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With the ongoing expansion of global observation networks, it is expected that we
shall routinely analyze records of geophysical variables such as temperature from
multiple collocated instruments. Validating datasets in this situation is not a trivial task
because every observing system has its own bias and noise. Triple collocation is a
general statistical framework to estimate the error characteristics in three or more
observational-based datasets. In a triple colocation analysis, several metrics are
routinely reported but traditional multiple-panel plots are not the most effective
way to display information. A new formula of error variance is derived for connecting
the key terms in the triple collocation theory. A diagram based on this formula is
devised to facilitate triple collocation analysis of any data from observations, as
illustrated using three aerosol optical depth datasets from the recent Aerosol Cloud
meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE). An
observational-based skill score is also derived to evaluate the quality of three datasets
by taking into account both error variance and correlation coefficient. Several
applications are discussed and sample plotting routines are provided.
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1 Introduction

The development of atmospheric sciences and other branches of Earth system science is
inextricably linked to our capability of improving and expanding current atmospheric
observing systems (Crutzen and Ramanathan, 2000; Stith et al., 2018; Bluestein et al., 2022).
For instance, a dense weather station network provides us with synoptic weather conditions
while sounding profiles from radiosondes and dropsondes give us a wealth of information
for the vertical structure of the atmosphere over land and ocean (Stith et al., 2018). In
addition to in situ observations, remotely sensed instruments such as weather radars are
able to detect severe weather systems in a timely manner. The advent of satellite
meteorology has reshaped our data inventory by making global observations possible
(Atlas, 1997). Research aircraft in field campaigns provides a unique platform to collect
measurements from both in situ and remotely sensed instruments for specific research
problems with pressing societal needs (Bluestein et al., 2022).
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With more and more new observing systems available, it has
become commonplace for more than one instrument observing the
same geophysical variable at the same location. Data validation and
calibration then become necessary because no observing systems are
perfectly built. Stoffelen (1998) recognized this issue and proposed a
general statistical framework called triple collocation. For any
geophysical variables, triple collocation estimates the error
characteristics of three independent datasets without requiring any
dataset being the ground truth. Since then, themethod has been applied
to a wide range of variables such as soil moisture (e.g., Dorigo et al.,
2010), sea surface temperature (e.g., O’Carroll et al., 2008), and leaf area
index (e.g., Fang et al., 2012), to name a few. The theory of triple
collocation has also been clarified, tested, and extended over the years
(e.g., Zwieback et al., 2012; Draper et al., 2013; McColl et al., 2014; Su
et al., 2014; Yilmaz andCrow, 2014; Gruber et al., 2016; Tsamalis, 2022).

Several performance metrics such as standard error (Stoffelen,
1998) and correlation coefficient (McColl et al., 2014) have been
developed for triple collocation analysis. These metrics are usually
reported in the form of a map that shows one aspect such as a metric
for one dataset (e.g., Dorigo et al., 2010) or a figure that shows another
aspect for three datasets (e.g., Tsamalis, 2022). Multiple-panel plots
are common in the literature (e.g., McColl et al., 2014; Deng et al.,
2023) and some examples are given in Supplementary Material. But
this kind of plot is not the most effective way to summarize results. A
table that shows multiple aspects may help but different researchers
have varying designs and notations (e.g., Su et al., 2014). The purpose
of this study is to present a single diagram for the triple collocation
analysis that can succinctly compare multiple aspects of multiple
datasets. The diagram is facilitated by deriving a new formula of
error variance. Some applications of the new triple collocation
diagram are illustrated using datasets collected from a recent field
campaign, i.e., the Aerosol Cloud meTeorology Interactions oVer the
western ATlantic Experiment (ACTIVATE).

2 Methods

2.1 Classical and extended triple collocation

We first briefly review the derivation of classical and extended
triple collocation. An error model is needed to specify each dataset as
a function of the unknown ground truth (Zwieback et al., 2012). So
far in the literature, linear error models are the most popular type
with one example being the affine model,

xi � ai + biΘ + εi, (1)
where xi (i ∈ {1, 2, 3}) represents dataset i;Θ is the unknown ground
truth; ai, bi, and εi are the additive bias, multiplicative bias, and
random error from dataset i, respectively.

Based on the affine error model, the variance/covariance
equations for the collocated datasets are then given as.

Cov[xi, xj] � bibjVar Θ[ ] + biCov[Θ, εj] + bjCov Θ, εi[ ]
+ Cov[εi, εj], if i ≠ j, (2)

Var xi[ ] � b2iVar Θ[ ] + 2biCov Θ, εi[ ] + Var εi[ ], if i � j, (3)

where Var[xi] � σ2i is the total variance, Var[Θ] � σ2Θ is the truth
variance, and Var[εi] � σ2εi is the error variance. Note that

Cov[xi, xj] � Cov[xj, xi]. Three datasets result in three equations
for variance and three more for covariance, amounting to six
equations in total.

Three further assumptions are usually made to simplify the
equations (Gruber et al., 2020). First, the mean random error is
zero (E[εi] � 0). Second, the random error is uncorrelated with the
ground truth (Cov[εi,Θ] � 0). Third, the random error of different
datasets is uncorrelated with each other (Cov[εi, εj] � 0, i ≠ j). In
virtue of these assumptions, Eqs 2, 3 become.

Cov[xi, xj] � bibjσ
2
Θ, if i ≠ j, (4)

Var xi[ ] � b2i σ
2
Θ + σ2εi , if i � j. (5)

The six equations from Eqs. 4, 5 now have seven unknowns
(b1, b2, b3, σε1, σε2, σε3, and σΘ) so the system has no unique solution.
McColl et al. (2014) proposed that unknown variables can be
combined to reduce the number of unknowns. Thus, in theory,
the error variance can be solved using

σ2εi � σ2i − b2i σ
2
Θ. (6)

In practice, the signal variance b2i σ
2
Θ for different datasets (Eqs

7–9) can be computed from combining the covariance terms from
Eq. 4.

σ2
ε1
� Var x1[ ] − Cov x1, x2[ ]Cov x1, x3[ ]

Cov x2, x3[ ] , (7)

σ2ε2 � Var x2[ ] − Cov x1, x2[ ]Cov x2, x3[ ]
Cov x1, x3[ ] , (8)

σ2ε3 � Var x3[ ] − Cov x1, x3[ ]Cov x2, x3[ ]
Cov x1, x2[ ] . (9)

To extend the classical triple collocation analysis, McColl et al.
(2014) derived a new metric, the correlation coefficient, from the
ordinary least squares framework.

r1 � ±

�������������������
Cov x1, x2[ ]Cov x1, x3[ ]
Var x1[ ]Cov x2, x3[ ]

√
, (10)

r2 � ± sgn Cov x1, x3[ ]Cov x2, x3[ ]( )
�������������������
Cov x1, x2[ ]Cov x2, x3[ ]
Var x2[ ]Cov x1, x3[ ]

√
,

(11)

r3 � ± sgn Cov x1, x2[ ]Cov x2, x3[ ]( )
�������������������
Cov x1, x3[ ]Cov x2, x3[ ]
Var x3[ ]Cov x1, x2[ ]

√
,

(12)

where ri is correlation coefficient of the dataset i with respect to an
unknown ground truth, and sgn is signum function. Note that the
sign of all correlation coefficients is ambiguous but practically all
observing systems are positively correlated with the ground truth,
i.e., taking the positive root.

2.2 Basis of the triple collocation diagram

To construct the triple collocation diagram, an alternative error
variance equation is needed to connect all variance terms in Eq. 6
with the correlation coefficient (Eqs 10–12). To start with, we use the
following basic statistical identities (Dekking et al., 2005; Thomson
and Emery, 2014).
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Var fD ± h[ ] � f2Var D[ ], (13)
Var D ± E[ ] � Var D[ ] + Var E[ ] ± 2Cov D,E[ ], (14)

where f and h are constants; D and E are random variables.
Combining two identities (Eqs 13, 14) gives

Var fD ± gE[ ] � f2Var D[ ] + g2Var E[ ] ± 2fgCov D,E[ ], (15)
where g is a constant.

Applying the above identity (Eq. 15) to the error model Eq. 1
gives Eq. 16, and subsequently Eqs 17, 18.

Var xi − biΘ[ ] � Var xi[ ] + b2iVar Θ[ ] − 2biCov xi,Θ[ ], (16)
Var ai + εi[ ] � σ2i + b2i σ

2
Θ − 2biσΘσ i

Cov xi,Θ[ ]
σΘσ i

, (17)

σ2εi � σ2i + b2i σ
2
Θ − 2biσΘσ iri, (18)

where the left hand side (lhs) of Eq. 17 uses Eq. 1, the lhs of Eq. 18 uses
Eq. 13. On the right hand side (rhs) of Eq. 18, the correlation coefficient
ri between each datasetxi and the ground truthΘ follows the traditional
definition, which is the ratio of the covariance of two datasets to the
product of their corresponding standard deviations (Wilks, 2011). To
our knowledge, Eq. 18 is derived here for the first time.

The alternative error variance Eq. 18 is inspired by the Taylor
diagram (Taylor, 2001) which is based on the law of cosines. The
alternative equation also resembles the law of cosines (Figure 1A):
three sides for three standard deviation terms (error standard
deviation σεi, signal standard deviation biσΘ, and total standard
deviation σ i) and the angle ϕ between σ i and biσΘ for correlation
coefficient. Triple collocation estimates error properties of
observational-based datasets with respect to an unknown ground
truth; on the contrary, the Taylor diagram aims to summarize model
performance against an observational-based reference. Therefore,
the three sides become model standard deviation, reference standard

deviation, and the unbiased root-mean-square error between the
model and reference fields, and the angle is the correlation
coefficient between the two fields (Taylor, 2001).

We emphasize that all datasets are assumed to be positively
correlated with the ground truth in Eqs 10–12, i.e., taking the
positive root. Therefore, bi is also positive using Eq. 8 in McColl
et al. (2014). This assumption ensures that all standard deviation
terms are positive and ϕ is acute.

The original error variance Eq. 6 resembles the Pythagoras’
theorem (Figure 1B), a special case of the law of cosines. Therefore,
the angle between biσΘ and σεi has to be 90°. Note that there is
nothing mysterious about the right angle as it is merely a
consequence of the random error and ground truth being
uncorrelated (Cov[εi,Θ] � 0) from one of our assumptions. It is
clear that the alternative error variance equation is needed because
the original equation does not provide information on the angle ϕ.

To summarize, the alternative error variance equation
incorporates correlation coefficient, which is absent in the
original equation. The new equation forms the basis of the
proposed triple collocation diagram.

3 Data

To demonstrate applications of the new triple collocation
diagram, we focus on a measurement related to the abundance of
aerosol particles. Aerosols are highly variable in space and time
leading to high uncertainty in estimating total anthropogenic
radiative forcing (Forster et al., 2021). Three aerosol optical
depth (AOD) retrieval datasets are used in this study. AOD
quantifies the column-integrated aerosol loading, but more
specifically the sum of light scattering and absorption by aerosols
(Seinfeld and Pandis, 2006).

FIGURE 1
Geometrical meanings of (A) Eq. 18 and (B) Eq. 6. The error standard deviation σεi , signal standard deviation biσΘ, and total standard deviation σ i form
the three sides of a triangle, A, B, and C, respectively. The two sides biσΘ and σ i form an angle ϕ. In both cases, ϕ must be acute because in (A) the
correlation coefficient must be positive and in (B) there is a right angle.
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Two of the retrievals come from the Aerosol Cloud
meTeorology Interactions oVer the western ATlantic
Experiment (ACTIVATE) which is one of the National
Aeronautics and Space Administration (NASA) Earth Venture
Suborbital-3 (EVS-3) missions (Sorooshian et al., 2019; Sorooshian
et al., 2023). During ACTIVATE, two NASA Langley Research
Center aircraft, the low-flying HU-25 Falcon and high-flying King
Air, were strategically deployed to collect in-situ and remotely-
sensed measurements over the western North Atlantic Ocean.
From February 2020 to June 2022, 174 and 168 flights were
successfully completed by the King Air and Falcon, respectively.
Among these, 162 were joint flights. AOD was retrieved by two
remote sensing instruments onboard the King Air, the Research
Scanning Polarimeter (RSP) (Cairns et al., 1999; Cairns et al., 2003)
and Second Generation High Spectral Resolution Lidar (HSRL-2)
(Hair et al., 2008). The third retrieval comes from the Moderate
Resolution Imaging Spectroradiometer (MODIS). Two MODIS
sensors have been onboard the Terra and Aqua satellites since
1999 and 2002, respectively. The two satellites observe the Earth
along a sun-synchronous orbit at an altitude of around 700 km
with a period of 99 min, providing MODIS data at three nadir
spatial resolutions (Remer et al., 2005; Levy et al., 2013).

We compare AOD at 532 nm from the three retrievals. For
RSP, the aerosol properties are retrieved using the Microphysical
Aerosol Properties from Polarimetry (MAPP) algorithm

(Stamnes et al., 2018), which then become part of the level
2 aerosol product. For HSRL-2, AOD is derived using
extinction coefficients from the difference in molecular return
signals (Hair et al., 2008). The original 1-km level 2 RSP and
HSRL-2 AOD data are horizontally averaged to a spatial
resolution of 3 km, which results in 6,988 pairs. For MODIS,
we use the MODIS Collection 6.1 level 2 3-km aerosol product for
both satellites: MOD04_3K from Terra and MYD04_3K from
Aqua. This product is entirely retrieved using the Dark Target
(DT) algorithm (Remer et al., 2013). The native MODIS AOD at
550 nm is converted to 532 nm using the Ångström exponent
calculated from the MODIS AOD at 470 nm and 550 nm. For
each pair of RSP and HSRL-2 data, we collocate the nearest
MODIS data point within ± 60 min and 25 km, which results in
2,344 triplets for triple collocation analysis. All triplets are
collocated over the ocean.

4 Applications

4.1 A bird’s-eye view of the triple
collocation analysis

Based on the alternative error variance Eq. 18, a triple
collocation diagram is designed to display multiple aspects of
triple collocation analysis. A prototype is shown in Figure 2 with
three AOD datasets: RSP, HSRL-2, and MODIS. For comparison, an
additional figure (see Supplementary Figure S1) is prepared to
display the same information using the traditional multi-
panel method.

FIGURE 2
A sample diagram for displaying performance metrics of triple
collocation analysis. Three colors represent three different 532-nm
AOD datasets during ACTIVATE: RSP (blue), HSRL-2 (red), and MODIS
(orange). Three open circles are drawn for each dataset. The
radial distance between the origin and the circle on the polar grid is the
total (system) standard deviation σ i of that dataset (e.g., 0.105 for RSP);
the projection of the radial distance onto x-axis is the signal standard
deviation biσΘ (e.g., 0.084 for RSP); the project of the distance onto
y-axis is the error standard deviation σεi (e.g., 0.064 for RSP). The polar
angle between the total and signal standard deviations represents the
correlation coefficient of a dataset with respect to the ground truth ri
(e.g., 0.80 for RSP).

FIGURE 3
Same as Figure 2 but adding the three datasets after applying an
RSP data filter. The three original and filtered datasets are indicated by
circles and squares, respectively. Colored arrows indicate the changes
from original to filtered datasets.
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For those who are familiar with Taylor diagram, it is
straightforward to use the schematic from Figure 1 to recognize
the three standard deviation terms and correlation coefficient in
Figure 2. The circles on the polar grid represents the total standard
deviation. The projections of the total standard deviation on the
x-axis and y-axis represent the signal standard deviation and error
standard deviation, respectively. As a result, it is relatively easy to
compare the magnitudes for either signal or error
standard deviation.

During ACTIVATE, HSRL-2 has the smallest error standard
deviation (σεHSRL−2 � 0.027) and the highest correlation coefficient
(rHSRL−2 � 0.93) while RSP has the largest error standard deviation
(σεRSP � 0.064) and the lowest correlation coefficient (rRSP � 0.80)
among the three datasets. The different performance of RSP and
HSRL-2 is justified from the perspectives of retrieval algorithm and
instrument uncertainty. First, some assumptions in the RSP retrieval
algorithm are not warranted during the field campaign. For example,
the RSP algorithm assumes that all aerosols are spherical but the in-
situ instruments and HSRL-2 show that non-spherical sea salt and
dust are often detected in winter and summer, respectively. Second,
past field campaigns showed that, compared to the Sun photometer
measurements, the root-mean-squared difference for RSP and
HSRL-2 are ~ 0.04 (Fu et al., 2020) and ~ 0.01 (Shinozuka et al.,
2013), respectively.

Other metrics can also be easily estimated or computed from the
diagram. The values of total standard deviation can be computed
using σ i �

����������
σ2εi /(1 − r2i )

√
. The values of signal standard deviation can

then be computed using Eq. 6. Signal standard deviation is
important for computing the unbiased signal-to-noise ratio
(SNRub � (b2i σ2Θ)/σ2εi ) or unbiased noise-to-signal ratio
(NSRub � 1/SNRub), which indicates whether signal variations
can be set apart from noise variations (Gruber et al., 2016). Total

standard deviation is also important because fractional root mean
square error (Draper et al., 2013) is defined as the ratio of error
standard deviation to total standard deviation (fRMSE � σεi/σ i).
Total standard deviation also provides information on the
measurement sensitivity bi through bi � (riσ i)/σΘ (Rodgers and
Nicewander, 1988).

4.2 Tracking performance metrics

The triple collocation diagram is not limited to handling
three datasets only. For example, seeing that RSP exhibits the
largest errors among three datasets (Figure 2), a simple data
quality flag is devised to filter out data points with inferior
retrievals based on a performance cost function in the RSP
retrieval algorithm (Stamnes et al., 2018). Around 50% of
triplets are filtered out, and the difference before and after
applying the quality flag is shown in Figure 3. Filtered datasets
are indicated by squares without changing the color theme.
Colored arrows have also been added to follow the changes in
performance metrics. Appreciable improvement is seen with RSP
data after filtering as the correlation coefficient rises to 0.84 and
error standard deviation falls to 0.044 (or a 31% decrease). Note
also that if the correlation coefficient increases with the direction
of the arrow, the signal-to-noise ratio also increases. An
additional figure (see Supplementary Figure S2) is prepared to
display the same information using the traditional multi-
panel method.

4.3 Triple collocation skill score

While various performance metrics have been developed for the
triple collocation analysis, it is beneficial to summarize the different
aspects of the performance in a single measure. Similar problems
have led to the development of skill scores such as Brier skill score
and ranked probability skill score in weather and climate prediction
(Wilks, 2011) and efficiencies such as Nash–Sutcliffe efficiency and
Kling–Gupta efficiency in hydrology. For triple collocation, we
propose a skill score,

S � 1 − αi( )ri � 1 − σ2εi
σ2i + b2i σ

2
Θ

( )ri, (19)

where α is the normalized error variance adopted from Koh et al.
(2012). S ranges between 0 and 1.

The same datasets in Figure 3 are shown in Figure 4, which is
contoured with the proposed skill score (Eq. 19). Before filtering,
HSRL-2 owns the highest skill score; after filtering, RSP gains ~ 0.06
in skill score. While S is proportional to r by definition, it varies in a
more linear scale in the normal range between 0.1 and 0.9.

5 Discussion

The utility of displaying multiple performance metrics in the
triple collocation diagram deserves some discussion. The
ACTIVATE field campaign provides a rare opportunity to
validate the aerosol measurements from two airborne remote

FIGURE 4
Same as Figure 3 but is contoured with a triple collocation skill
score in brown.
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sensing instruments on the same platform. The common approach
is to compare with Sun photometer measurements from the Aerosol
Robotic Network (AERONET) but this is not feasible in our case
because no AERONET site is available in the remote ocean over the
study region. To get around this issue, we added one more
independent satellite dataset and proceeded with the triple
collocation analysis.

In the process, we got to be aware of the diverse applications in
the literature and the development of various performance metrics.
For example, r was developed as an alternative of fRMSE (McColl
et al., 2014). There are two reasons for showing multiple
performance metrics in our current approach. First, it is
impractical to predetermine a single performance metric for
users as the choice is usually field or application dependent. For
example, in aerosol studies, conventionally people are more
concerned about the error standard deviation of an instrument
compared to the Sun photometer because this quantity can be used
to estimate the uncertainty of aerosol radiative forcing (Hansen
et al., 1995; Chylek et al., 2003; Mishchenko et al., 2004), which
remains the largest uncertainty of our future climate projection.
There are usually no preference on the performance metrics for
other variables, such as sea surface temperature and soil moisture.
Second, it is in line with a current triple collocation community
guideline (Gruber et al., 2020) to present a comprehensive picture
of error characteristics. As such, our strategy is to display the
various variance terms and correlation coefficient and provide
guidance to compute other metrics (such as SNRub and fRMSE) to
suit the needs of individual practitioners. Note that the
performance metrics including SNRub, NSRub, fRMSE, and S are
functions of r under the triple collocation assumptions listed
in Section 2.

6 Summary

Triple collocation is a statistical technique that considers three
collocated datasets of any geophysical variable and estimates the
error characteristics of each dataset without assuming any of the
three datasets represent ground truth. Triple collocation analysis
involves reporting several performance metrics which can at times
become cumbersome using traditional ways of presentation such as
multiple-panel plots and long tables.

An alternative equation is derived for the error variance which
forms the basis of the proposed triple collocation diagram as a
visual aid for condensing multiple aspects of the triple collocation
analysis into a two-dimensional polar plot. An observational-based
skill score is also obtained to compare performance of three
datasets by considering both error variance and correlation
coefficient. Three potential applications of the diagram, as
illustrated in Figures 2–4, are showcased and discussed. The
Taylor diagram has been used to compare the performance of
multiple models with an observational-based reference dataset.
The proposed diagram complements the Taylor diagram by
comparing the performance of multiple observational-based
datasets. For interested readers, a routine to draw the triple
collocation diagram with several examples is available (see Data
Availability Statement).
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