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1 Introduction

The Rural Access Index (RAI) is one of the most important global development
indicators in the transport sector. It is currently the only indicator for the SDGs that directly
measures rural accessibility, and it does so by assessing rural populations’ access to all-
season roads.

The RAI was developed by the World Bank in 2006, originally as a measure of poverty
(Roberts et al., 2006). The original 2006 methodology based itself on pre-existing household
surveys, which had several disadvantages including inconsistency across countries, lack of
regular updates and cost constraints, which limited the index’s sustainability and accuracy
(Workman and McPherson, 2021).

Following its adoption as Sustainable Development Goal (SDG) indicator 9.1.1 in 2015,
the indicator received a new methodology taking advantage of geospatial techniques,
published under the “Measuring rural access using new technologies” report in 2016 (World
Bank, 2016). The World Bank has since endorsed an additional Research for Community
Access Partnership (ReCAP) funded project led by the Transport Research Laboratory
(TRL)—the RAI Supplemental Guidelines (Workman and McPherson, 2019)—which
provided detailed guidance for calculating the RAI, notably with an alternative
approach to the all-season aspect of RAI, focusing on the changing accessibility profile
of road networks rather than relying on road surface quality alone or scarce physical
measurements for road conditions. Nevertheless, neither the 2016 nor the
2019 methodologies were implemented globally, with official implementations published
by theWorld Bank being restricted to more in-depth studies for selected countries mostly in
Africa and the Middle East (World Bank, 2023a) due to data source restrictions.

Here we seek to fill in this gap by implementing the most up-to-date methodology
endorsed by the World Bank’s (World Bank’s 2016 methodology supplemented by TRL’s
2019 guidelines) at global scale with free remotely sensed datasets with global coverage. This
dataset was produced by UN SDSN’s SDG Transformation Center and is, to date, the only
publicly available application of this particular method at a global scale.

2 Materials and methods

The methodology consists of mapping where all-season roads are, applying a 2 km
buffer (approximately 20–25 min walking time) to them, and then assessing the proportion
of the rural populations that falls within (World Bank, 2016). This generates further
questions such as defining what is urban and what is rural and assessing which roads
provide all-season access or not, considering that no timely database containing that
information is currently available at a global scale.
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An all-season road is one that is motorable all year, but may be
temporarily unavailable during inclement weather (Roberts, Shyam
and Rastogi, 2006).While other previous methodologies equate road
surface to all-season status, the TRL 2019 methodology took into
consideration that many rural roads in low-income countries (and
even in large high-income countries) are unpaved, and often do
provide all-season access. The innovation of this particular method
(Workman and McPherson, 2019) lies in how the all-season status
of roads is handled: instead of simply removing unpaved roads from
the network, factors associated with inaccessibility are
superimposed, and the population estimated to have access to a
given road is kept in proportion to the probability that the road
might be all-season.

The indicator relies on four major geospatial data sets: those
measuring land use (rural or urban), population distribution, road
network extent and the all-season status of roads. Here we identify
and use open datasets with the best possible time and spatial
resolutions, in order to take full advantage of the geospatial
approach, as well as to guarantee that re-calculating the
indicator every year yields different results, allowing for the
monitoring of the evolution of rural access in countries year
after year. All data sources and assimilation strategies are
described in Figure 1.

2.1 Land cover data (urban/rural distinction)

Since the indicator measures the access of rural populations,
it’s important to define what is and what isn’t rural. This
implementation uses primarily the DegUrba Methodology,
proposed by the UN Expert Group on Statistical Methodology
for Delineating Cities and Rural Areas (United Nations Expert
Group, 2019). This approach has been deployed by the European
Commission into the Global Human Settlement Layer

(GHS-SMOD, 2023) dataset, which is designed to confer
consistency for definitions based on population density and
built-up area (European Commission et al., 2021). While GHS-
SMOD offers the best available temporal resolution, being updated
at least every 5 years, its spatial definition (1 km pixel) isn’t ideal,
and in some cases urban areas can’t be well delineated. For this
reason, data fromNASA SEDAC CIESIN’s GRUMP (CIESIN et al.,
2018), or Global Rural Urban Mapping Project, is also used. The
Urban Extent Polygons provided by GRUMP are limited to the
year of 1995, but have a better spatial definition due to
generalization of pixels into concave hull vectors.
Compatibilization of the two datasets was tackled by vectorizing
the GHS-SMOD dataset and merging it to the GRUMP polygons.
By doing so, urban areas consolidated before 1995 are better
delineated, and their expansions’ up until 2020 is represented at
a lower spatial resolution, reducing the total amount of “holes” in
the urban extents. The overlap of urban areas from both datasets is
used as the final urban land cover extent to be excluded from the
analysis for RAI.

2.2 Population distribution

The source for population distribution data isWorldPop (World
Pop, 2023). It uses national census data, projections and other
ancillary data from countries to produce aggregated, 100 m2

population data, making it the most spatially disaggregated
population data currently available at global scale.

2.3 Road extent

One of the main issues identified in previous attempts to
calculate RAI at global scale is ensuring that all roads are being

FIGURE 1
Overview of data processing.
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taken into account. To respond to that, a redundancy strategy is used
by simultaneously adopting three widely-recognized road datasets:
the real-time updated, crowd-sourced OpenStreetMap (OSM, 2023),
GLOBIO’s 2018 GRIP database (Meijer et al., 2018), which draws
data mainly from official national sources, and Microsoft BING’s
Road Detection Project (Microsoft Bing, 2023), which identifies
roads through Neural Network models applied to optical satellite
imagery. Each of these sources represents at least one advantage
compared to the others:

• The GRIP database is the only global road network database
containing information about the all-season status of roads,
but to the detriment of its temporal resolution—which is
restricted to the year of 2018—and its coverage, restricted
to what national authorities could provide at the time.

• OpenStreetMap (2022 reference year) provides excellent
temporal resolution and at least two attributes from which
the all-season status can be derived: surface and hierarchy.
Nevertheless, the network is limited by contributors’ interest
in certain regions, which might skew the coverage towards
urban centres to the detriment of rural areas.

• Microsoft Bing’s recent Road Detection (2022 reference year)
project is used to ensure completeness. This dataset is
completely derived from machine learning methods applied
over optical high-resolution satellite imagery, and detected
1,165 km of roads missing from OSM, though there are
currently no attributes associated to any of the roads.

The three datasets are filtered and put together in order to
generate two final road subsets: all-season (paved) and exposed
(unpaved). The distinction is important, as unpaved roads
deteriorate rapidly and in a different way to paved roads
(Workman and McPherson, 2019): unpaved roads are more
exposed to water ingress to the surface, softening materials and
making them vulnerable to traffic. This process is performed with
command-line tools specific for each data source: osmfilter and
osmconvert form the OSM data, and python’s geopandas for
the remainder.

The first subset contains roads classified as all-season by GRIP
and roads tagged as paved and/or as a hierarchy often (≥60%)
associated with paved surfaces by OpenStreetMap (Supplementary
Table S1). The population living within 2 km of these roads is
considered to have full access to an all-season road. The second
subset contains all roads identified by Microsoft Bing’s Road
Detection project (as those aren’t qualified in any way) and
roads tagged as unpaved and/or as any of the remaining
hierarchy tags, given that they’re not also tagged as paved by
OpenStreetMap.

The roads in the second subset are considered to be exposed to
factors associated with difficulty of access. Their probability of being
all-season is calculated by the superimposition of passability criteria,
which are described in the following section. The population living
within 2 km of these roads will be considered in equal proportion to
the probability that the road provides all-season access (i.e., if it’s
established that there’s a 10% chance that a road is all-season, only
10% of the population living within 2 km of it will be considered to
have access to it).

2.4 Roads’ all-season status

The 2019 supplemental guidelines (Workman and McPherson,
2019) proposed that passability should equate to the all-season
status of a road, along with the assumption that typically the wet
season is when roads become impassable, especially so in
steep roads.

This dataset implements a passability index, where each
component is used as a multiplying factor ranging from near
0 to 1 over the population distribution layer whenever they’re
located exclusively inside a buffer generated by an exposed
(unpaved) road. The proposed use of passability factors relies on
the following aspects:

• Climate. Precipitation has a significant effect on the condition
of unpaved roads, being a significant factor in its deterioration.
We use the Copernicus Programme’s (C3S, 2017) yearly
accumulated precipitation data, which is made available
freely at −30 km pixel resolution for reference year 2022.

• Terrain. The gradient and altitude of roads also has an effect
on their passability. Steep roads become impassable more
easily due to the potential for scouring during heavy
rainfall, and also due to slipperiness as a result of the road
surface materials used. Here this is drawn from slope
calculated from SRTM Digital Terrain data (Jarvis et al.,
2008), provided at −30 m pixel resolution.

• Road maintenance. The ability of local authorities to repair
damage caused by precipitation and scouring is proposed as a
correcting factor to the previous ones. Ideally, this would be
measured by the % of GDP invested in road construction and
maintenance, but this isn’t available for all countries. For this
reason, GDP per capita for reference year 2022 is adopted as a
proxy, as provided by the World Bank (World Bank, 2023).

It’s important to note that, differently from the suggestions of
datasets made by TRL (Workman and McPherson, 2019), we
preferred datasets with at least medium spatial resolution, in
raster format, and with temporal resolution of at least 1-year.
This ensures that the results won’t be the exactly the same when
RAI is calculated every year.

In order for RAI to account for the probability that the roads
populations are using are all-season or not, the disaggregated factors
for accessibility are applied to the spatialized disaggregated
population data at pixel level through raster algebra. The final
passability index is measured on a scale of 0–1, with 1 being
100% probability that the roads are all-season. For example, a
road in a flat area with low rainfall and high investment in
infrastructure maintenance would have an accessibility factor of
1.0, as this road is designed to be accessible all year round and the
environmental effects on its impassability are minimal. The lower
and upper thresholds for the each one of the factors ranges are close
but never reach 0 and 1, ensuring that when multiplied, the final
passability gets incrementally closer to 0 in the lower end and 1 in
the higher end (Supplementary Table S2).

The multiplication of the climate and terrain factors (each
ranging from 0.25 to 0.95) generates the first iteration of the
passability criteria, which ranges from 6% to 90%
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(0.0625–0.9025). This first iteration does not take road maintenance
into account (Supplementary Table S3).

The GDP per capita data is then normalized in such a way that a
road maxed out in terms of precipitation and slope (accessibility
score of 0.0625) in a country at the top of the GDP per capita range is
brought to the higher end of the accessibility score 1), while the
accessibility score of a road meeting the same passability conditions
in a country where GDP per capita is towards the lower end is
further lowered. A mathematical threshold is applied in order to
ensure that values higher than 1 are replaced by the final range’s
maximum (1, or 100%).

The multiplication of the three factors take place in a GIS
environment, through raster algebra, with the smaller pixel size
being the final resolution. The final index ranges from virtually 0 to 1
(Supplementary Table S4).

3 Data processing and results

Data processing takes place in Google Earth Engine, and
begins with filtering out all the pixels overlapping areas
classified as urban from the population layer. The result is a
rural population raster layer at 100 m pixel resolution, shown
in Figure 2.

The two subsets of roads (all-season and exposed) have a 2 km
buffer applied to them. As this operation is quite resource-intensive
at a global scale, the roads are rasterized into 800 m wide pixels, a
Euclidean distance calculation is performed, and all pixels with
values higher than 2 km are filtered out.

The layers for precipitation, slope and road maintenance are
rescaled and realigned to match the pixel grid in the rural
population layer, allowing for raster algebra operations that do
not require resampling. The three layers are multiplied by one

another (limiting the upper threshold to 1), resulting in the
passability index layer.

Pixels from the rural population layer falling over exposed
road buffers have their values multiplied by the passability
index. The resulting probability corrected population layer is
combined with the population falling over all-season road
buffers through raster algebra by making use of a maximum
value rule. This ensures that whenever the same population pixel
is intersected by buffers of the two road subsets, the largest value
(the one not corrected by the passability index) is kept. The
resulting layer represents the rural population with access to an
all-season road.

The total rural population and the rural population with access
to an all-season road raster layers are each used as input for zonal
statistics operations to determine the total sum by country. The
population with access is divided by the total rural population in
order to obtain the proportion, which is the final Rural Access
Index (RAI).

3.1 Data validation

Several checks were performed in order to assess the validity of
the data produced. Construct validity is assessed by calculating the
correlation coefficient with other previous attempts at calculating
RAI. The two other pre-existing datasets covering RAI at national
scale globally are distributed by NASA SEDAC’s CIESIN (CIESIN,
2022) and by Azavea (Azavea, 2019). Both implemented simpler
methodologies, either by using exclusively the GRIP database or
removing roads not classified as all-season or by removing roads not
tagged as very high hierarchy level from
OpenStreetMap. Supplementary Table S5 presents the Pearson
coefficient found for each of the datasets. Though the coefficients

FIGURE 2
Showcase of the scale in which results are calculated in rural Democratic Republic of the Congo.
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are high (>80), it’s adequate that they aren’t extremely high (>95),
showing that implementing the present method does yield different
results due to the better road extent coverage and modeling of all-
season status.

Convergent validity is assessed through correlation
coefficients regarding variables that are expected to correlate
with rural accessibility. Here GDP per capita and the Human
Development Index (HDI) for the same reference year (2022) are
used. Supplementary Table S6 presents the Pearson coefficients
found for each variable. It’s telling that RAI has a high
correlation (0.76) with HDI, as both can be used as evidence
to shield or validate claims about the state of social justice
or injustice.

3.2 Known limitations

3.2.1 Scale considerations
Some very small countries, such as Small Island Developing

States (SIDS), are excluded from the final result, as those are
considered to be entirely urban by the land cover layers used
(GRUMP and GHS-SMOD). The remaining small island states
with rural populations will tend to achieve very high scores, as
the road infrastructure distribution will tend to be much more
homogeneous where the rural-urban divide is less clear.

3.2.2 Mobility infrastructure not included
While access to all-season roads offers a fair representation of

rural population’s overall accessibility and mobility, it might
provide and under-assessment in places where transportation
by other means, such as motorcycle trails and navigable
waterways, are relevant. Communities living in the Amazon
rainforest, for example, are highly dependent on fluvial
transportation, which represented as much as 13% of the total
modal share in Brazil as a whole in 2012 according to the
Brazilian Agency for National Aquatic Transportation
(ANTAQ, 2013). To respond to this limitation, we reiterate
the 2019 TRL methodology (Workman and McPherson, 2019)
recommendation for the creation of a secondary, supplementary
indicator to allow countries to take into account local
infrastructure that might not be included in the standard RAI
measurement. Besides, selected road data sources (OSM, GRIP
and Bing) are subject to data quality and coverage variations, that
can affect results, particularly in developing countries where
OSM data coverage is less uniform, potentially amplifying
innacuracies.

3.2.3 Ground-truthing and construct validity
No ground-truth is assessed at any point in this

implementation. We envision a new project specifically to this
end, with the final objective of refining passability factors and the
overall methodology. The project would assess road conditions
through remote or on-site methods such as visiting and
interviewing communities to ascertain how long roads might be
closed due to climate or terrain issues. The results of the ground
truthing would then be compared to the desktop assessment, and
used to refine the accessibility factors as necessary, enhancing the
indicator’s robustness.

3.2.4 GDP as a proxy for road maintenance
While data on infrastructure maintenance related to preserving

the existing transport network exists, it’s collected by ITF only for
OECD countries. In either case, both datasets do not provide for
spatial variation, and are available at national scale only. While the
possibility of using a dataset of machine learning predicted gridded
values was assessed, we considered it to bring unnecessary bias. For
these reasons, this variable should be revised in the future, should a
better option become available.

3.3 Conclusion

The challenge of establishing an accurate and replicable
method for measuring SDG 9.1.1 has been successfully tackled
by the World Bank, custodian of the indicator, with the
publication of its last methodology in 2016 and the
endorsement of TRL supplementary guidelines in 2019. By
producing the first ever implementation of the
2019 Supplementary Guidelines at global scale, we aimed at
consolidating it as the most up-to-date methodology while also
unifying propositions made by other interested parties. The
method is highly sustainable, as required data collection is kept
simple and independent of local efforts, making use of global-
coverage spatial datasets to assess the all-season status of roads
without putting extra burden on countries to collect additional
data. This implementation should help ensure the continued use
of RAI as the key rural accessibility indicator globally and within
the SDG indicators framework, by maximizing the use of
geospatial data with global coverage and minimizing the
burden of additional local data collection.
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