, we consider K-means (MacQueen, 1967) clustering as

an unsupervised model to compare our model against. The K-means
clustering algorithm forms K distinct clusters by initially selecting K
random centroids, then iteratively assigning data points to the
nearest centroids and recalculating the centroids as the mean of
the points in the clusters. The process continues until convergence,
effectively grouping data points with similar attributes by
minimising the within-cluster sum of squared distances. In our
application, we use K = 2 clusters; one for sea ice and one for leads.
We used the Euclidean distance on the 21-dimensional feature space
(consisting of the 21 channels of the OLCI image) to define the

centroids and assign data points to a cluster. We used scikit-learn’s
K-means clustering module for the implementation.

3.3 Generation of labelled dataset

Here, we describe in details how we generate the labels for our
dataset, used to train our ViT model and the supervised/semi-
supervised baselines described above. We start by collating two
sets of data: one containing directories of cloud-free OLCI images
with 21 full-resolution top-of-atmosphere (TOA) radiances, and the
other containing the SAR data along coincident tracks with the
OLCI images. An example of colocation of SAR tracks and OLCI
images is illustrated in Figure 1. These are all collected in March in
the years 2018 and 2019 over the Arctic Ocean.

Before we introduce the procedure of producing labelled dataset,
some details of Waveform Mixture Algorithm (Lee et al., 2018) are
presented below. The waveform mixture algorithm (WMA) was
inspired from the concepts of spectral mixture analysis and it was
firstly introduced and employed to lead detection using waveform
data from CryoSat-2 for data from Janurary-May and October-
December between 2011–2016. Endmember extraction is the
process of choosing a set of pure spectral signatures of ground
features found in remote sensing data. In this case, endmembers
represents the most informative/indicative waveform of a class, such
as sea ice and lead. Appropriate selection of endmembers is crucial
for spectral mixture analysis (SMA). One of the assumptions of
Spectral Mixture Analysis (SMA) is that the spectral data recorded
by sensors for a single pixel represents a linear combination of the
spectra from all the different components present within that pixel.
Spectral mixture analysis identifies the proportions of different

FIGURE 1
An illustration of a co-located SRAL track and anOLCI image. The
colors along the track indicate the predicted labels using the
Waveform Mixture Algorithm. Red pixels indicate sea-ice and blue
pixels indicate leads.
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components (i.e., classes) in mixed pixels by calculating the
abundance of each component based on their endmembers. Since
the waveform data inside a footprint can be considered as a mixture
of different surface types, for example, sea ice and lead, it is sensible
to use SMA/WMA in this context. Calibration and validation were
carried out with four visually labeled 250 m resolution MODIS
images from March to May and October, ensuring temporal
differences with CryoSat-2 data were under 30 min. Reference
point data (50% randomly selected from the MODIS data) for
leads and sea ice were utilised to set binary abundance thresholds
for these two classes through automated calibration. The lead
condition thresholds established were a lead abundance greater
than 0.84 and a sea ice abundance less than 0.57. The WMA
achieves an overall accuracy of 95%. However, this method has a
limitation: within a footprint, the waveform may not be a linear mix
between sea ice and leads. When both leads and sea ice coexist in a
footprint, CryoSat-2 is more responsive to the specular reflection of
leads than to the diffuse reflection of sea ice, making the waveform
resemble the lead endmember.

According to their documentation, the Sentinel-3 SRAL has
specifications very similar to CryoSat-2 SIRAL, including radio
frequency and pulse bandwidth, etc (European Space Agency,
2011; European Space Agency, 2022). This suggests that the
Waveform Mixture Algorithm (WMA) built for CryoSat-2 can be
applied effectively to Sentinel-3 SRAL data, supporting the notion
that fine-tuning of the WMA is not necessary.

The lead definition in this study primarily relies on how the
Waveform Mixture Algorithm (WMA) classifies the waveform into
sea ice and lead. As the WMA is trained and evaluated using 250 m
MODIS images, the size of leads in this study can be approximately
considered as 250 m. Lee et al., 2018 also states that WMA might
have difficulties detecting refrozen leads. Additionally, off-nadir
observations can introduce geometric distortions and variations
in waveform characteristics. Since the classification algorithm is
designed for nadir observations, off-nadir waveform might be
interpreted differently, affecting the consistency of our lead
labels. These observations exist in our dataset and may
complicate the accurate classification of leads. In summary, our
definition of lead relies on the Waveform Mixture Algorithm
(WMA), which classifies waveform into sea ice and lead based
on nadir observations, typically considering lead size as
approximately 250 m and primarily focusing on open leads,
though off-nadir observations may introduce distortions.

The following procedure is used to produce the labelled dataset
to train our models:

1. Using the Waveform Mixture Algorithm (Lee et al., 2018) and
the echo measurements from SAR altimetry, produce 0/1 labels
along the SAR track, indicating whether a point on the track is
a sea-ice (0) or lead (1). An example of such a track is shown
in Figure 1.

2. The closest OLCI pixel to each point on the SAR track is
identified. For each point along the SAR track, a square patch
from the OLCI image with shape (n, n, 21) (height, width,
channel) is extracted, centered around the closest OLCI pixel.

3. The TOA radiance values of the OLCI image patch is converted
into TOA reflectance using the formula (1) (Sea, 2023;
NASA, 2023).

Ri
TOA � πLi

TOA

Ei
0 cos θ( ), i � 1, . . . , 21, (1)

where LiTOA, Ri
TOA denotes the TOA radiance and reflectance

respectively on the ith channel, Ei
0 denotes the solar flux on the

ith channel, and θ denotes the solar zenith angle (SZA).

4. Sub-sample leads and sea-ice in equal proportions to prevent
imbalance in data. Note that there will be many more sea ice
than leads if we used all of the data generated in steps 1–3,
hence making this sub-sampling step necessary.

Once we run steps 1–4 to generate a labelled dataset from our
repository of collocated OLCI and SAR data, we split it into a
training and test set. We considered a 7 : 3 split, resulting in a total of
9,909 training instances and 4,463 testing instances. Here, each n ×
n × 21 image patch of TOA reflectance (obtained in Step 3) will be
used as input features to the model and the binary labels generated
from SAR altimetry (obtained in Step 1) will be the
corresponding labels.

4 Results

In this section, we evaluate the performances of the machine
learning models considered in Section 3 from both quantitative and
qualitative perspectives. First, we assess their accuracy on the
labelled test data, providing a quantitative measure of the models’
performances. Second, we roll-out the models on full OLCI images
to qualitatively assess the sea-ice/lead segmentation maps that they
produce. We will see that performance on one is not necessarily
reflected on the other, highlighting the need for both assessment
methods. In particular, assessing solely on the test data may produce
misleading results as our labelled dataset may contain some bias
resulting from how the data was collected.

4.1 Quantitative assessment on the test set

In Table 3, we display the test accuracy of the ViT model and
various supervised, semi-supervised and unsupervised baselines on
the sea-ice/lead classification task to make a quantitative assessment
of the different methods. For the unsupervised and semi-supervied
baselines, in addition to the data in the training set, we also utilised
20,000 extra data points collected from the unlabelled areas of the
OLCI images. We see that all of the methods have an accuracy of
well-above 50%, indicating that the predictions made by them are all
significantly better than chance. Therefore the dataset indeed
contains signals to distinguish leads from sea-ice. This is also
true for the unsupervised model (K-means clustering), which
does not use the labels produced in Section 3.3, suggesting that
the 21 bands of TOA reflectance values used as model inputs also
contain sufficient information to approximately distinguish leads
from sea-ice. This agrees with our intuition, since we can visually
inspect from the shading of a channel of the OLCI images whether a
pixel is sea-ice or lead (see Figure 2 for an example OLCI image). We
note that using the original TOA radiance values, the model under-
performed significantly. Thus, the post-processing step in Section
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3.3 of converting these to TOA reflectances is critical for achieving
good performance.

We also note that the Label Spreading, Random Forest and ViT
models all outperform K-means clustering, suggesting that the labels
obtained from the SAR altimetry tracks can substantially improve
the classification results, justifying our use of it. In particular, we see
that the Random Forest model has a performance exceeding 90%,
indicating that it has learned a strong relationship between the input
TOA reflectance values and the corresponding output classes.
However, we see that the other supervised baselines (CNN and
MLP) perform worse than the K-means baseline, hence the addition
of the labels does not automatically produce better performance and
indeed the model choice also plays a crucial role. We see that the ViT
model has the second best performance after Random Forest, with a
slightly higher accuracy than the Label Spreading baseline, the latter
which utilises both supervised and unsupervised techniques to
generate predictions. The fact that the ViT and Random Forest
model performs better than K-means and Label Spreading indicates
that in order to classify a pixel, the information from neighbouring
pixels or the corresponding information contained (the labels) in the
21 bands of the TOA reflectance at that pixel is necessary and
sufficient to produce good results.

It is however crucial to note that we have only evaluated the
classification performance on a pixel-by-pixel basis here, and the
task of classifying satellite images involves not only correctly
identifying individual pixels, but also preserving the spatial
structures and patterns in the images. In addition, since the
labels in our curated dataset are themselves not accurate (as they
are produced by another model), the results in Table 3 provide only
an approximate assessment of the model performances. For these
reasons, in addition to the quantitative assessment provided here, in
the following we also provide a qualitative assessment by rolling-out
the model on a full OLCI image to produce segmentation masks for
sea-ice and leads. We will see that while the ViT model has not
performed the best in terms of quantitative assessment here, it has
significantly better behaviour compared to the other baselines in
terms of visual expert assessment.

4.2 Qualitative assessment by full image
roll-out

In the context of image processing, image roll-out refers to the
process of applying trained models on full-sized images to produce

TABLE 3 Comparison of model accuracies on the labelled test set. We display the mean and standard deviation of the accuracies obtained by training the
models from five different random seeds.

Model Accuracy (Mean ± STD) (%)

Supervised Convolutional Neural Network (CNN) 68.58% ± 3.37

Random Forest 92.48% ± 1.15

Multilayer Perceptron (MLP) 70.72% ± 1.20

Vision Transformer (ViT) 84.18% ± 2.39

Semi-supervised Label Spreading 82.97% ± 0.13

Unsupervised K-means Clustering 73.40% ± 1.50

FIGURE 2
Selected OLCI image that we use to perform our qualitative assessment of the variousmachine learning models. The selected image has a goodmix
of sea-ice and leads as well as some areas that are covered by clouds and areas where patches of land are visible.
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certain outputs, such as a segmentation map covering the entire
image. Here, we roll-out our trained models on an OLCI image to
provide qualitative assessment of the model performances,
comparing their abilities to produce sound segmentation maps
for sea-ice/leads.

The OLCI image selected for the roll-out assessment represents
a specific geographic area with ample mix of sea ice and leads. The
selected image, shown in Figure 2, has a size of 1714 pixels in
height and 4,863 pixels in width, resulting in a total of
approximately 8.3 million pixels. A variety of spatial structures
and patterns are noticeable that reflect the distribution and
arrangement of sea ice and leads; notably, we see large
contiguous areas of sea ice, interspersed with many fine streaks
of leads. In addition, we see clouds over some parts of the image, as
well as parts of land that are visible, which may cause additional
difficulties in the classification.

Each model in Section 3 is rolled-out on the selected image to
produce a segmentation map of leads/sea-ice. These maps
provide a visual representation of the model’s classifications,
with each pixel colour-coded to indicate whether it has been
classified as sea ice or lead by the model. In Figure 3, we display
the results of each model, where the black pixels indicate those
that are classified as sea-ice and white pixels as those classified as
leads. The results show that Random Forest, despite achieving the
best accuracy on the test data, demonstrate limited ability to
capture the finer lead patterns in the image. In addition, areas
where clouds and land are visible are frequently misclassified as
leads. The results are similar or worse for the remaining baselines
(K-means, CNN, MLP and Label Spreading), with none of them
being able to capture fine-scale lead patterns that are present in
the image.

In contrast, the ViT model, despite having lower accuracy on the
test data compared to the Random Forest baseline, demonstrate far
superior qualitative result on the full image roll-out. We can claim
this since firstly, it is able to detect many finer-scale lead patterns
that the other models have failed to capture, and secondly, the
predictions are robust to pixels covered by clouds, as it has not
misclassified them as leads as the other models have. On the other
hand, the ViT model does missclassify parts of land as leads (see the
lower-right quadrant), this may imply that the optical features of the
land is similar to that of lead, however this is also true for all the
baselines considered. This issue will not significantly impact the
generation of lead maps for the Arctic region, as all land areas will be
excluded from the classification process. Similar to other models,
there are somemisclassifications in the center-right area of the OLCI
image, likely caused by the shadow of the ice ridge. In the future,
enhancing and verifying the ground truth labels will be essential to
minimise the impact of ice ridges and reduce misclassifications.

A likely reason for the performance discrepancies between the
quantitative results in Section 4.1 and the results on the full-image
roll-out considered here, is that our labelled dataset is inherently
biased, resulting from how we curated the data. For example, in our
case, we use labels produced by the Waveform Mixture Algorithm
(Lee et al., 2018), which itself is imperfect and therefore introduce
errors on the labels. Furthermore, we only extracted data where the
pixels over the colocated SAR tracks were relatively cloud and land-
free, introducing another source of bias to the curated dataset.
Therefore, fitting well on the labelled dataset may also imply that
the model has inadvertently fit on the bias that are present in the
data, which may actually be detrimental when deploying on a full-
sized image. Despite this, it still comes as a surprise that the ViT
performs as well as it does on the image roll-out, managing to

FIGURE 3
Comparison of model roll-out on the select OLCI image. We see that while the random forest model (E) achieved the highest test accuracy, the roll-
out results are sub-optimal, failing to detect many of the finer leads on the left side of the image. The other baselines (A–D) also perform poorly, in
particular, they have a tendency to misclassify clouds as leads. In contrast, the ViT (F)model does not have this problem, being able to capture the finer-
scale leads and being robust to corruption due to clouds.
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generalise well on out-of-distribution regimes in the OLCI image.
While adversarial robustness in ViTs have been observed in the
literature (Zhou et al., 2022), further investigation is necessary to
understand why the ViT model generalises better than the other
models on image roll-out, despite being trained on the same dataset.

Our findings here highlight the importance of considering
multiple evaluation methods when assessing the performance of
machine learning and deep learning models. While pixel-level
accuracy on the test eset provides an approximate measure of a
model’s performance, due to the inherent bias present in the
dataset and the fact that it ignores any spatial structure
produced, the full image roll-out offers a more holistic view of
a model’s ability to reproduce the overall lead structures and
patterns in the images.

4.3 Comparison with IRIS: intelligently
reinforced image segmentation

To provide some more concrete measure on the qualitative
results found in the previous section, we also include comparisons of

our results with another method combining human manual
labelling and machine learning, specifically, using the Flask app
IRIS (Intelligently Reinforced Image Segmentation) (ESA-
PhiLab, 2024).

Using IRIS, users can explicitly annotate a small subregion of
an unlabeled image via a web interface, assigning labels to pixels.
This initial classification made by the user is then processed by a
backend model based on Gradient Boosted Decision Trees, which
classifies the entire image based on these inputs. This process is
then iterated: the users can refine the model’s classification by
making corrections and with each iteration, the model learns from
these adjustments to update its predictions accordingly. After
several rounds of the process, the resulting segmentation map
becomes highly accurate. However, in practice, using IRIS is
limited to selected images, is time consuming and requires
significant human labour, making it impractical for rolling-out
on full images. This is where automatic segmentation using
machine learning methods such as ViTs are useful, which, once
trained, can be used to automatically roll-out on images without
requiring human labour. Hence, if we can demonstrate that the
machine learning models can achieve similar results as IRIS, then

FIGURE 4
Comparisons of segmentation maps produced by IRIS (J) and other models (G: Label Spreading, H: Random Forest, I: ViT) on a sub-region of an
OLCI image (K). For the map produced by IRIS, we display the average across 21 different maps produced by different human labellers for robustness. We
see that compared to the other models, ViT can detect virtually all of the leads detected by IRIS, although the labelling is more generous, leading to a
bolder segmentation map.
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we can potentially deploy it as a practical lead detection tool at a
much larger scale (see Section 4.4).

Concretely, our objective here is to use the results produced
by IRIS on a small subregion of an OLCI image (shown in
Figure 8) as a proxy to the ground truth segmentation map, that
we can use to compare our models against. We are aware that
similar to the quantitative assessment in Section 4.1, this
comparison is also inherently biased, as outputs from IRIS
depends on the human labellers used to generate the
classifications. Hence, to reduce this bias, we used averaged
IRIS outputs from 21 different human labellers as the ground
truth proxy. Using this, we can provide a quantitative
assessment of the models’ roll-outs by comparing with
this proxy.

In Figure 4, we display the average IRIS classification map
alongside those generated by ViT, Label Spreading and Random
Forest. We see that the ViT produces results that are closely aligned
with that of IRIS, detecting virtually all of the leads identified by the
latter. This is not true in the case of Label Spreading and Random
Forest, which fails to capture some of the finer structures, as well as
misclassifying some pixels as leads in the case of Random Forest
(see the lower part of the image). However, it is also noticeable that
ViT adopts a more generous approach in its classifications, leading
to wider leads compared to those in IRIS’s classification.
Specifically, some edges of leads that IRIS does not classify as
such are indeed classified as leads by ViT.

In Figure 5, we also display the confusion matrix with classes
0 and 1 corresponding to sea-ice and leads respectively, detected by

IRIS (on the vertical axis) and one of the other models (on the
horizontal axis). Here, we see that Label Spreading and Random
Forest detects sea-ice more accurately, while ViT detects leads more
accurately, with far fewer false negatives for predicting leads. The
worse performance of ViT in detecting sea-ice is likely attributed to
the generous labelling of leads that we observed earlier. We can
furthermore quantify these observations by computing the
Precision, Recall and F1 scores for detecting leads, computed
respectively as:

Precision � TP

TP + FP
, Recall � TP

TP + FN
, and

F1 � TP

TP + 1
2 FP + FN( )

where TP, FP and FN are shorthands for true positives, false
positives and false negatives, respectively. This is displayed in
Table 4. In short, the Precision quantifies the proportion of
detecting leads correctly among all predictions made by the
model, the Recall quantifies the proportion of leads being
detected correctly among all leads detected by IRIS, and
the F1 is the harmonic mean of the precision and recall. We
see that while Random Forest and Label Spreading
outperforms ViT in Precision, indicating that ViT
misclassifies many sea-ice as leads due to the generous
labelling, the Recall score for ViT is near-perfect, indicating
that it is able to capture almost all of the leads detected by IRIS.
The F1 scores for all models are similar, with the Random
Forest slightly outperforming the other two. Overall, the result
suggests that if we place emphasis on labelling leads correctly,
then ViT is by far the superior model. However, if we also place
emphasis on the precision of the predictions, then ViT still has
room for improvement.

4.4 Mapping of sea ice leads and ice
distribution: 2019 march binned map

Finally, we investigate the potential use of the ViT model for
generating large scale sea-ice/lead maps by combining the model
roll-outs on multiple OLCI images within a given area in the Arctic.
This analysis involves dividing the study area into a grid of equal-

FIGURE 5
Confusion matrices for comparing the performances of Label Spreading (L), Random Forest (M) and ViT (N) against IRIS. Here, the classes 0 and 1
correspond to detecting sea-ice and lead, respectively.

TABLE 4 Quantitative performance comparisons of Label Spreading,
Random Forest and ViT for detecting leads (class 1 in Table 5). We compare
the Precision, Recall, and F1 scores. We see that while Random Forest and
Label Spreading has better Precision score than ViT as a result of ViT
classifying leads generously, the Recall score for ViT is near-perfect,
indicating that it is able to detect almost all of the leads detected by IRIS.

Model Precision (%) Recall (%) F1 score (%)

Random Forest 49.55 72.40 58.83

Vision Transformer 37.21 97.34 53.84

Label Spreading 70.49 43.42 53.74

Bold values indicate the best quantity of that metric among the 3 models.

Frontiers in Remote Sensing frontiersin.org11

Chen et al. 10.3389/frsen.2024.1401653

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2024.1401653


FIGURE 6
A partial binned map of lead fractions across the Arctic, generated by rolling out the ViT model on multiple OLCI images. The three highlighted
rectangles indicate OLCI images that were not used to generate the labelled data. The resulting map demonstrates the ViT’s capability to be used for
developing large-scale lead products. Due to hardware constraints, we were not able to use the full OLCI images available to produce a complete map.

FIGURE 7
Lead and Ice masks for three selected OLCI swaths indicated by the highlighted rectangles in Figure 6. Namely, regions (O) red rectangle, (P) blue
rectangle, and (Q) green rectangle. The ViT produce sound maps for these areas (although they are still influenced by the presence of clouds), despite
none of them being used to create the labelled dataset.
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sized cells or bins, with each cell representing a 1 km2 area. For each
OLCI image, the geographical coordinates were transformed to a
common projection (North Polar Stereographic) to ensure
uniformity across the dataset. The transformed coordinates were
then used to assign an OLCI pixel and its corresponding prediction
(lead or sea-ice) to a grid cell based on its location. Within each bin,
we then calculated the following quantities:

1. Lead Count: The number of pixels classified as leads
within the bin.

2. Ice Count: The number of pixels classified as sea ice
within the bin.

These counts were then used to calculate the fraction of leads in
each grid cell, approximately representing the proportion of the
cell area covered by open water (leads) as opposed to sea ice. The
use of binned statistics allowed us to efficiently process and
visualize the large volume of satellite data, providing a clear
and quantifiable representation of the lead and ice distribution
across the Arctic region. This method also facilitated the handling
of overlapping images and the integration of data from multiple
satellite passes.

The resulting map in Figure 6 illustrates the fraction of leads
in the Arctic sea ice, based on a selection of OLCI images
captured during March 2019. We have also performed roll-
outs on several images that were not used to generate our
labelled dataset. The locations of three examples are marked
with coloured rectangles on the binned map in Figure 6 and the
corresponding masks for individual OLCI swaths are shown
in Figure 7.

TABLE 5 Comparison of model roll-out time on the OLCI image in Figure 2.
Times are rounded up to the nearest second. We display the mean and
standard deviation across five different runs. Rolling-out with ViT is slow
compared to the baseline models (with the exception of Label Spreading,
which is slower).

Model Roll-out time (seconds)

Convolutional Neural Network (CNN) 14 ± 0

Random Forest 112 ± 3

Multilayer Perceptron (MLP) 13 ± 0

Label Spreading 3,006 ± 79

K-means Clustering 2 ± 0

Vision Transformer (ViT) 1,125 ± 27

FIGURE 8
Original OLCI swaths indicated by the highlighted rectangles in Figure 6. Namely, regions (R) red rectangle, (S) blue rectangle, and (T)
green rectangle.
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Due to hardware constraints and the time complexity
involved in rolling out the ViT model, we were not able to
incorporate all of the OLCI image data available for March
2019 to produce a binned map covering the entirety of the
Arctic in Figure 6. In Table 5, we see that the ViT is slow to
roll-out compared to the simpler baseline models we considered
(except Label Spreading, which is slower to run than ViT),
reflecting its structural complexity, designed to capture the
spatial relationships between pixels in image data. In future
work, we plan to build a full map by rolling out on all OLCI
images available for the period using High Performance
Computing resources.

Overall, the binnedmap in Figure 6 shows that ViTs, owing to their
exceptional ability for detecting leads, have the potential to be used for
automatically generating full lead products in the Arctic. Moreover, the
segmentation maps in Figure 7 show that their performance is robust,
detecting leads reliably even onOLCI images that were not used to build
our labelled dataset for training themodel (the original OLCI swaths are
shown in Figure 8). Some issues remain however, including their high
computational and memory cost for rolling out, and the fact that they
have a tendency to label leads more generously than they should (see
discussion in Section 4.3). In the future, we aim to refine our method
further and develop a useable lead detection product by addressing
these issues.

5 Discussion

5.1 Discrepancy between accuracy metrics
and roll-out performance

In our experiments, the Vision Transformer, while not
achieving the highest test accuracy among all the models we
evaluated, demonstrated the best roll-out performance
qualitatively (and in comparison to the results produced by
IRIS). This discrepancy leads us to ask why models such as
Random Forest produce high test accuracy, despite it
performing poorly on image roll-outs.

We believe that this is primarily due to the biases that are present
in our curated dataset, arising from our labelling method and the
initial data pre-processing. Thus, it is likely that models such as
Random Forest and Label Spreading, which yield good test accuracy
results, are fitting on the biases that exist in the dataset. One such
bias comes from the Waveform Mixture Algorithm (WMA) used to
produce the labels. Hence, a model that produces high accuracy on
the labelled data can only accurately output what the WMA would
have predicted, which itself is prone to errors.

This however, still does not explainwhy theViT performswell since
theywere trained on the same dataset.While an advantage of ViT is that
it is able to learn long-range correlations in an image unlike CNNs
(which only consider local correlations), since we only use 3 × 3 image
patches as inputs, it is hard to believe that it is exploiting this feature to
produce the excellent results that we see. In fact, we have also considered
using larger image patches of size 5 × 5, 11 × 11 and 33 × 33, however we
found that none of these performed as well as the architecture with
input size 3 × 3 that we ended up using. Thus, it would be interesting to
identify, out of all the components that make up the ViT architecture,
what is responsible for its ability to generalise well and not overfit on the

bias in the dataset. Understanding this may help us to develop a neural
network architecture specialised for our task that is cheaper to train or
run, addressing also the computational cost issue that we discuss next in
Section 5.2. On the other hand, wemay also ask if improving the quality
of the labelled dataset with smaller biases would result in improved roll-
out performances using simpler, cheaper methods such as
Random Forest.

5.2 Computational cost

According to the data presented in Table 5, the Vision
Transformer (ViT) requires a significantly longer time for
inference when processing the same dataset compared to other
models. Indeed, transformer-based models are often slower than
their counterparts, such as Convolutional Neural Networks (CNNs)
(Wang et al., 2022). This decreased speed can be attributed to their
extensive number of parameters and specific design features, such as
the attention mechanism.

The extended processing time compromises the model’s
scalability for analysing large datasets. For instance, achieving
monthly lead detection becomes a formidable challenge. This
limitation persists even when utilizing high-performance
processors (GPUs), indicating that the model’s speed is a critical
bottleneck for large-scale applications. In addition, longer
processing times also suggest an issue of higher carbon costs.

Further advancements could be achieved by converting the
model into a more compact version through techniques such as
pruning and quantization. Emerging methodologies for pruning and
quantization are applicable to deep learning models, including
ResNet50, YOLOv5, and Bidirectional Encoder Representations
from Transformers (BERT), as outlined by (Frantar and Alistarh,
2022). These methods can significantly reduce inference time while
only minimally impacting model performance.

5.3 Surface contamination

The issue of various types of contamination and coverage,
including land and cloud shadows, on the satellite footprint’s
surface can potentially compromise image quality and,
consequently, model performance. In our experiments, we
primarily selected images with minimal cloud cover for training.
However, completely avoiding cloud presence proved challenging.

During the roll-out, we observed that the Vision Transformer (ViT)
model exhibits superior performance in disregarding (thin) cloud cover
compared to other models. This discovery suggests potential paths for
enhancing cloud mask creation and detection techniques.

5.4 Lead definition

According to the validation procedure implemented by IRIS,
issues have been identified in the definition of leads, specifically
concerning the differentiation between refrozen leads and open
water leads. The classification provided by IRIS appears to be less
inclusive compared to that of the Vision Transformer (ViT), which
adopts a broader definition of leads, likely influenced by the labeling
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of its training data. The labels, derived from Synthetic Aperture
Radar (SAR) imagery, may contain inaccuracies resulting from off-
nadir contamination.

Further research could benefit from integrating high-resolution
(HR) imagery, both optical and microwave, to more accurately
delineate leads. Additionally, leveraging improved altimetry for
lead classification and examining other characteristics of leads,
such as thickness and type (e.g., refrozen), could offer deeper
insights and improvements in understanding and detecting leads
more accurately.

6 Conclusion

Understanding and tracking leads provides crucial insights into
the broader dynamics of sea ice and its interactions with oceanic and
atmospheric systems. Vision Transformers (ViTs), as a state-of-the-
art algorithm for image classification, have shown promising results
in addressing this issue. Our findings indicate that although ViTs do
not achieve the best performance on the testing set, they can identify
leads with greater sensitivity than other models, including CNNs,
MLPs, K-Means clustering, Label Spreading, and Random Forests.
This is particularly evident in scenarios where leads are not prevalent
in ice-covered regions. Furthermore, ViTs have the potential to be
used in creating a monthly lead product, provided that issues related
to cloud contamination and lead definition can be more
accurately addressed.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author. The code and example data can be
found in the Github repo: https://github.com/totony4real/Vit-Sea-
ice-and-lead-classifier.

Author contributions

WC: Writing–original draft, Writing–review and editing. MT:
Writing–original draft, Writing–review and editing. RW:
Writing–original draft, Writing–review and editing. ST:
Writing–original draft, Writing–review and editing. DB:
Writing–review and editing. CD: Writing–review and editing. AF:
Writing–review and editing. TJ: Writing–review and editing. JL:
Writing–review and editing. IL: Writing–review and editing. SL:
Writing–review and editing. DN: Writing–review and editing. WL:
Writing–review and editing. CN: Writing–review and editing. JS:
Writing–review and editing. LH: Writing–review and editing. MD:
Writing–review and editing.

Funding

The author(s) declare that financial support was received for
the research, authorship, and/or publication of this article. WC
and MT acknowledge support from ESA (Clev2er: CRISTAL
LEVel-2 procEssor prototype and R&D); MT acknowledges
support from (\#ESA/AO/1-9132/17/NL/MP, \#ESA/AO/1-
10061/19/I-EF, SIN’XS: Sea Ice and Iceberg and Sea-ice
Thickness Products Inter-comparison Exercise) and NERC
(\#NE/T000546/1 761 \and \#NE/X004643/1). ST
acknowledges support from a Department of Defense
Vannevar Bush Faculty Fellowship held by Prof. Andrew
Stuart, and by the SciAI Center, funded by the Office of Naval
Research (ONR), under Grant Number N00014-23-1-2729. CN
acknowledges support from NERC \#NE/S007229/1. RW andMT
secured funding to initiate the study via the UCL MAPS Research
Internship fund. RW and JS acknowledge funding from the
NERC DEFIANT grant (\#NE/W004712/1), the European
Union’s Horizon 2020 research and innovation programme via
project CRiceS (grant no. 101003826) and European Space
Agency NEOMI grant 4000139243/22/NL/SD. JS acknowledge
funding from the Canada C150 grant 50296. JL acknowledges
support from the INTERAAC project under Grant 328957 from
the Research Council of Norway (RCN) and from the Fram
Centre program for Sustainable Development of the Arctic
Ocean (SUDARCO) under Grant 2551323.

Acknowledgments

MT and WC thank the UCL students of the module Artificial
Intelligence for Earth Observation (AI4EO) promotion 2023/
2024 who contributed to the IRIS surface classification shown
in Figure 4.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Asadi, N., Scott, K. A., Komarov, A. S., Buehner, M., and Clausi, D. A. (2020).
Evaluation of a neural network with uncertainty for detection of ice and water in sar
imagery. IEEE Trans. Geoscience Remote Sens. 59, 247–259. doi:10.1109/tgrs.2020.
2992454

Bij de Vaate, I., Martin, E., Slobbe, D. C., Naeije, M., and Verlaan, M. (2022). Lead
detection in the arctic ocean from Sentinel-3 satellite data: a comprehensive assessment
of thresholding and machine learning classification methods. Mar. Geod. 45, 462–495.
doi:10.1080/01490419.2022.2089412

Frontiers in Remote Sensing frontiersin.org15

Chen et al. 10.3389/frsen.2024.1401653

https://github.com/totony4real/Vit-Sea-ice-and-lead-classifier
https://github.com/totony4real/Vit-Sea-ice-and-lead-classifier
https://doi.org/10.1109/tgrs.2020.2992454
https://doi.org/10.1109/tgrs.2020.2992454
https://doi.org/10.1080/01490419.2022.2089412
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2024.1401653


Dawson, G., Landy, J., Tsamados, M., Komarov, A. S., Howell, S., Heorton, H., et al.
(2022). A 10-year record of arctic summer sea ice freeboard from cryosat-2. Remote
Sens. Environ. 268, 112744. doi:10.1016/j.rse.2021.112744

Denton, A. A., and Timmermans, M.-L. (2022). Characterizing the sea-ice floe size
distribution in the Canada basin from high-resolution optical satellite imagery.
Cryosphere 16, 1563–1578. doi:10.5194/tc-16-1563-2022

Donlon, C., Berruti, B., Buongiorno, A., Ferreira, M.-H., Féménias, P., Frerick,
J., et al. (2012). The global monitoring for environment and security (gmes)
Sentinel-3 mission. Remote Sens. Environ. 120, 37–57. doi:10.1016/j.rse.2011.
07.024

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
et al. (2020).An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929.

ESA-PhiLab (2024). Iris - a toolbox for interferometric sar image reconstruction,
analysis, and visualization. Available at: https://github.com/ESA-PhiLab/iris (Accessed
February 26, 2024).

European Space Agency (2011). CryoSat-2 product handbook. Available at: https://
earth.esa.int/eogateway/documents/20142/37627/CryoSat-Baseline-D-Product-
Handbook.pdf.

European Space Agency (2022). Sentinel-3 SRAL land user handbook. Available at:
h t t p s : / / s e n t i n e l . e s a . i n t / d o c um e n t s / 2 4 7 9 0 4 / 4 8 7 1 0 8 3 / S e n t i n e l -
3+SRAL+Land+User+Handbook+V1.1.pdf.

Frantar, E., and Alistarh, D. (2022). Optimal brain compression: a framework for
accurate post-training quantization and pruning. Adv. Neural Inf. Process. Syst. 35,
4475–4488. doi:10.48550/arXiv.2208.11580

Guo,W., Itkin, P., Singha, S., Doulgeris, A. P., Johansson, M., and Spreen, G. (2022). Sea
ice classification of terrasar-x scansar images for the mosaic expedition incorporating per-
class incidence angle dependency of image texture. Cryosphere Discuss. doi:10.5194/tc-17-
1279-2023

Han, Y., Liu, Y., Hong, Z., Zhang, Y., Yang, S., and Wang, J. (2021). Sea ice image
classification based on heterogeneous data fusion and deep learning. Remote Sens. 13,
592. doi:10.3390/rs13040592

Heorton, H. D., Tsamados, M., Cole, S., Ferreira, A. M., Berbellini, A., Fox, M., et al.
(2019). Retrieving sea ice drag coefficients and turning angles from in situ and satellite
observations using an inverse modeling framework. J. Geophys. Res. Oceans 124,
6388–6413. doi:10.1029/2018jc014881

Ho, T. K. (1995). Random decision forests. Proc. 3rd Int. Conf. document analysis
Recognit. (IEEE) 1, 278–282.

Hoffman, J. P., Ackerman, S. A., Liu, Y., and Key, J. R. (2019). The detection and
characterization of arctic sea ice leads with satellite imagers. Remote Sens. 11, 521.
doi:10.3390/rs11050521

Hoffman, J. P., Ackerman, S. A., Liu, Y., Key, J. R., and McConnell, I. L. (2021).
Application of a convolutional neural network for the detection of sea ice leads. Remote
Sens. 13, 4571. doi:10.3390/rs13224571

Horvat, C., Buckley, E., Stewart, M., Yoosiri, P., and Wilhelmus, M. M. (2023). Linear
ice fraction: sea ice concentration estimates from the icesat-2 laser altimeter. EGUsphere
2023, 1–18. doi:10.5194/egusphere-2023-2312

Horvat, C., Roach, L. A., Tilling, R., Bitz, C. M., Fox-Kemper, B., Guider, C., et al.
(2019). Estimating the sea ice floe size distribution using satellite altimetry: theory,
climatology, and model comparison. Cryosphere 13, 2869–2885. doi:10.5194/tc-13-
2869-2019

Huang, Y., Ren, Y., and Li, X. (2024). Deep learning techniques for enhanced sea-ice
types classification in the beaufort sea via sar imagery. Remote Sens. Environ. 308,
114204. doi:10.1016/j.rse.2024.114204

Hutter, N., and Losch, M. (2020). Feature-based comparison of sea ice deformation
in lead-permitting sea ice simulations. Cryosphere 14, 93–113. doi:10.5194/tc-14-93-
2020

Kacimi, S., and Kwok, R. (2021). Three years of snow depth and ice thickness from
icesat-2 and cryosat-2. AGU Fall Meet. Abstr. 2021.

Kaleschke, L., Richter, A., Burrows, J., Afe, O., Heygster, G., Notholt, J., et al.
(2004). Frost flowers on sea ice as a source of sea salt and their influence on
tropospheric halogen chemistry. Geophys. Res. Lett. 31. doi:10.1029/
2004gl020655

Kern, S., Lavergne, T., Notz, D., Pedersen, L. T., Tonboe, R. T., Saldo, R., et al.
(2019). Satellite passive microwave sea-ice concentration data set intercomparison:
closed ice and ship-based observations. Cryosphere 13, 3261–3307. doi:10.5194/tc-
13-3261-2019

Khaleghian, S., Ullah, H., Kræmer, T., Eltoft, T., and Marinoni, A. (2021). Deep
semisupervised teacher–student model based on label propagation for sea ice
classification. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 14,
10761–10772. doi:10.1109/jstars.2021.3119485

Koo, Y., Xie, H., Kurtz, N. T., Ackley, S. F., and Wang, W. (2023). Sea ice surface type
classification of icesat-2 atl07 data by using data-driven machine learning model: ross
sea, antarctic as an example. Remote Sens. Environ. 296, 113726. doi:10.1016/j.rse.2023.
113726

Kwok, R. (2018). Arctic sea ice thickness, volume, and multiyear ice coverage: losses
and coupled variability (1958–2018). Environ. Res. Lett. 13, 105005. doi:10.1088/1748-
9326/aae3ec

Landy, J. C., Dawson, G. J., Tsamados, M., Bushuk, M., Stroeve, J. C., Howell, S. E.,
et al. (2022). A year-round satellite sea-ice thickness record from cryosat-2. Nature 609,
517–522. doi:10.1038/s41586-022-05058-5

Laxon, S., Peacock, H., and Smith, D. (2003). High interannual variability of sea ice
thickness in the arctic region. Nat. 2003 425, 947–950. doi:10.1038/nature02050

LeCun, Y., and Bengio, Y. (1995). Convolutional networks for images, speech, and
time series. Handb. brain theory neural Netw. 3361, 1995.

Lee, S., Kim, H.-c., and Im, J. (2018). Arctic lead detection using a waveform mixture
algorithm from cryosat-2 data. Cryosphere 12, 1665–1679. doi:10.5194/tc-12-1665-2018

Liang, Z., Pang, X., Ji, Q., Zhao, X., Li, G., and Chen, Y. (2022). An entropy-weighted
network for polar sea ice open lead detection from Sentinel-1 sar images. IEEE Trans.
Geoscience Remote Sens. 60, 1–14. doi:10.1109/tgrs.2022.3169892

Lindsay, R., and Schweiger, A. (2015). Arctic sea ice thickness loss determined using
subsurface, aircraft, and satellite observations. Cryosphere 9, 269–283. doi:10.5194/tc-9-
269-2015

Lüpkes, C., Vihma, T., Birnbaum, G., andWacker, U. (2008). Influence of leads in sea
ice on the temperature of the atmospheric boundary layer during polar night. Geophys.
Res. Lett. 35. doi:10.1029/2007gl032461

MacQueen, J. (1967). Some methods for classification and analysis of multivariate
observations. Proc. fifth Berkeley symposium Math. statistics Probab. 1, 281–297.

Marcq, S., and Weiss, J. (2012). Influence of sea ice lead-width distribution on
turbulent heat transfer between the ocean and the atmosphere. Cryosphere 6, 143–156.
doi:10.5194/tc-6-143-2012

Massom, R. A. (1988). The biological significance of open water within the sea ice
covers of the polar regions. Endeavour 12, 21–27. doi:10.1016/0160-9327(88)90206-2

Muchow, M., Schmitt, A. U., and Kaleschke, L. (2021). A lead-width distribution for
antarctic sea ice: a case study for the weddell sea with high-resolution Sentinel-2 images.
cryosphere 15, 4527–4537. doi:10.5194/tc-15-4527-2021

Mugunthan, J. S. (2023). Evaluation ofmachine learning algorithms for the classification
of lake ice and open water from Sentinel-3 sar altimetry waveforms. UWSpace.

Murtagh, F. (1991). Multilayer perceptrons for classification and regression.
Neurocomputing 2, 183–197. doi:10.1016/0925-2312(91)90023-5

NASA (2023). Snap data processors - radiance-to-reflectance conversion algorithm
specification.

Ólason, E., Rampal, P., and Dansereau, V. (2021). On the statistical properties of sea-
ice lead fraction and heat fluxes in the arctic. Cryosphere 15, 1053–1064. doi:10.5194/tc-
15-1053-2021

Perovich, D., Grenfell, T., Light, B., and Hobbs, P. (2002). Seasonal evolution of the
albedo of multiyear arctic sea ice. J. Geophys. Res. Oceans 107, SHE–20. doi:10.1029/
2000jc000438

Petty, A. A., Bagnardi, M., Kurtz, N., Tilling, R., Fons, S., Armitage, T., et al. (2021).
Assessment of icesat-2 sea ice surface classification with Sentinel-2 imagery:
implications for freeboard and new estimates of lead and floe geometry. Earth Space
Sci. 8, e2020EA001491. doi:10.1029/2020ea001491

Qiu, Y., Li, X.-M., and Guo, H. (2023). Spaceborne thermal infrared observations of
arctic sea ice leads at 30 m resolution. EGUsphere, 1–33.

Qu, M., Pang, X., Zhao, X., Lei, R., Ji, Q., Liu, Y., et al. (2021). Spring leads in the
beaufort sea and its interannual trend using terra/modis thermal imagery. Remote Sens.
Environ. 256, 112342. doi:10.1016/j.rse.2021.112342

Quartly, G. D., Rinne, E., Passaro, M., Andersen, O. B., Dinardo, S., Fleury, S., et al.
(2019). Retrieving sea level and freeboard in the arctic: a review of current radar
altimetry methodologies and future perspectives. Remote Sens. 11, 881. doi:10.3390/
rs11070881

Reiser, F., Willmes, S., and Heinemann, G. (2020). A new algorithm for daily sea ice
lead identification in the arctic and antarctic winter from thermal-infrared satellite
imagery. Remote Sens. 12, 1957. doi:10.3390/rs12121957

Ren, Y., Li, X., Yang, X., and Xu, H. (2021). Development of a dual-attention u-net
model for sea ice and open water classification on sar images. IEEE Geoscience Remote
Sens. Lett. 19, 1–5. doi:10.1109/lgrs.2021.3058049

Stroeve, J., and Notz, D. (2018). Changing state of arctic sea ice across all seasons.
Environ. Res. Lett. 13, 103001. doi:10.1088/1748-9326/aade56

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al. (2017).
Attention is all you need. Adv. neural Inf. Process. Syst. 30. doi:10.48550/arXiv.1706.03762

von Albedyll, L., Hendricks, S., Hutter, N., Murashkin, D., Kaleschke, L., Willmes, S.,
et al. (2023). Lead fractions from sar-derived sea ice divergence during mosaic.
Cryosphere Discuss. 2023, 1–39. doi:10.5194/tc-18-1259-2024

Wang, X., Zhang, L. L., Wang, Y., and Yang, M. (2022). “Towards efficient vision
transformer inference: a first study of transformers on mobile devices,” in Proceedings
of the 23rd Annual International Workshop on Mobile Computing Systems and
Applications, Toronto, ON, Canada, 1–7.

Frontiers in Remote Sensing frontiersin.org16

Chen et al. 10.3389/frsen.2024.1401653

https://doi.org/10.1016/j.rse.2021.112744
https://doi.org/10.5194/tc-16-1563-2022
https://doi.org/10.1016/j.rse.2011.07.024
https://doi.org/10.1016/j.rse.2011.07.024
https://github.com/ESA-PhiLab/iris
https://earth.esa.int/eogateway/documents/20142/37627/CryoSat-Baseline-D-Product-Handbook.pdf
https://earth.esa.int/eogateway/documents/20142/37627/CryoSat-Baseline-D-Product-Handbook.pdf
https://earth.esa.int/eogateway/documents/20142/37627/CryoSat-Baseline-D-Product-Handbook.pdf
https://sentinel.esa.int/documents/247904/4871083/Sentinel-3+SRAL+Land+User+Handbook+V1.1.pdf
https://sentinel.esa.int/documents/247904/4871083/Sentinel-3+SRAL+Land+User+Handbook+V1.1.pdf
https://doi.org/10.48550/arXiv.2208.11580
https://doi.org/10.5194/tc-17-1279-2023
https://doi.org/10.5194/tc-17-1279-2023
https://doi.org/10.3390/rs13040592
https://doi.org/10.1029/2018jc014881
https://doi.org/10.3390/rs11050521
https://doi.org/10.3390/rs13224571
https://doi.org/10.5194/egusphere-2023-2312
https://doi.org/10.5194/tc-13-2869-2019
https://doi.org/10.5194/tc-13-2869-2019
https://doi.org/10.1016/j.rse.2024.114204
https://doi.org/10.5194/tc-14-93-2020
https://doi.org/10.5194/tc-14-93-2020
https://doi.org/10.1029/2004gl020655
https://doi.org/10.1029/2004gl020655
https://doi.org/10.5194/tc-13-3261-2019
https://doi.org/10.5194/tc-13-3261-2019
https://doi.org/10.1109/jstars.2021.3119485
https://doi.org/10.1016/j.rse.2023.113726
https://doi.org/10.1016/j.rse.2023.113726
https://doi.org/10.1088/1748-9326/aae3ec
https://doi.org/10.1088/1748-9326/aae3ec
https://doi.org/10.1038/s41586-022-05058-5
https://doi.org/10.1038/nature02050
https://doi.org/10.5194/tc-12-1665-2018
https://doi.org/10.1109/tgrs.2022.3169892
https://doi.org/10.5194/tc-9-269-2015
https://doi.org/10.5194/tc-9-269-2015
https://doi.org/10.1029/2007gl032461
https://doi.org/10.5194/tc-6-143-2012
https://doi.org/10.1016/0160-9327(88)90206-2
https://doi.org/10.5194/tc-15-4527-2021
https://doi.org/10.1016/0925-2312(91)90023-5
https://doi.org/10.5194/tc-15-1053-2021
https://doi.org/10.5194/tc-15-1053-2021
https://doi.org/10.1029/2000jc000438
https://doi.org/10.1029/2000jc000438
https://doi.org/10.1029/2020ea001491
https://doi.org/10.1016/j.rse.2021.112342
https://doi.org/10.3390/rs11070881
https://doi.org/10.3390/rs11070881
https://doi.org/10.3390/rs12121957
https://doi.org/10.1109/lgrs.2021.3058049
https://doi.org/10.1088/1748-9326/aade56
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.5194/tc-18-1259-2024
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2024.1401653


Wernecke, A., and Kaleschke, L. (2015). Lead detection in arctic sea ice from cryosat-
2: quality assessment, lead area fraction and width distribution. Cryosphere 9,
1955–1968. doi:10.5194/tc-9-1955-2015

Wilchinsky, A. V., Heorton, H. D., Feltham, D. L., and Holland, P. R. (2015). Study of
the impact of ice formation in leads upon the sea ice pack mass balance using a new
frazil and grease ice parameterization. J. Phys. Oceanogr. 45, 2025–2047. doi:10.1175/
jpo-d-14-0184.1

Willmes, S., and Heinemann, G. (2015a). Pan-arctic lead detection from
modis thermal infrared imagery. Ann. Glaciol. 56, 29–37. doi:10.3189/
2015aog69a615

Willmes, S., and Heinemann, G. (2015b). Sea-ice wintertime lead frequencies and
regional characteristics in the arctic, 2003–2015. Remote Sens. 8, 4. doi:10.3390/
rs8010004

Zhou, D., Yu, Z., Xie, E., Xiao, C., Anandkumar, A., Feng, J., et al. (2022).
“Understanding the robustness in vision transformers,” in International
Conference on Machine Learning (PMLR), Honolulu, United States, 23-29 July
2023, 27378–27394.

Zhu, X., and Ghahramani, Z. (2002). Learning from labeled and unlabeled data with
label propagation. Pennsylvania, United States: Carnegie Mellon University. Technical
Report. CMU-CALD-02-106.

Frontiers in Remote Sensing frontiersin.org17

Chen et al. 10.3389/frsen.2024.1401653

https://doi.org/10.5194/tc-9-1955-2015
https://doi.org/10.1175/jpo-d-14-0184.1
https://doi.org/10.1175/jpo-d-14-0184.1
https://doi.org/10.3189/2015aog69a615
https://doi.org/10.3189/2015aog69a615
https://doi.org/10.3390/rs8010004
https://doi.org/10.3390/rs8010004
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2024.1401653

	Co-located OLCI optical imagery and SAR altimetry from Sentinel-3 for enhanced Arctic spring sea ice surface classification
	1 Introduction
	1.1 Sea ice and leads
	1.2 Leads from space
	1.3 AI methods

	2 Datasets
	2.1 Radar altimetry
	2.2 Optical imagery

	3 Methods
	3.1 Vision transformer (ViT)
	3.2 Baseline models
	3.2.1 Supervised 1: convolutional neural networks (CNNs)
	3.2.2 Supervised 2: random forest
	3.2.3 Supervised 3: multilayer perceptron (MLP)
	3.2.4 Semi-supervised: label spreading
	3.2.5 Unsupervised: K-means clustering

	3.3 Generation of labelled dataset

	4 Results
	4.1 Quantitative assessment on the test set
	4.2 Qualitative assessment by full image roll-out
	4.3 Comparison with IRIS: intelligently reinforced image segmentation
	4.4 Mapping of sea ice leads and ice distribution: 2019 march binned map

	5 Discussion
	5.1 Discrepancy between accuracy metrics and roll-out performance
	5.2 Computational cost
	5.3 Surface contamination
	5.4 Lead definition

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


