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Given the use of machine learning-based tools for monitoring the Water Quality
Indicators (WQIs) over lakes and coastal waters, understanding the properties of
such models, including the uncertainties inherent in their predictions is essential.
This has led to the development of two probabilistic NN-algorithms: Mixture
Density Network (MDN) and Bayesian Neural Network via Monte Carlo Dropout
(BNN-MCD). These NNs are complex, featuring thousands of trainable
parameters and modifiable hyper-parameters, and have been independently
trained and tested. The model uncertainty metric captures the uncertainty
present in each prediction based on the properties of the model—namely, the
model architecture and the training data distribution. We conduct an analysis of
MDN and BNN-MCD under near-identical conditions of model architecture,
training, and test sets, etc., to retrieve the concentration of chlorophyll-a
pigments (Chl a), total suspended solids (TSS), and the absorption by colored
dissolved organic matter at 440 nm (acdom (440)). The spectral resolutions
considered correspond to the Hyperspectral Imager for the Coastal Ocean
(HICO), PRecursore IperSpettrale della Missione Applicativa (PRISMA), Ocean
Colour and Land Imager (OLCI), and MultiSpectral Instrument (MSI). The
model performances are tested in terms of both predictive residuals and
predictive uncertainty metric quality. We also compared the simultaneous
WQI retrievals against a single-parameter retrieval framework (for Chla).
Ultimately, the models’ real-world applicability was investigated using a MSI
satellite-matchup dataset (N � 3,053) of Chla and TSS. Experiments show that
both models exhibit comparable estimation performance. Specifically, the
median symmetric accuracy (MdSA) on the test set for the different
parameters in both algorithms range from 30% to 60%. The uncertainty
estimates, on the other hand, differ strongly. MDN’s uncertainty estimate is
~50%, encompassing estimation residuals for 75% of test samples, whereas
BNN-MCD’s average uncertainty estimate is ~25%, encompassing the residuals
for 50% of samples. Our analysis also revealed that simultaneous estimation
results in improvements in both predictive performance and uncertainty metric
quality. Interestingly, the trends mentioned above hold across different sensor
resolutions, as well as experimental regimes. This disparity calls for additional
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research to determine whether such trends in model uncertainty are inherent to
specificmodels or can bemore broadly generalized across different algorithms and
sensor setups.
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1 Introduction

Satellite remote sensing has proven to be a valuable tool for
monitoring the biogeochemical properties and health status of
global water bodies, particularly in the face of ongoing climate
change and anthropogenic pressures (Michalak, 2016; Greb et al.,
2018). Remote sensing enables large-scale mapping of near-surface
Water Quality Indicators (WQIs), such as chlorophyll-a
concentration (Chl a), colored dissolved organic matter (acdom
(440)), and Total Suspended Solids (TSS) concentrations.
Moreover, enhanced spatial and temporal sampling via multi-
mission satellite data processing promotes their utility for
effective and timely decision-making leading to actionable
knowledge (Reynolds et al., 2023).

Over the last few decades, dozens of approaches have been
developed to retrieve WQIs from remote sensing, spanning
empirical band ratios (Mittenzwey et al., 1992; O’Reilly et al.,
1998), physics-based semi-analytical algorithms (Gons et al.,
2002; Maritorena et al., 2002; Gilerson et al., 2010; Siegel et al.,
2013), and machine learning (ML) algorithms like random forests or
support vector machines (Kwiatkowska and Fargion, 2003; Cao
et al., 2020). Many of these algorithms are regionally tuned and
demonstrate high accuracy when optimized with local datasets
corresponding to specific aquatic environments such as coastal
waters. However, these algorithms often fail to generalize across
environments with varying optical complexities due to the need for
adaptive selection of algorithm coefficients or parameters when
applied beyond their initial calibration region. One approach to
deal with regional variability is the development of optical water
types (OWT) based switching or blending schemes to combine
various regional models (Moore et al. 2014; Jackson et al. 2017;
Spyrakos et al. 2018). Another avenue to overcome local limitations
is to develop neural networks with large, representative datasets.
NNs demonstrate promising capacities in handling samples from
diverse water conditions (Schiller and Doerffer, 1999; Gross et al.,
2000; Ioannou et al., 2011; Vilas et al., 2011; Jamet et al., 2012;
Kajiyama et al., 2018; Pahlevan et al., 2020; Smith et al., 2021;
Werther et al., 2022).

The primary hurdle in our ability to leverage the information
and predictions from such models/algorithms in human
monitoring activities are the various sources of uncertainties
present in these estimations. The first source of uncertainties in
such predictions are the uncertainties inherently present in the data,
including imperfect atmospheric correction (AC) (Moses et al.,
2017; Pahlevan et al., 2021a; IOCCG report, 2010), complex
variability in the composition and structure of water-column
constituents (IOCCG report, 2000), and the presence of signal
from neighboring natural/manmade targets (Sanders et al., 2001;
Odermatt et al., 2008; Castagna and Vanhellemont, 2022). The

second source of uncertainty for data-based product estimation
techniques stems from the data distribution used to design and
validate the methods. The performance of these techniques is
guaranteed only under the assumption that the training and test
distributions are similar, which cannot be strictly guaranteed in
satellite remote sensing datasets. These uncertainties can adversely
impact the reliability of the retrieved remote sensing products (e.g.,
Chl a, TSS, acdom (440)), casting doubt on the subsequent use of
these products. It is, therefore, crucial to quantify, understand, and
manage these uncertainties to ensure the robustness of the
interpretations and applications enabled by remote sensing
products (Werther and Burggraaff, 2023). To address this issue,
it is essential to identify an uncertainty metric which can
encapsulate the various uncertainty sources present in the data,
as well as the uncertainty injected by the estimation algorithms. In
this manuscript, we ignore the physical/data-based sources of
uncertainty and study the uncertainty present in the estimates
due to the properties of the recently introduced data-based
neural network models.

Most retrieval approaches are typically deterministic in nature
and do not inherently provide uncertainties associated with their
estimates. To overcome this limitation, these methods are coupled
with independent frameworks, such as optical water types (Neil
et al., 2019; Liu et al., 2021), to provide indirect estimates of
uncertainty. However, this integrated approach can introduce
additional complexities and can hamper the effectiveness/
interpretation of the uncertainty due to the disparate nature of
the combined methodologies. This scenario accentuates the need for
methods that can directly and effectively address uncertainty in their
fundamental structure. Despite their potential, neural network
models have largely remained unexplored in their capacity to
provide uncertainty information about a WQI estimate. To
bridge this gap, recent advancements leverage neural networks
built on the principles of probability theory, culminating in the
development of probabilistic neural networks. These networks
model the output as a probability distribution, and specifically
predict the parameters of a specific distribution as the output.
These approaches model the prediction uncertainties as degrees
of belief or confidence in each outcome, marking a critical shift from
point-based to probability-density-based modeling. These
methodological advancements have seen the application of two
probabilistic neural networks to aquatic remote sensing: the
Mixture Density Network (MDN) (Pahlevan et al., 2020; Smith
et al., 2021) and the Bayesian Neural Network based onMonte Carlo
Dropout (BNN-MCD) (Werther et al., 2022). Both these methods
outperform classical WQI estimation techniques for optical remote
sensing data. Despite their excellent performance on held-out test
sets, these model behaviors and operations are not easily
understood/interpreted. Given the complexity of these models,
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specific tools are required which can help end-users interpret the
quality and reliability of these predictions. One such tool is the
prediction uncertainty; both the MDN (Saranathan et al., 2023) and
the BNN-MCD (Werther et al., 2022) have a well-defined procedure
to capture the ML-specific uncertainty in the predictions/
estimations in a single metric. Despite the availability of such a
metric, much work needs to be done to understand the specific
properties of each model’s uncertainty metric, especially in
comparison to each other.

Recognizing these shortcomings, this study seeks to investigate
the recently developed MDN and BNN-MCD models
comprehensively. To ensure a consistent evaluation of their
performances in both multi- and hyperspectral domains, the two
models are analyzed under identical conditions - utilizing the same
parameter settings, training, and test datasets, etc. This analysis
permits a direct comparison of their performance and capabilities,
which in turn illuminates their optimal application. Notably, while
some prior approaches to WQI have focused on both single-
parameter and multi-parameter inversion schemes, the literature
lacks a clear comparison of the two schemes. Given that machine
learning algorithms are naturally designed to handle multi-
parameter estimations, it would be valuable to clearly identify the
effect of simultaneous inversion vis-à-vis an individual inversion
framework, our work aims to shed light on this important yet
unexplored area. We therefore evaluate the individual
performances of these models in retrieving a single WQI
(specifically Chla) and their ability to retrieve the same
parameter in combinations of WQIs, i.e., simultaneously. To
scrutinize the robustness of these models, we analyze them using
a community dataset referred to as GLObal Reflectance for Imaging
and optical sensing of Aquatic environments (GLORIA), containing
in situ measurements over inland and coastal water sites (Lehmann
et al., 2023). To span a wide range of spectral capabilities available
through current and future missions, we test these models at the
spectral resolutions of the MultiSpectral Instrument (MSI) (Drusch
et al., 2012), the Ocean and Land Colour Instrument (OLCI) (Nieke
et al., 2015), the PRecursore IperSpettrale della Missione Applicativa
(PRISMA) (Candela et al., 2016) and Hyperspectral Imager for
Coastal Ocean (HICO) (Lucke et al., 2011) in our experiments.

The main purpose of this in-depth analysis of the MDN and
BNN-MCD models is to increase our understanding of the
underlying probabilistic model assumptions, compare
performances on common datasets, and investigate the
uncertainty provision. In doing so, our study contributes to a
more comprehensive understanding of probability-density
estimating machine learning algorithms in satellite remote
sensing, paving the way for more reliable decision-making in
water quality monitoring, aquatic ecosystem assessment, and
coastal zone management.

2 Datasets

In this study, three different types of datasets are used for
analysis. The first dataset is made up of collocated in situ
measurements of remote sensing reflectance (Rrs) and WQIs and
was used for model creation and validation. Second, a matchup
dataset composed of satellite reflectance data is also considered. The

WQI measurements corresponding to each satellite Rrs were
performed in situ at (almost) the same time as the satellite
acquisitions. Finally, satellite images cubes are analyzed
qualitatively using both algorithms to get a sense of how these
models perform on these datasets.

2.1 GLORIA in situ dataset

The in situ dataset used in this study is GLORIA (Lehmann et al.,
2023). GLORIA contains paired measurements of spectral remote
sensing reflectance (Rrs) (Mobley, 1999), and various WQIs such as
Chl a, TSS, and acdom (440) from semi-globally distributed aquatic
systems. The dataset contains N = 7572 samples from all around the
world (the geographic locations of these samples are shown in
Figure 1). Not only is the GLORIA data the most geographically
diverse labeled WQI dataset available, but it also contains samples
from different water types, as evidenced by the distributions of the
various WQIs shown in Figure 2. The Rrs spectra from the GLORIA
dataset were convolved with the relative spectral response functions
of the satellite instruments of MSI, OLCI, HICO, and PRISMA. The
hyperspectral samples (i.e., at HICO and PRISMA resolutions) were
restricted to wavelengths larger than 401 nm to eliminate the Ultra-
Violet (UV)-blue portions of Rrs that are prone to highmeasurement
uncertainty in both in situ and satellite-derived measurements
(Wang and Gordon, 1994; Gilerson et al., 2022). Further, only a
small subset of GLORIA Rrs records covered the 350–400 nm
spectral region.

The spectral coverage was further restricted to spectral
bands <724 nm as the 400–724 nm range contains most
information content, and both in situ and MSI-derived matchup
Rrs data (see Section 2.2) beyond this range (i.e., in the near-infrared;
NIR) carry large uncertainties (Pahlevan et al., 2021a), adding noise
to subsequent analyses. To further ensure data quality, any spectra in
the GLORIA dataset that has been flagged as having issues like
(random) noise, sun-glint correction issues (baseline shift), or
instrument miscalibrations have eliminated from consideration.
The distribution of the values of the different WQIs in the
GLORIA dataset, showing the range of conditions covered, is
shown in Figure 2. It is important to mention that although
GLORIA contains approximately 7500 samples, not all samples
contain in situ measurements for all the WQIs. Therefore, for
each specific variable (e.g., Chl a), there are about 4000–5000
labeled samples (as shown in Figure 2A).

The samples in the GLORIA dataset are measured in the best-
case scenario, in terms of the techniques used and the measurement
environment chosen, etc., and are expected to have a very high SNR
(significantly higher than what is seen in satellite datasets). Due to its
comparatively high SNR, predictive efforts focused on these datasets
are expected to be more successful than when applied to noisier
satellite datasets [N.B.: While the samples in the GLORIA dataset are
expected to have a higher SNR, it should be noted that these
measurements are not error/noise-free. Possible sources of error
include random/systematic noise in field instrument measurements,
operation errors, non-ideal environmental conditions, and
inaccuracies in laboratory based Chla measurements.]. Satellite
data which are the primary data source for the application of
such models are expected to be significantly noisier but given the
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paucity of satellite Rrs with collocated measures of the WQI, in situ
datasets like GLORIA are being primarily used for model training
and evaluation.

2.2 Satellite matchup dataset

As was briefly mentioned in the previous section, while given
their widespread availability in situ datasets are primarily used
for machine learning model training and validation, these

statistics might not be directly transferable to satellite datasets.
To track/present the effect of satellite data acquisition on model
performance, we also test the model performance on an MSI
matchup dataset. The matchup dataset consists of Rrs spectra
which are extracted from atmospherically corrected MSI imagery
for which near concurrent in situ Chl a and TSS measurements
over multiple water bodies were assembled. The images were
processed using the Atmospheric Correction for OLI ’lite’
(ACOLITE) v20220222 (Vanhellemont and Ruddick, 2021),
which is one of the widely used correction methods for MSI

FIGURE 1
The geographic distribution of the samples in the GLORIA in situ database.

FIGURE 2
The statistical distribution of the various biogeochemical variables in the GLORIA in situ database.
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imagery (Pahlevan et al., 2022). The measurements for the
samples included in this dataset were obtained from various
databases across North America. This includes data from the
Chesapeake Bay, the Upper Klamath Lake (Oregon), the Great
Lakes in the United States, and Lakes Winnipeg and Simcoe in
Canada. The water constituent samples were obtained through
various methods, including routine state and federal monitoring
activities such as field visits and laboratory analyses1. The lake
data were primarily provided by the Environment and Climate
Change Canada (ECCC), while the TSS data was sourced from the
U.S. Water Quality Portal (WQP)2 and the Geological Survey’s
National Water Information System3. Water quality
measurements were then paired with the closest corresponding
satellite measurements at these locations. For each matchup
location, spatial constraints were introduced, and only pixels
in a 3x3-element window centered on the matchup locations were
considered. A matchup location was considered valid if ≥ 5 pixels
in the spatial window were considered valid water pixels (this
caused some nearshore matchup locations to be discarded)
(Pahlevan et al., 2020; Smith, et al., 2021). The median value
of the valid samples in the 3 × 3 matchup box is computed to
represent the satellite derived Rrs sample (Werdell and Bailey,
2005). Generally, a +/− 3 h time window from the satellite
overpass was permitted, for coastal matchups, and similar to
previous works (Pahlevan et al., 2021b), a same-day overpass was
required for inland waters.

2.3 Multispectral and hyperspectral
satellite data

Additionally, some well-studied satellite image cubes at both
multi- and hyperspectral resolutions were used to provide some
qualitative analysis of the model performance for satellite data. We
focus on images from the multispectral sensors of the Chesapeake
Bay, a large tidal estuary in the U.S. The images were processed using
the ACOLITE v20220222 (Vanhellemont and Ruddick, 2021) with
the same settings as in Saranathan et al. (2023). The Chesapeake Bay
image from MSI was acquired on 17 October 2020, and the OLCI
image was acquired on November 7th, 2016. For HICO, images of
two locations, namely, the Chesapeake Bay (September 20th, 2013)
and Lake Erie (September 8th , 2014) were used for the analysis. The
HICO images were atmospherically corrected using the SeaWiFS
Data Analysis System (SeaDAS v7.5.3) (Ibrahim et al., 2018)
following the same procedure (using the default options) as in
Pahlevan et al. (2021b). Of the PRISMA satellite, an image of the
turbid waters of Lake Trasimeno, Italy (July 25th, 2020) (Ludovisi
and Gaino, 2010; Bresciani et al., 2022) was processed and examined.
The PRISMA products for this sensor were downloaded and
reprojected using the associated Geometric Lookup Tables (GLT)

(Busetto and Ranghetti) to extract necessary information (such as
the band centers and full-width half maximums, and Sun and
viewing angles) required for atmospheric correction. Following
the estimation of these parameters atmospherically corrected
pixel Rrs was estimated using the Atmospheric and Topographic
Correction (ATCOR v.9.3.0) (Richter and Schläpfer, 2002)
technique with the same settings as in O’Shea et al. (2023).

3 Methods

3.1 Algorithms and settings

This subsection will briefly describe the MDN and BNN-MCD
models, we briefly describe their underlying theory, architecture,
and parameters. We will also describe here the core hyperparameter
settings for the two algorithms used in this manuscript.

3.1.1 Mixture Density Networks
The task of inferring target WQIs from Rrs is inherently an

inverse problem (Mobley, 1994). This presents a challenge as the
relationship between algorithm input (Rrs) and output (WQIs) is not
direct and may have multiple feasible solutions (Sydor et al., 2004).
Traditional methods struggle to handle this complexity and may
result in oversimplified solutions that overlook significant
relationships. Mixture Density Networks (MDNs) have emerged
as an effective strategy for handling these inverse problems
(Pahlevan et al., 2020; Smith et al., 2021). MDNs are capable of
outputting probability distributions - specifically a Gaussian
Mixture Model (GMM) (Bishop, 1994). Unlike single output
estimates from conventional approaches, GMMs describe an
entire range of possible outcomes as a probability distribution,
which is particularly advantageous for scenarios with multi-
modal output distributions. Provided with enough components,
GMMs have the capacity to model distributions of arbitrary
complexity (Sydor et al., 2004; Defoin-Platel and Chami, 2007).

Mathematically, a MDN estimates the target variable as an
explicit distribution conditioned on the input. As described, a
MDN models the output distribution as a GMM, as described
in Eq. 1:

p y
∣∣∣∣θ( ) � ∑k

j�1
πj pk y( ) where pk � N μk,Σk( )

s.t. πj  >  0 ∀ j; ∑k
j�1
πj � 1

(1)

where θ � πj, μj,Σj{ }K
j�1, are the parameters corresponding to the

GMM, wherein πj is the component probability, and μj and Σj are
the mean and variance corresponding to each of the individual
Gaussian components. During the training phase, the network is
optimized using a negative log-likelihood loss function. This loss
function is designed to minimize the discrepancy between the
MDN-estimated distribution and the true WQI values
corresponding to the samples in the training set. Upon training
completion, the MDN produces the components of the GMM, as
previously described for test samples. The final model estimation is
then derived from this probabilistic representation. This approach to
model training and application is consistent with methodologies

1 https://www.canada.ca/en/environment-climate-change/services/

freshwater-quality-monitoring/online-data.htm

2 https://www.waterqualitydata.us

3 https://nwis.waterdata.usgs.gov/nwis
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outlined in prior MDN publications (Balasubramanian et al., 2020;
Pahlevan et al., 2020; O’Shea et al., 2021; Smith et al., 2021). The
point estimate (ŷ) derived from the MDN output employs the
maximum likelihood principle, meaning that the output
corresponds to the mean of the dominant component in the
predicted distribution.

The associated MDN uncertainty is shown to be well
approximated by the standard deviation of the distribution
predicted by the MDN for a specific sample and parameter (Choi
et al., 2018). Since the output of the MDN is a GMM, the standard
deviation is given by Eq. 2:

σUNC �

























∑K
j�1
πjΣj +∑K

j�1
πj‖ μj −∑K

j�1
πkμk ‖2

√√
(2)

Finally, the estimated uncertainty is converted into a percentage
value relative to the predicted value (or the final point estimate from
the model) according to Eq. 3:

σUNC %( ) � σUNC

ŷ
( ) × 100 (3)

Recent work on MDN applications for the Chl a estimation has
shown that the estimated uncertainty metric successfully captures the
distortion effects in the data such as noisy data, novel test data, and
presence of atmospheric distortions in the data (Saranathan et al., 2023).

3.1.2 Bayesian Neural Network based on monte-
carlo dropout (BNN-MCD)

Bayesian Neural Networks (BNNs) build upon the architecture
of traditional neural networks by integrating probabilistic modeling
into each network component such as weights and biases. Since
BNN incorporate probabilistic modeling into each step of the
network architecture such models can leverage the probabilistic
nature of the model output. Since full Bayesian modeling is
computationally intractable, one approach for Bayesian
approximation of neural networks is the Monte Carlo Dropout
(MCD) strategy, as demonstrated by Werther et al. (2022). MCD
combines two components: Monte Carlo sampling and the
application of dropout to the network weights. The dropout
procedure operates by substituting each fixed weight (θi) in the
neural network with a binary distribution. This application results in
either zero or a determined value (θc) for a neural network
connection. Then, dropout is combined with Monte Carlo
sampling. With the dropout active the NNs are used to generate
S unique predictions for the various WQI from a single test Rrs

sample. Each of these S predictions stem from a unique variant of the
neural network, corresponding to a specific sample from the
network weight constellation. This diverse aggregation of
estimates results in a sample set from a probability distribution
(see Eq. 4) for each target variable, showcasing the confluence of
Monte Carlo sampling and dropout in the MCD approach:

p y
∣∣∣∣x,D( ) � 1

S
∑S
i�1
p y

∣∣∣∣x, θi( ) (4)

where x and D are the test sample and the training data distribution
respectively [see Werther et al. (2022) for more details]. A larger
value of S leads to a more diverse range of network variants and

associated target variable estimates, thus forming a more
comprehensive estimation of the statistics associated with the
probability distribution but comes at increased computation and
time cost. Sampling is then performed from all determined Gaussian
distributions y ~ N (μx,Σx), where μx represents the mean of the
variable and Σx stands for its standard deviation. Using the sampling
mentioned above creates a set of possible guesses
Sμ � [μ1x, μ2x, ...., μSx], the final estimate ŷ is the mean of the set Sμ,
while the uncertainty (σUNC) is the standard deviation of the set
described above. Again, the estimated uncertainty metric is
converted into a percentage as per Eq. 3.

3.1.3 Architecture details and training of the two
neural network models

To enable a robust comparison between the two probabilistic
NN algorithms described above, efforts were made to ensure all the
architectural hyperparameters associated with the model
implementation corresponding to each algorithm are kept in
common. In keeping with this effort, the base neural network,
i.e., the input and hidden layers for both the algorithm models
are made the same. The full details of this base neural network are
given in Table. 1. The only differences between the twomodels are in
the shape/structure of the output layer and the use of dropout even
in the output stage for the BNN-MCD. In terms of data
preprocessing, to stay consistent with prior work (Pahlevan et al.,
2020; O’Shea et al., 2021; Smith et al., 2021; Saranathan et al., 2023),
both the input data (i.e., Rrs) and the output data (WQIs) are scaled
to improve model performance. The same pre-processing steps are
used in both prediction pipelines. The Rrs data were scaled using a
simple inter-quartile range (IQR) scaling to minimize the effect of
the outliers. The output parameters (specifically Chl a and TSS)
contain values over a very large range (0–1000 mg/m3). To
minimize the effects of the larger magnitudes on model
performance, we first apply a simple log-scaling. The parameter
distributions post-log-scaling are shown in Figure 2 (the x-axis is in
the log-scale). Finally, the output variables are also scaled to fit in the
range [−1, 1] by using MinMax scaling. Both neural network models
are then implemented using Google’s TensorFlow framework
(Abadi et al., 2016) and the code is readily available on dedicated
repositories (on request).

TABLE 1 The architecture and training hyper-parameters of the Base Neural
Network used by both the MDN and BNN-MCD algorithms in this
manuscript.

Architectural Hyperparameters Values

Layers 8

Nodes/Layer 225

Activation ReLU

Dropout 0.25

l2-regularization 0.001

Training Hyperparameters Values

batch size 128

epochs 250

optimizer Adam
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The full prediction pipelines for the two algorithms are shown
schematically in Figure 3. As described above both pipelines use the
same preprocessing and base neural networks. The main intrinsic
model differences are the number of components in the output in
each network and the mode in which the output is estimated from
the distribution. An additional difference is that for the MDN,
ten models are trained, and the output is the median point
estimate of the ensemble. The BNN-MCD output is with the
MC-Dropout active as mentioned in Section 3.2. In our
experiments S was set to 100, and statistics performed as
mentioned above.

3.2 Evaluation strategies

This subsection outlines the various experiments
conducted to analyze the models corresponding to the two
probabilistic neural networks. First, we establish the metrics
used to evaluate the performance of these models in terms of
both predictive residuals and estimated uncertainty (Section.
3.2.1). We then proceed to evaluate the model performances
using the GLORIA in situ dataset (Section. 3.2.2). We further
gauge the generalization performance of the two models using a
leave-one-out approach (Section. 3.2.3), followed by

comparing the performance of single-parameter models to
that of multi-parameter models (Section. 3.2.4). The final
subsection is dedicated to the satellite matchup assessment
(Section. 3.2.5).

3.2.1 Evaluation metrics: Predictive performance
and uncertainty

The choice of metrics plays a key role in comparing the
performance of different models. For the WQI estimation we use
a variety of metrics to measure the difference between the true and
predicted values referred to as residuals.We thus consider a suite of
well-established metrics for measuring predictive (regression)
residuals. These metrics are similar to the ones used in previous
publications (Seegers et al., 2018; Pahlevan et al., 2020; O’Shea et al.,
2021; Smith et al., 2021; Werther et al., 2022), like the Root Mean
Squared Log Error (RMSLE) and Mean Absolute Error (MAE)
which are measures of the model’s average residuals in log and linear
space respectively. While such average measures are useful to
understand the performance over the full dataset, the average
operation is affected significantly by outliers. Whereas metrics
like Median Symmetric Accuracy (MdSA) and Signed Symmetric
Percentage Bias (SSPB), which contain a median operation are less
sensitive to outliers and provide a better estimation of model
performance on the bulk of the data. The slope metric provides

FIGURE 3
A schematic representation of the full prediction pipeline for the (A)MDN and (B) BNN-MCD, both pipelines leverage the same base neural network
defined in Table. 1.
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insight into the correlation between the true and predicted values
[For the exact mathematical formulation of the various metrics see
Supplementary Appendix SB.].

Additionally, the estimated uncertainties are compared using
the following metrics.

1. Sharpness (σUNC(%)): The sharpness σUNC(%) defined in Eq. 5
is the median of the uncertainties across all the samples in the
test set, from a specific prediction pipeline. The sharpness is
defined separately for each product WQI. This metric would
provide the user with insights into the (%) uncertainty associated
with a typical model prediction for a specific product at a chosen
spectral resolution from that dataset. Ideally, one would prefer to
have a low value for sharpness, and a value closer to 0 would
indicate that the model is completely confident in its prediction
for the specific sample.

σUNC %( ) � Md σ1UNC %( ), σ2UNC %( ) . . . . ., σNUNC %( )[ ]( ) (5)
where σ iUNC(%) represents the uncertainty associated with the ith

sample in the test set for a specific WQI.

2. The Coverage Factor (ρUNC) (%): is designed to gauge how
well the estimated uncertainty can serve as a reliable boundary for
the prediction error in a test set. Specifically, it checks how often the
true value (y) for a sample fall within a range defined by the
predicted value ŷ plus or minus the estimated uncertainty
(σUNC). The metric (Eq. 6) calculates the percentage of test
samples that meet this condition. Ideally, this percentage should
be close to 100%, indicating that the estimated uncertainty is an
accurate reflection of the prediction error (IOCCG report, 2019) for
all samples.

ρUNC � % of samples such that ŷ − σUNC ≤y≤ ŷ + σUNC (6)

The best-performing models will have simultaneously a low
value for sharpness along with a high value for the coverage factor.

3.2.2 Model training and held-out (test) set
assessment

The first experiment compares and contrasts the performance of
the two algorithms on the labeled GLORIA in situ dataset (see
Section 2.1 for details). The performance of the MDN and BNN-

TABLE 2 The different component subsets of the GLORIA dataset used for Leave-One-Out Validation [N.B.: Column-2 provides the GLORIA dataset IDs for
each left out dataset in the analysis.].

ID GLORIA Dataset ID Sample Locations # of samples

1 AlikasK_EE_UT-TO EU: Estonia, Sweden, Lithuania, Finland 182

2 AnsteeJ_AU_CSIRO AU: Australia 116

3 BarbosaCCF_BR_LabISA-INPE SA: Brazil 161

4 DivittorioC_US_WFU NA: USA (North Carolina) 105

5 FickeD_PL_APSL EU: Poland 200

6 GiardinoC_IT_ CNR-IREA EU: Italy 319

7 GitelsonAA_US_UNL NA: USA (Nebraska) 204

8 GrebSR_US_WDNR NA: USA (Wisconsin) 216

9 JametC_FR_ULCO-LOG EU: France, Spain, UK, Netherlands, Belgium
AS: Vietnam

681

10 LehmannMK_NZ_UOW_NZ_LK AU: New Zealand 195

11 LiL_US_IUPUI NA: USA (Indiana) 192

12 MaR_CN_NIGLAS AS: China 249

13 MatushitaB_JP_Tsukuba AS: Japan. China 235

14 Ngyu`enTTH_VN_VNU-HUS AS: Vietnam 109

15 OdermattD_CH_EAWAG EU: Switzerland 290

16 Ruiz-VerduAES_UVEG-CEDEX EU: Spain 224

17 SchallesJ_US_Creighton NA: USA (many states) 648

18 SeaBASS_US_NRL NA:USA 374

19 SeaBASS_US_USF Global 693

20 SimisSGH_NL_NIOO-KNAW EU: Netherlands 282

21 VanderWoudeA_US_NOAA-GLERL NA: USA
AS: Vietnam

506

22 YueL_CN_CUG AS: China 113
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MCD are tested for parameter retrievals and uncertainty estimation
for the three parameters of interest at the spectral resolution of all
four sensors (MSI, OLCI, HICO, and PRISMA). Further, the dataset
is divided into two groups using a 50: 50 split to create a training set
and a test set. The training set is used for training the models, while
the test is only used to validate model performance. Any missing
WQIs in the training dataset are imputed by using simple nearest-
neighbor imputations (Troyanskaya et al., 2001) [each GLORIA
sample (Rrs and WQI) is modeled as a point in high dimensional
space and using a nan-Euclidean distance (i.e., any NaN dimensions
in either sample are ignored) the nearest neighbors are identified.
Any missing values for a specific sample are the average of the
specific dimension over the nearest neighbors (ignoring NaNs)]
available as part of Python’s scikit-learn distribution (Pedregosa
et al., 2011). In this experiment, we chose to use an imputed training
set as opposed to filling missing values by a posterior estimation
method similar to previous attempts (Pahlevan et al., 2022; O’Shea
et al., 2023) to ensure that differences in the posterior estimation
methods do not contribute to differences in the performance of the
two prediction pipelines. The same training dataset with the missing
values filled in is used for training both models. The performance of
both models is tested in terms of both parameters as well as
uncertainty estimation on the common test set for the specific
sensor resolution. Note that no imputations were performed on
the test set. Rather, the performance for each WQI was estimated
using only the samples in the test set with in situ measurements for
the specific WQI. This is the reason the number of samples for each
WQI is a different number in the test set (see Table. 3). Further in the
manuscript the test set is also referred to as the held-out dataset as
these samples are held-out from the training for model validation.

3.2.3 Leave-one-out assessment
The results of the previous 50: 50 held-out experiment offer a

reasonable estimation of model performance when the training and

test distributions are similar. However, in practical applications, this
assumption may not consistently hold. More commonly, an
operational model is exposed to samples outside of the training
distribution or from new regions, which may include both familiar
and novel Rrs. To simulate such a scenario, we conducted several
Leave-One-Out (LOO) type experiments, similar to those previously
performed by (Werther et al., 2022; O’Shea et al., 2023). GLORIA
includes contributions from numerous researchers, labs, and field
campaigns. To assess the impact of novel samples, we iteratively
trained MDN and BNN-MCD versions by excluding samples from a
specific source or field campaign each time (see Table. 2 for details
on the individual datasets) and using the rest of the GLORIA
database for training. Similar to the previous section, imputation
is only carried out on the training samples before training. Further,
the samples left-out of training in a specific trial are referred to as the
left-out samples for that trial. We then evaluated the models’
performance on samples from the excluded regions (referred to
as left-out test set), computing and reporting both predictive
performance (using the MdSA metric mentioned in Section. 3.2.1
as the key metric) and estimated uncertainty.

It is important to note that some of these data sources contain in
situ data from various regions and timeframes (e.g., SeaWiFS Bio-
optical Archive and Storage System; SeaBASS). Additionally, not all
regions have in situ measurements for all the WQIs considered in
this manuscript, which limits our ability to evaluate the algorithm
performances for specific indicators within selected datasets. While
the LOO approach provides valuable insights into the model’s
capacity to handle novel data, it is inherently constrained by the
extent of variability captured within the GLORIA dataset.
Consequently, when applied globally, this method may encounter
locations where the model’s generalization capabilities significantly
deviate from those suggested by the GLORIA data. This underscores
the potential for encountering performance outliers not adequately
represented in the current dataset. Despite these limitations, this

TABLE 3 Comparison of the performance of theMDN and BNN-MCD across differentWQIs for the in situ data at various sensor resolutions. MAE is reported
in terms of the physical units of each parameter, i.e., mg m-3, g m-3, m-1 for Chl a (N � 2544), TSS (N � 2338), and acdom(440)(N � 2228), respectively. The
other metrics are either in % or unitless. The bolded values show the best performance achieved for a specific parameter-sensor combination.

Sensor Product MDN BNN-MCD

MdSA (%) SSPB (%) Slope RMSLE MAE MdSA (%) SSPB (%) Slope RMSLE MAE

MSI Chl a 30.2 6.6 0.85 0.72 40.4 35.39 0.06 0.84 0.68 27.2

TSS 42.1 6.4 0.65 0.90 16.3 44.89 5.52 0.63 0.87 15.0

acdom (440) 40.3 3.9 0.65 0.92 0.544 45.98 −1.60 0.62 0.88 0.603

OLCI Chl a 29.5 3.9 0.87 0.66 46.01 31.89 4.37 0.85 0.63 25.8

TSS 39.4 2.3 0.68 0.88 16.71 41.41 5.58 0.65 0.86 19.8

acdom (440) 34.8 0.3 0.67 0.89 0.530 41.75 −3.35 0.63 0.87 0.586

HICO Chl a 32.4 6.2 0.85 0.68 28.77 35.03 5.41 0.84 0.66 25.9

TSS 39.8 8.1 0.66 0.92 15.94 43.25 5.64 0.64 0.85 15.8

acdom(440) 37.7 3.4 0.65 0.91 0.536 43.17 2.19 0.62 0.87 0.603

PRISMA Chl a 31.3 6.9 0.85 0.70 36.77 34.74 8.43 0.85 0.66 27.1

TSS 40.5 6.6 0.65 0.91 16.16 43.86 8.76 0.63 0.86 15.9

acdom(440) 37.2 0.8 0.65 0.91 0.541 41.75 4.62 0.63 0.88 0.597
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LOO analysis is valuable to more accurately assess the individual
model’s ability to generalize to unseen data from different
geographic locations and water conditions.

3.2.4 Individual retrieval vs. simultaneous retrieval
The comparison of individual (single parameter) versus

simultaneous (multi-parameter) retrievals of target variables offers a
unique opportunity to better understand the performances and
uncertainties associated with the two probabilistic neural network
models. Single parameter estimation algorithms (Lee and Carder,
2002; Gitelson et al., 2007), offer precise understanding and
interpretability of individual variables while minimizing the
complexity introduced by multi-dimensional inter-dependencies.
On the other hand, machine learning algorithms are naturally
equipped to handle simultaneous retrieval, capitalizing on the
inherent correlations and inter-dependencies among multiple
variables. This capability offers a nuanced view of aquatic
ecosystems by considering the correlations between WQIs. For
instance, elevated phytoplankton biomass generally corresponds
with increased TSS levels. Conversely, variations in CDOM
absorption might not exhibit the same dependencies. Here we
investigate the trade-off between the simplicity and interpretability
offered by a single-target retrieval and the comprehensive
representation of aquatic ecosystems provided by simultaneous
estimation. For this purpose, we compare the Chla estimation from
a dedicated model, such as those presented previously (Pahlevan et al.,
2020; Werther et al., 2022) to the Chl a estimations from multi-
parameter models described in Section. 4.2 on the held-out test set,
noting that BNN-MCDhas previously not been tested for this capacity.
This experiment is performed for OLCI’s spectral resolution
representing a mid-range spectral capability between multispectral
and hyperspectral band settings. This comparison is designed to briefly
illuminates the value/effect of such simultaneous retrieval of WQIs for
these probabilistic neural network models.

3.2.5 Performance on MSI matchup dataset
The match-up experiment tests and compares the

performance of the different algorithms on the satellite
matchup data from MSI images described in Section. 2.2. The
performance of the models on this dataset would provide the user
with some idea of the performance gap that exists when applying
these models trained on high quality/low noise in situ datasets to
satellite data. Given the additional complexities of the
atmospheric correction and residual calibration biases
(IOCCG report 2010; Warren et al., 2019), enhanced sensor
noise, and distortions present in satellite derived Rrs products,
it is expected that the performance of these models on the satellite
data will be significantly poorer. The available matchup dataset
has corresponding in situ measurements for only Chla and TSS.
In this scenario, using the full multiparameter model defined in
Sec 3.2.2 is not appropriate as some of the performance gap for
this model might be due to the allocation of model capacity to
acdom (440) estimation. To avoid this issue, we retrain the model
using the in situ GLORIA data but using only Chla and TSS as
outputs (the rest of the model settings are the same as in Sec.
3.2.2). Post-training, we apply this newly trained dual output
model to the matchup data and estimate prediction performance
and uncertainty.

4 Results

This section compares and contrasts the results of the two
algorithms across the different experiments described in Section. 3.2.

4.1 Held-out assessment

The performance profiles of the two algorithms - MDN and
BNN-MCD–in terms of predictive residuals are summarized in
Table 3, where the best-performing model for each sensor and
metric is highlighted in bold. While the results present a nuanced
landscape, some trends do emerge. For instance, the MDN generally
outpaces the BNN-MCD in terms of the MdSA metric by
approximately 2%–5% across all three WQIs studied. It also
exhibits slope values closer to the ideal of 1, albeit by a narrow
margin of 1%–2%. Conversely, the BNN-MCD surpasses the MDN
in RMSLE by margins of 0.02–0.04 and also shows superior
performance in MAE - leading by 5–20 mg m-3 for Chla and
1–3 g m-3 for TSS, although it falls behind slightly in estimating
acdom (440) by about 0.06 m-1. SSPB performance is more sensor-
specific, but it is noteworthy that both models demonstrate a low
bias (≤10%) across all WQIs.

The uncertainty metrics across different WQIs and sensors are
summarized in Table. 4. Intriguingly, the MDN generally exhibits
lower confidence with sharpness values σUNC (%) ranging from 50%
to 60%. In contrast, the BNN-MCD reports notably sharper
confidence intervals (σUNC (%) ~ 22-25 %). However, the
MDN’s uncertainty estimations appear to align more closely with
predictive errors; the prediction error lies within the estimated
uncertainty for a substantial portion of samples, as indicated by
coverage factors ρUNC(%) ranging from 68%–78%. The BNN-MCD,
while offering sharper estimates, has a lower rate of agreement
between the estimated error and the actual predictive error, reflected
by (ρUNC(%) between approximately 35 − 48%).

4.2 Leave-one-out assessment

For a large majority of the left-out test sets (~17-19 out of 22 left
out datasets, with the exact number based on the specific WQI) the
prediction error (measured using MdSA) is higher for both the
MDN and the BNN-MCD than error encountered in the 50:50 held-
out dataset (top row of each subfigure in Figure 4). These differences
indicate the difficulties when extending model application to
previously unseen samples. A similar trend is seen in the middle
row of each subfigure in Figure 4, which shows the uncertainty/
sharpness (σUNC (%)) for the specific parameter estimated by the
two models on specific left-out test set. The median sharpness over
the LOO sets is shown by the solid line, while the sharpness on the
50:50 held-out set is shown by the dashed lines. It is noteworthy, that
in general the left-out sets generally show higher uncertainty (in the
form of larger sharpness (σUNC (%)) values for both models). The
datasets with the largest uncertainties also show correspondingly
higher error, that said the trends are not obvious, further the
uncertainty values across the different models are quite
comparable. Additional analysis is necessary to illuminate the
trends present in these observations.
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The lack of clarity in uncertainty trends could arise from
multiple factors that influence the basic uncertainty metric
(σUNC(%)). While this metric is partially dependent on the
similarity between test and training samples, it is also shaped by
extraneous factors such as training data distribution, model
hyperparameters, and random initialization, etc. Each model’s
training dataset is distinct, complicating cross-model uncertainty
comparisons. To mitigate this, we normalize the estimated
uncertainties from the left-out test set using the z-score method,
based on statistics of the uncertainty metric (σUNC(%) on the
training set. This adjusted metric, labeled as z-scored σUNC (%),
offers a clearer relationship with predictive error. For instance,
consider Figure 4A middle panel, where two held-out datasets
(IDs: 2 & 3) initially exhibit similar uncertainty/sharpness for
Chla. Once the z-score normalization is applied to these
uncertainties the values are significantly different (see Figure 4A
bottom panel). Note that when it is left out, samples in Dataset ID:2
(over Australian waters) exhibit high average uncertainties relative
to the samples in the training set, while for Datset ID:3 the average
uncertainty is like what is seen for samples in the training sets. As
such, we can surmise that for Dataset ID:2 the models are relatively
less confident on the left-out set samples, while for Dataset ID:3 the
models are as confident on the left-out set samples as training set
ones. In summary, the zscore normalization is extremely valuable in
highlighting/identifying test samples for which the model is
uncertain relative to the standard uncertainty metric which is
affected by some bulk factors like the ones mentioned above.

Generally, both models report very similar trends for most
datasets across the different WQIs for both MdSA and z-scored
σUNC (%), i.e., high error corresponds to high uncertainty and
vice versa. To illuminate these relationship between the MdSA
and z-scored σUNC (%) further, Table 5 reports the ranks (with
high ranks for left-out datasets with large error or uncertainty)
of predictive error and z-scored σUNC (%) across the 22 left-out

datasets considered (Table. 2). In most cases, the ranks for the
error and uncertainty are comparable. For this discussion, when
the ranks of error (MdSA) and z-scored σUNC (%) are within 6 of
each other, we consider them similar/comparable. Table 5
clearly highlights cases wherein the difference between the
error and uncertainty ranks are greater than 6, there are
specific cases where the models show high error-low
uncertainty (highlighted in red in Table 5) and some held-out
datasets with low error-high uncertainty (highlighted in green in
Table 5). There is agreement between the two algorithms on the
most problematic left-out datasets in terms of the relationship
between prediction error to model-estimated uncertainty. The in
situ dataset leading to the highest disparity for both ML models
is the one comprising of samples from Italian waters (Dataset ID:
6 from Giardino, C.). Other instances of datasets with high error
and low uncertainty are Dataset ID: 18 (i.e., SeaBASS-NRL for
Chla estimation for both algorithms), Dataset ID: 12 (from Ma,
R. over Chinese water for acdom (440) estimation with both
algorithms). Additionally, Dataset IDs: 9 (Chla, acdom (440)),
10 (TSS), 15 (TSS), 19 (Chla) have comparatively high error low
uncertainty in the BNN-MCD estimation. In addition, there a
few cases of low error-high uncertainty wherein in spite of
reasonable predictions models are not overly confident. It
should be noted that the BNN-MCD results show more
examples with mismatch between the error and uncertainty
ranking. On a cautionary note, this analysis should not be
over-interpreted (in terms of comparing algorithm
performance) as significant details are lost when one uses a
ranking. Also, the difference chosen as significant in this analysis
was arbitrary. Instead, the analysis is only intended to exhibit the
general agreement between estimated uncertainty and predictive
error on the left-out datasets and in identifying specific datasets/
regions where the model generalization is suspect for both
algorithms.

TABLE 4 Comparison of the different uncertainty metrics for the MDN and BNN-MCD for the different parameters at the resolution of different spectral
sensors.

Sensor Product MDN BNN-MCD

σUNC(%) ρUNC(%) σUNC(%) ρUNC(%)
MSI Chl a 54.6 78.5 23.9 43.1

TSS 59.6 74.0 24.8 37.7

acdom(440) 50.3 69.5 22.8 35.5

OLCI Chl a 46.1 73.7 24.3 46.9

TSS 55.0 72.8 26.1 42.2

acdom(440) 53.7 68.2 26.1 38.4

HICO Chl a 44.5 71.7 25.0 45.2

TSS 53.7 71.8 42.9 24.1

acdom(440) 52.8 71.6 24.1 39.8

PRISMA Chl a 48.5 73.3 25.9 48.2

TSS 55.5 72.8 25.4 41.1

acdom (440) 49.6 68.8 25.8 41.9
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FIGURE 4
(Continued).
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4.3 Individual retrievals vs. simultaneous
retrievals

Overall, the performance of the simultaneous models is slightly
better compared to the single-parameter models. Table. 6 shows the
effect of the individual (referred to by the label as ‘Base’) versus
simultaneous estimation (referred to by the label as ‘Sim’) of Chl a
for OLCIs’ spectral resolution. The MDN-Sim model shows upticks
across almost all metrics for residual estimation
(~ 1%MdSA, 2% SSPB,−0.03 slope, 16.74mgm−3 MAE) and the
BNN-MCD-Sim shows a similar trend

(~ − 0.5%MdSA, 2% SSPB, 0.02 slope, 6.45mgm−3 MAE) [the -ve
sign indicates specific metrics where the ‘Base’ model outperforms
the ‘Sim’ model]. Cumulatively, these metrics show a general
improvement in the quality of the estimations with a simultaneous
inversion scheme. Also note that, while both the base models have
similar uncertainties (differs only by about 5 − 7% in terms of
σUNC (%)) than the simultaneous models, they significantly
underestimate the error for a larger percentage of the samples than
the simultaneous models (by ~ 20% for MDN and 7% for the BNN-
MCD), indicating that the simultaneous estimation regularizes models
uncertainty by better identifying unexpected data conditions.

FIGURE 4
(Continued).
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4.4 MSI matchup assessment

The results of the parameter estimation for the two models on
the MSI matchup dataset are shown in Figure 5. Similar to the MDN
performance in Pahlevan et al., 2022, there is a rather significant
drop-off in performance across the two algorithms relative to the

performance we observed on the in situ matchup dataset. For
example, MdSA for Chla estimation drops to around 195% from
the 30% encountered in the GLORIA dataset. For TSS the drop is not
as severe and is between 110% (MDN) and 150% (BNN-MCD) from
the ~42% on the GLORIA dataset. Such degradation in performance
is seen across all metrics. The estimated uncertainty metrics on the

FIGURE 4
(Continued). (A) The results of LOO analysis for the OLCI sensor for the MDN (green) and BNN-MCD (orange) for (A) Chl a (B) TSS and (C) acdom. The
top row of each subfigure shows the prediction performance (in terms of MdSA) of these models on each of the left-out test sets. Also, shown for
comparison are the performance on a held-out test set (dashed line) and the average performance over the left-out test sets (solid line). The middle row
displays the average estimated uncertainty for each of the left-out dataset, again performance on held-out test set ((dashed line)) and the average
performance on the left-out test sets (solid line) are shown for comparison. The bottom row shows the uncertainty for the left-out dataset with
uncertainty z-scored with statistics for the uncertainty on the training datasets.
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matchup datasets are shown in Table. 7. While both models show
increased uncertainty for Chla (with σUNC of 72.39% (MDN) and
51.94% (BNN-MCD)) for this dataset relative to the metrics seen in
Table 4, the coverage factor for the MDN drops quite significantly
(by about 15%), indicating that the increase in uncertainty is
not sufficient.

4.5 Prediction performance on satellite data

This section displays some maps generated by the two models
for different satellite datacubes across different missions, at varying
spectral resolutions. In particular, WQI and associated uncertainty
maps for different multispectral and hyperspectral sensors over the

TABLE 5 Comparing rankings of predictive error (MdSA) and z-scored uncertainty (σUNC  (%)) from MDN and BNN-MCD. The cases highlighted in red
correspond to “high error low uncertainty cases”, whereas the cases highlighted in green correspond to “low error high uncertainty”.

ID MDN BNN-MCD

Chla TSS a
cdom (440) Chla TSS a

cdom (440)

MdSA zσUNC MdSA zσUNC MdSA zσUNC MdSA zσUNC MdSA zσUNC MdSA zσUNC

1 - 7 20 13 11 3 - 14 19 21 7 5

2 8 4 16 14 20 18 11 17 14 10 21 15

3 14 6 10 7 22 4 15 13 10 8 15 8

4 16 16 14 18 4 6 16 15 16 9 4 11

5 - 1 13 17 16 2 - 10 13 19 19 2

6 6 20 9 2 6 17 9 20 7 15 5 21

7 17 15 22 22 14 14 12 11 22 17 15 9

8 15 10 18 12 17 5 17 9 18 16 20 6

9 5 8 11 6 10 9 6 18 12 6 8 17

10 11 2 12 10 13 10 13 16 11 22 12 12

11 22 14 17 6 8 1 21 6 21 11 9 3

12 13 3 19 16 7 20 14 1 20 2 10 18

13 21 17 21 20 18 19 19 4 17 7 17 13

14 7 9 7 8 - 8 7 7 9 3 - 4

15 20 21 5 3 - 22 18 22 5 18 - 22

16 12 18 8 15 12 13 10 3 8 12 13 14

17 - 12 6 9 5 7 - 12 6 4 6 7

18 9 19 - 4 21 12 5 19 - 14 18 19

19 4 5 - 1 9 15 4 21 - 20 11 20

20 18 22 - 21 19 21 22 8 - 13 22 10

21 10 11 15 11 - 16 8 2 15 1 - 1

22 19 13 - 19 15 11 20 5 - 5 14 16

TABLE 6 Comparison of MDN individual (‘Base’) and simultaneous (‘Sim’) estimators for Chlorophyll-a estimation, both parameter and uncertainty
estimations on the held-out test set. MAE is reported in terms of the physical units of the parameter, i.e.,mgm−3, g m−3,m−1 for Chla, TSS, and acdom (440),
respectively. The other metrics are either (%) or unitless. The bolded cells indicate the best performance of a specific metric.

Predictive metrics Uncertainty metrics

MdSA (%) SSPB (%) Slope RMSLE MAE (mg m-3) σUNC% ρUNC%

MDN-Base 30.37 6.03 0.87 0.69 63.75 52.67 53.87

MDN-Sim 29.51 3.90 0.87 0.66 46.01 46.10 73.86

BNN-MCD-Base 30.68 −6.13 0.83 0.64 32.22 19.63 40.25

BNN-MCD-Sim 31.89 4.37 0.85 0.63 25.77 24.32 46.93
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Chesapeake Bay are shown in Figures 6–8. There is general
agreement between the spatial trends of WQIs predicted by the
two models. Figure 6 shows that the MSI-derived maps from the two
models are quite similar for all three parameters, although localized
differences in the spatial distributions and magnitudes are
occasionally observed. The MDN uncertainty maps seem more
uniform, with the BNN-MCD uncertainty exhibiting more spatial
variation (note that, in general, the BNN-MCD uncertainty maps
capture a broader dynamic range relative to the MDN). In Figure 7,
we note some differences, while the spatial trends (i.e., regions with
high and low values) are quite similar for the parameters predicted
by the two algorithms, there are some differences, with the MDN
predictions being slightly lower for Chla and slightly higher for TSS
and acdom (440) relative to the BNN-MCD predictions. The

uncertainty maps for the OLCI cube in Figure 7 also display
clearly different trends, indicating that the models are not in
concert, as was seen for the MSI images (shown in Figure 6). For
the HICO maps of the Chesapeake Bay (shown in Figure 8), there is
a clear agreement between the models in the main stem of the bay,
however, in the coastal shelves (at the bottom of the image) there are
clear disagreements on the predicted values, with BNN-MCD
returning high TSS and acdom (440) in comparison to those from
MDN. These pixels also suffer from high uncertainty (especially for
the MDN), indicating rather low confidence in these predictions.
The highly elevated uncertainties likely indicate high uncertainties
in Rrs products. The HICO acquisition of Lake Erie (see Figure 9)
again shows general agreements in terms of predicted parameter
values with localized differences in uncertainties. That said, MDN

FIGURE 5
Performance of the MDN and BNN-MCD models for WQI estimation on the ACOLITE corrected MSI matchup dataset.
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estimates of Chla are generally higher than those of BNN-MCD
while its acdom (440) predictions are lower. The PRISMA maps of
Lake Trasimeno (see Figure 10) for both algorithms continue to
show the same general trends, without significant discrepancies in
their spatial variability.

5 Discussion

5.1 WQI estimation from spectral samples

Across the different experiments performed in this manuscript it
appears that the two probabilistic neural network models have very
similar performances in terms of the WQI estimation. On the held-
out test dataset the residuals of the two algorithms are very similar
across the different sensors and WQIs (see Section 5.1; Table 3 for
full results). On the held-out test set the MDN performs better for
outlier insensitive MdSA (by 3%–5% across all parameters) and
slope (by 0.01–0.03 across all parameters), while the BNN-MCD
does better in terms of the outlier-sensitive RMSLE (by 0.03–0.04 for
Chla and TSS) and theMAE (by 3–20 mg m-3 for Chla, 1–3 g m-3 for
TSS), except in the case of acdom (440) where the MDN does better
(~0.2 for RMSLE and 0.05 m-1 for MAE). This observation that the
MDN outperforms the BNN-MCD in terms of outlier-insensitive
metrics (which use a median operation) while showing poorer
performance for the outlier-sensitive metrics (which use a mean
operation) indicates that the MDN is generally more accurate but is
also more prone to having outliers in its predictions, which exhibit
large/extreme errors. It is also worth noting that both models
perform better for Chla estimation than the other two WQIs.
This difference may be due to the availability of a larger set of
labels for this specificWQI. On the other twoWQI, the performance
of the models is quite similar across most metrics (except MdSA,
where there are some differences). In a multivariable learning
scenario, the exact losses are also affected by factors such as the
precise set of samples in the training set. Further, when these
probabilistic models were applied to left-out datasets which
contained samples unlike the ones used in training, it becomes
clear that in spite of using the GLORIA dataset which attempts to
include samples from a variety of different (geographic and aquatic)
conditions, there are generalization issues, as most of the left-out
datasets (described in Section 3.2.3 and results in Section. 4.2)
exhibit a higher error than the error encountered for the held-
out test set (described in Section. 3.2.2 and results in Section 4.1). In
most cases, these differences are not extreme, however, this

observation alludes to the fact that while the GLORIA dataset is
a valuable resource and a significant first step, considerable work still
needs to be done to create labeled datasets that cover the full
distribution of possible water conditions in freshwater and
coastal ecosystems and can generalize well to any new test
samples. Based on the results in Section 4.3 (especially in Table.
6), one can also infer that across all the different metrics, the best-
performing model for the OLCI sensor is one that performs
simultaneous estimation rather than a dedicated model. That
said, it should also be noted that these gains are quite modest. It
is interesting to note that for both models the simultaneous (‘Sim’)
estimation causes improvements in themetric wherein the dedicated
(‘Base’) model performs worst (RMSLE and MAE for the MDN,
slope and MdSA for BNN-MCD), indicating that the simultaneous
estimation provides significant regularization (which refers to the set
of the set of techniques in ML designed to calibrate the models to fit
better on the test set) for the specific model’s predictions.

While the performance of these models is quite impressive when
applied to in situ data (even the left-out samples), the performance
does not hold up when these models are applied to the satellite
matchup datasets. Possible causes for such deterioration could be the
imperfect atmospheric correction manifest in satellite-derived Rrs in
the form of overcorrection or under-correction of aerosol and water-
surface contributions by the atmospheric correction processor. It is
also possible the satellite sensors have lower SNR relative to the
dedicated sensors used for acquiring the in situ Rrs samples.

5.2 Model specific uncertainty estimate

In terms of uncertainty estimation, the main takeaway is that
there are fundamental differences in the average uncertainty score
per prediction, the MDN is has high uncertainties in the range of
around 50% of the predicted value per sample on the held-out test
set, while the BNN-MCD appears more confident and shows
uncertainties in the range of ~22% of the predicted value per
sample on the held-out test set. While the sharpness estimates
(as shown by the BNN-MCD) is preferable, it should be noted
that MDN uncertainty is an upper bound on the prediction residual
for a much larger fraction of the held-out test set samples (ρUNC (%)
of 68%–75% for MDN vs 45%–50% for BNN-MCD), which would
be valuable in using the uncertainty metric to understand the
magnitude of the residuals present in the model’s prediction.
These results also indicate additional calibration/scaling steps are
required to make these uncertainty metrics a better approximation
for the kind of errors present in the predictions of these algorithms,
to make these products more useful to the end-users.

Similar results are also seen for the raw uncertainty numbers of
the LOO experiments, i.e., the BNN-MCD results have a higher
sharpness relative to the MDN across all the left-out test sets. The
inability of these probabilistic models to generalize to these left-out
datasets in terms of predictive performance is also echoed by
increases in uncertainty relative to the values seen in the held-out
datasets for both probabilistic models. This is encouraging as it
indicates that the uncertainty metric can flag the conditions where
higher residuals are present. Another observation is that the overall
uncertainty (in the form of σUNC (%)) of the left-out datasets seem
to be pretty comparable across all datasets. On z-scoring this metric

TABLE 7 Uncertainty estimated by the MDN and BNN-MCD on the ACOLITE
corrected MSI matchup dataset.

Algorithm Product MSI matchup dataset

σUNC (%) ρUNC (%)
MDN Chl a 72.39 47.79

TSS 49.69 63.83

BNN-MCD Chl a 51.94 42.01

TSS 49.12 36.78
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as described in Section. 4.2, the trends become clearer showing a
clearer agreement in terms of the ranks of the predictive residuals
and uncertainty (see Table. 5 where high error ranks generally
correspond to high uncertainty ranks and vice versa), which
indicates significant work needs to be done to further resolve the
various components going into the uncertainty metrics as defined
and further isolate the factors related to predictive performance.
While in general there is very good correlation between the residual
rankings and uncertainty ranking of the different left out datasets
there are specific cases where the rankings do not match. Particularly
concerning are the left-out datasets with high residuals and low
uncertainty (marked in red in Table 5), as this indicate cases where
the uncertainty is not able to tag the presence of high residuals in the
predictions.

One such dataset, is the dataset containing samples over Italian
waters (Dataset ID: six in Table 2), wherein models face significant
issues, and despite poor estimation performance, both models
estimate rather low uncertainty for samples in this dataset.
Perhaps, some of these issues could be traced back to possible
differences in the data acquisition for the samples in this dataset.
There are also other examples wherein the models suffer from high
errors with disproportionately low uncertainty, but these apply to
specific parameters, such as Dataset ID: 18 for Chla estimation, and
Dataset ID: 12 for acdom (440) estimation. In addition, Table. 5 also
tracks datasets where models estimate high uncertainty in spite of
low prediction errors (highlighted in green). While the uncertainty
metric was designed to provide the user with a notion of model
confidence in a prediction and possible error, it should be

FIGURE 6
Comparing the MDN (on the left) and BNN-MCD (on the right)
estimated parameters and uncertainty for the MSI acquisition of
Chesapeake Bay.

FIGURE 7
Comparing the MDN (on the left) and BNN-MCD (on right)
estimated parameters and uncertainty for the OLCI acquisition of
Chesapeake Bay.
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stressed that uncertainty is not a perfect proxy for the error; as
such, it cannot be considered incorrect for the model to suggest
low confidence for some examples even though they exhibit low
estimation error. It is possible that we are able to generate
accurate predictions in spite of the model not being exposed

to similar samples in training. Further, this scenario is less
damaging in downstream processing (than showing low
uncertainty for samples with high error), as this will just lead
to some additional oversight rather than missing samples with
large prediction errors. It is also noted that, in general, the MDN
shows fewer examples with significant differences in the levels (in
terms of the ranks shown in Table 5) of error and uncertainty.
While the ranking scheme described for this experiment is not

FIGURE 8
Comparing the MDN (on the left) and BNN-MCD (on right)
estimated parameters and uncertainty for the HICO acquisition of
Chesapeake Bay.

FIGURE 9
Comparing the MDN (on the left) and BNN-MCD (on right)
estimated parameters and uncertainty for the HICO acquisition of
Lake Erie.
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perfect (Section. 4.2), the MDN uncertainty metric better
captures the issues in generalizing to a left-out dataset.

The regularization enabled by simultaneous estimation also has
a pronounced impact on the uncertainties. For both models, the
concurrent models show significant improvements in the coverage
factor ρUNC (%) estimated even though the average sharpness
σUNC (%) changes only by ~ 5%. These improvements indicate

that the simultaneous estimation forces a clearer understanding
of the possible error in the prediction (particularly for the MDN).
Finally, on the matchup dataset both models show a significant spike
in the prediction uncertainties indicating possible issues in the
predictions. That said the coverage factor for both models is
quite poor indicating that their approximation of uncertainty on
the matchup datasets is poorer than on the in situ datasets
considered in previous experiments. This gap indicates more
work to be done in future projects to bridge this gap.

The general trend of the MDN poorer average sharpness
σUNC (%) results while having better coverage factor ρUNC (%)
vis-a-vis the BNN-MCD across many different sensor resolution
and experimental conditions is interesting. Perhaps these differences
can be traced back to the MDN being designed to consider possible
multi-modality in the distributions of the WQI which causes it to
consider a wider range of possible values making it more pessimistic,
while the unimodal BNN-MCD is more optimistic. The specific
properties of each uncertainty metric are property of the specific
formulation and may need additional calibration to distill
information relevant to the end-users.

5.3 WQI and uncertainty maps on satellite
image datasets

The WQI maps (Figures 6–10) offered a qualitative
perspective on the sensitivity of the models to uncertainties in
input Rrs maps and enabled underscoring similarities and
discrepancies for different satellite sensors with varying
spectral capabilities. Although similarities exist among the
map product estimates, disagreements can be found across the
maps. For instance, MDN-derived acdom (440) in MSI maps
exhibit larger values than those of BNN-MCD on the west
stem of the Chesapeake Bay and its tributaries, although the
corresponding TSS and Chla maps are generally on par. The
largest differences are observed in HICO-derived maps
(Figure 8), where BNN-MCD returns higher constituent
concentrations and organic content along the main stem of
and outside the Chesapeake Bay. Without in situ data sets, it
is difficult to offer any insights into the relative accuracy of these
products; nonetheless, these product estimates provide evidence
of major discrepancies in models’ performance in practical
applications, as shown in Figure 5. These observations support
the need for comprehensive assessments of future models in real-
world applications.

The relative performance of models in uncertainty
estimation is generally aligned well with our held-out or
LOO analyses (Section. 4.1, 4.2). Of note is that similar to
the matchup analyses in Figure 5, pixel uncertainties
are >50% (MDN) and >25% (BNN-MCD) for most maps,
which is consistent with our observations on the level of
uncertainty in the MSI matchup data (Table 7). There are,
however, exceptions to this statement where BNN-MCD
outputs larger uncertainties at local scales (see MSI and
HICO uncertainty maps of Chla in Figures 6, 9). Overall, for
reliable use of uncertainty estimates, the most critical aspect of
uncertainty estimates is consistency in time and space, an
exercise that can be examined in the future.

FIGURE 10
Comparing MDN (on the left) and BNN-MCD (on right) estimated
parameters and uncertainty for the PRISMA acquisition of
Lake Trasimeno.
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6 Conclusion

This manuscript provides the first comprehensive
comparison of the two state-of-the-art ML algorithms, the
MDN and the BNN-MCD, similarly trained, tested, and
deployed for data from multiple satellite missions. Model
performance was analyzed in terms of both WQI estimates
and estimates of associated model-specific uncertainties. The
algorithms were tested under similar conditions, such as training
data distributions, model architecture, comparison metrics,
using various methods, including testing on held-out test sets,
tests under a LOO scheme. Overall, we observe that the
performance of the two probabilistic neural networks is quite
similar across many experiments, such as prediction residuals on
the 50:50 held-out test set (~30–35% for Chla, 45%–50% for TSS,
and 40%–45% for acdom (440)), and the leave-one-out type
experiments (~40–45% for Chla, 55%–60% for TSS, and 40%–

50% for acdom (440)). The MDN predictions appear to fit the bulk
of the samples well with some outliers, whereas the BNN-MCD
predictions have fewer outliers and fit global distribution better.
In terms of model-specific uncertainty, the MDN generates
higher uncertainties, in general, ~50% of the predicted values
for in situ samples, while the BNN-MCD uncertainties are closer
to ~20–25% of the predicted values. That said, the MDN
uncertainty provides better coverage of the error with
coverage factors of ~65–75%, while the corresponding
coverage of the BNN-MCD is ~50%. The LOO experiments
also show that for left-out datasets, the ranks of prediction
errors and uncertainties are quite comparable (generally
between 5-6 ranks of each other). Overall, it appears that
these model-specific uncertainty metrics, while capable of
flagging/identifying test samples with higher relative
residuals, the exact uncertainty values are heavily dependent
on model properties, and significant work still needs to be
done to calibrate/scale these metrics into easily interpretable
quantities of for (e.g., expected prediction residuals) human
interpretation.

Another, important contribution of this manuscript is the
validation of effect of simultaneous estimation on the
performance of these machine learning models. For this
purpose, the BNN-MCD was also extended into the
simultaneous estimation paradigm, and both models were
tested in this scheme against a dedicated single-parameter
(Chla) estimator. It is noted that the simultaneous WQI
retrieval outperforms individual retrieval and displays
improvements across most of the regression residuals
considered in this project. Additionally, while the uncertainty
metrics do not appear to show massive changes in the average
sharpness there are clear improvements in the coverage of the
estimated uncertainty values. Both models were also tested on the
satellite matchup datasets to provide some insight into the
performance when these models were applied to satellite-
derived Rrs. In this case also we noted that application of
models trained on high fidelity in situ datasets exhibit a
significant degradation when applied to nosier satellite test
samples. Finally, maps were produced on satellite datasets to
provide a qualitative comparison and validation of satellite-
derived products.

Future research should aim to broaden the comparison
between MDNs and BNN-MCDs by introducing other
probabilistic modeling techniques. This expansion will provide
more nuanced insights into the interplay between training data
and model type. Additionally, recalibration techniques like Platt
scaling (Platt, 1999) or Isotonic regression (Barlow and Brunk,
1972) can be employed to refine the model-specific uncertainty
estimates, potentially mitigating some of the limitations identified
in this study concerning predictive uncertainty. A further
promising avenue is to employ labeled samples to devise a
mapping between estimated uncertainties and actual predictive
errors. Another important avenue of research in the uncertainty
estimation would be the combination of the different data and
physical sources along with ML-model based uncertainty to get a
comprehensive metric for the expected residual in the final
prediction/estimate. For this purpose, we are considering the
use Monte Carlo (MC) sampling-based techniques (Kroese
et al., 2013) that can be used to propagate uncertainties from
different operations like atmospheric correction, elimination of
adjacency effects, down to downstream products like WQI
estimates (Zhang, 2021).
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