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This review explores the comparative utility of machine learning (ML) and deep
learning (DL) in land system science (LSS) classification tasks. Through a
comprehensive assessment, the study reveals that while DL techniques have
emerged with transformative potential, their application in LSS often faces
challenges related to data availability, computational demands, model
interpretability, and overfitting. In many instances, traditional ML models
currently present more effective solutions, as illustrated in our decision-
making framework. Integrative opportunities for enhancing classification
accuracy include data integration from diverse sources, the development of
advanced DL architectures, leveraging unsupervised learning, and infusing
domain-specific knowledge. The research also emphasizes the need for
regular model evaluation, the creation of diversified training datasets, and
fostering interdisciplinary collaborations. Furthermore, while the promise of
DL for future advancements in LSS is undeniable, present considerations often
tip the balance in favor of MLmodels for many classification schemes. This review
serves as a guide for researchers, emphasizing the importance of choosing the
right computational tools in the evolving landscape of LSS, to achieve reliable and
nuanced land-use change data.
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1 Introduction

Positioned at the interface of natural and human systems, the
interdisciplinary field of land system science (LSS) has emerged as a
pivotal platform for the integration of different dimensions of global
environmental change and sustainability research (Verburg et al.,
2013). Central to LSS is the examination of how human activities
redefine terrestrial systems’ structural and functional dynamics in
the current geologic epoch, unofficially termed the Anthropocene
(Turner et al., 2007; Verburg et al., 2016). Inextricably linked with
the Anthropocene concept is the notion that human activity is the
dominant driver of global change, and newly focused attention on
the bidirectional relationship between human and natural systems
(Verburg et al., 2015). Human-induced alterations to the Earth’s
terrestrial surface have significant implications for the structure and
function of ecosystems within the Earth system, as well as profound
consequences for human wellbeing (Turner et al., 2007). Thus, land
system changes and their implications for global environmental
change and sustainability are a major research challenge for the
human-environmental sciences. While this research is undertaken
by various communities, the field of Land System Science (LSS), has
emerged as central to global environmental change and
sustainability studies across different scales and disciplinary
perspectives, creating a key platform to bring different disciplines
together for a common research agenda (Turner et al., 2007;
Verburg et al., 2015). Engaging scientists from across the social,
environmental, and natural sciences, the domain of LSS seeks to
understand the complex interactions between human activities and
the environment within the context of land use and land cover
change dynamics (Rindfuss et al., 2004; Verburg et al., 2015).

The discipline of LSS encapsulates an in-depth analysis of
landscape evolutions, including transformations in vegetation and
croplands, alongside the repercussions of human-induced actions,
such as intensive livestock grazing, on regional ecosystems (Turner
et al., 2007). Research approaches within the field of LSS, treat
land—or landscape—systems as complex social-ecological systems
(SES), composed of the social and natural subsystems, where
human-environment interactions extend across space and time
scales (Lambin et al., 2001; Geist et al., 2006; Turner et al., 2016;
Verburg et al., 2016). Thus, a comprehensive exploration of land
system modifications necessitates a dual focus: one that considers
the earth’s biophysical attributes, termed as “land cover,” and
another that investigates human-driven land alterations or “land-
use” (Lambin et al., 2001; Verburg et al., 2013; Verburg et al., 2016).
An important factor in further understanding global change and the
role of both human drivers and human interaction of natural
systems is demonstrated via land use and land cover change
(LULCC). Based on this recognition, and in view of the role of
land in providing goods and environmental services, attention to
LULCC has sharply risen (Hibbard et al., 2010). Thereby, LSS strives
to decode the temporal shifts in land-use and land cover within the
framework of a human-environment nexus, employing an array of
methodologies including, but not limited to, remote sensing and
supplementary data acquisition techniques (Turner et al., 2021). The
advent of sophisticated sensor technology and the proliferation of
“big data” have propelled AI’s predominance in this realm, with a
significant tilt towards remote sensing. This inclination stems from
remote sensing’s robust capabilities in monitoring terrestrial

attributes and discerning pertinent alterations (Rindfuss et al.,
2004; Turner et al., 2007; Turner et al., 2021).

In recent years, LSS has faced increasingly complex challenges
due to factors such as rapid environmental changes, urban sprawl,
deforestation, and the varying impacts of human activities on
different landscapes. These complexities necessitate a more
intricate understanding and a nuanced approach to monitoring
andmanaging land resources. Concurrently, the advent of “big data”
in environmental sciences provides researchers with an
unprecedented volume of data, coming from diverse sources such
as satellite imagery, aerial photographs, and ground-based sensors
(Gorelick et al., 2017; Yang et al., 2017; Tamiminia et al., 2020;
Hermosilla et al., 2022). The big data of remote sensing is
characterized by diverse spatial, spectral, and temporal
resolutions, representing a dual-edged sword in the study of land
system dynamics. On one hand, it provides unprecedented
opportunities for gaining comprehensive insights into these
dynamics. Yet on the other hand, this abundance and complexity
of remote sensing big data poses significant challenges, necessitating
the use of more advanced tools and approaches for effective analysis.
Traditional methods, which may have sufficed in simpler data
contexts, are now insufficient in handling the complexity of
multi-dimensional data, requiring more intricate processing and
interpretation (Liu, 2015). Where traditional classification methods
fall short, data-driven AI methods can provide computational
platforms and tools for analyzing voluminous and complex
remote sensing datasets. However, the effective application of AI
technologies for land classification tasks demands a thorough
understanding and careful consideration of several underlying
factors, underscoring the importance of this discourse in
contemporary LSS research (Lambin et al., 2001; Rindfuss et al.,
2004; Turner et al., 2007).

The process of land cover classification, crucial in the realm of
remote sensing and LSS involves allocating specific land cover
classes to individual pixels captured by Earth Observation
technologies. This procedure can be executed using an array of
techniques, each with unique methodological frameworks. Notably,
remote sensing data analysis transcends mere spatial or geographic
considerations, incorporating a crucial temporal element. This
integration enables researchers to meticulously track and quantify
changes in land cover over sequential time periods, enhancing the
monitoring capabilities central to the research objectives of LSS.
Classification techniques in this context diverge significantly, often
categorized based on their training regimen—supervised or
unsupervised—or the underlying theoretical
framework—parametric or non-parametric. The landscape of
classification algorithms is diverse, encompassing options like the
Maximum Likelihood Classifier (MLC), an exemplar of supervised
parametric algorithms, and k-means nearest neighbor (KNN)
clustering, representative of unsupervised non-parametric
approaches. Among these, unsupervised classification is
prevalent, primarily due to its algorithmic ability to assimilate
pixels into groups based on spectral signatures without reliance
on preliminary training data. Conversely, supervised classification
necessitates predefined training data, allowing the algorithm to
discern various cover types dispersed throughout the landscape.
The specificity of supervised methods varies considerably, with each
tailored to different data types and research imperatives. These
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methods are not without their respective advantages and limitations.
The optimal method for a given study hinges on the intricacies of the
data in question, including spatial and temporal resolutions, and the
overarching research goals. In essence, the nuanced process of
classification analysis is indispensable for the comprehensive
understanding and effective management of land resources. Its
relevance and application within LSS are not only of paramount
importance at present but will persist as a critical component of
future endeavors in the field. This continuity underscores the
necessity for ongoing advancements and refinements in
classification methodologies.

In the era of remote sensing (RS) big data, the multi-source and
multi-scale characteristics of remotely sensed data has posed
significant challenges in managing, processing, and interpreting
this unprecedented proliferation of data, and it is often difficult
to employ traditional processing algorithms and models (Liu, 2015).
Fortunately, the field of classification has seen the introduction of
more advanced techniques. The ease of access to large satellite
imagery and spatial datasets, coupled with better computational
resources and the complexity of high-dimensional RS data has
popularized the use of Artificial Intelligence (AI) in land-use and
land-cover (LULC) classification. This trend is evident with the
growing adoption of machine learning (ML) and deep learning (DL)
methods for classifying remotely sensed imagery, opening new
research avenues, and allowing for the utilization of large, diverse
datasets (Chen et al., 2017; Zhang et al., 2019; Jin and Mountrakis,
2022). Given that LSS is an interdisciplinary field, it integrates
knowledge from various disciplines such as geography, ecology,
remote sensing, geology, economics, and sociology to analyze and
model the processes shaping land systems at different scales. One of
the key challenges in LSS is dealing with the heterogeneity and
complexity of land cover features, especially in areas where irregular
and sparse spatial distribution of features exists. ML and DL
techniques can aid in the classification of complex land cover
features where traditional methods may struggle to accurately
capture the spatial distribution of such land cover classes, such as
the novel DL technique (EG-UNet) used by Zhou et al. (2023b) to
enhance the classification of open-pit mining areas. In their analysis
their model outperformed ten different DL models, performing
especially well in classifying classes with few training samples.
Agricultural land suitability classification and crop suggestion
represent another critical aspect of LSS, especially in semi-arid
ecosystems where agricultural productivity is highly dependent
on environmental factors. Previous research demonstrates the
application of ML and spatial multicriteria decision analysis to
assess the suitability of agricultural land and provide
recommendations for crop selection, thereby optimizing land use
practices and enhancing agricultural productivity (Agrawal et al.,
2024). Furthermore, LSS often involves the classification and
characterization of lithological units based on geological
knowledge and satellite imagery analysis. A study by Zhou et al.
(2023a) proposes a DL framework guided by geological knowledge
to classify lithological units from optical stereo mapping satellite
imagery, facilitating improved geological mapping and resource
exploration. ML-based classification algorithms play a crucial role
in monitoring land use and land cover practices, particularly in
challenging terrains such as hilly areas where traditional methods
may be limited in their effectiveness. The utilization of ML

algorithms for land use and land cover monitoring in hilly
terrains is explored in various studies, including a recent study
by Parashar et al. (2024), which highlights the importance of these
techniques in accurately detecting and classifying land cover
changes in dynamic landscapes. The intersection of various
disciplines and the application of advanced techniques such as
DL and ML contribute to the effectiveness of LSS in addressing
complex environmental and societal challenges.

However, the integration of AI as a “third approach” in remote
sensing, sitting between traditional observation and simulation
methods, requires thorough evaluation. As AI techniques have
become pervasive in almost all RS applications, it is crucial to
assess whether a given method improves accuracy, aligns with
research goals, and for what applications the use of a particular
AI technique is most appropriate. The key is to identify the specific
conditions for which the application of AI methods in remote
sensing contribute effectively and enhance methodology
robustness, and in which cases such methods may detract from
the research goals and diminish methodological robustness. It is
important to recognize that while AI has potential in remote sensing
applications, it is not a panacea. There are situations in which AI
methods are ineffective or even detrimental, yielding weaker results
compared to more conventional methods. Similarly, there are
research scenarios for which more advanced DL methods may
yield less accurate results than traditional ML techniques (Liu
et al., 2017; Abdi, 2020; Jamali et al., 2021; Zaabar et al., 2022).
Identifying these scenarios is essential for ensuring that AI is
integrated wisely within the existing methodological framework
in LSS. A more nuanced understanding of the conditions under
which an AI technique is appropriate and advantageous enables
researchers to better incorporate these new technologies with
existing methods for optimal outcomes. Such an understanding is
critical for guiding the responsible use of AI in remote sensing,
ensuring it enhances rather than hinders research quality, and
advances LSS’s aim to better understand human-driven land
system change.

This study aims to critically evaluate the performance and
effectiveness of ML and DL techniques in executing scientific
classification tasks in the domain of LSS. Our focus is to dissect
the capabilities and constraints of both ML and DL in precisely
classifying land cover features, discerning land use patterns, and
forecasting dynamics within land systems. The scope encompasses
an examination of a variety of scientific classification tasks such as
land cover and land use classification, along with the detection of
changes in land systems. We present examples from diverse types of
remotely sensed data, including satellite imagery, LiDAR, and aerial
photographs, supplemented by ancillary data like geological and soil
maps, to enhance classification accuracy. The exploration will cover
conventional ML algorithms like Random Forest (RF), Support
Vector Machines (SVM), and k-Nearest Neighbors, alongside DL
architectures such as Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), U-Net, and Long Short-
Term Memory (LSTM) networks. To assess the models’
performance, evaluation metrics including accuracy, precision,
recall, F1-score, and confusion matrices will be discussed. The
review will feature case studies from various land system
contexts—urban, agricultural, forested, and natural reserves—to
test the models’ generalizability and robustness. A thorough
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comparative analysis will delve into the strengths and weaknesses of
ML and DL techniques, considering factors like classification
accuracy, computational efficiency, model complexity, and
interpretability. The conclusion will synthesize these findings to
offer insights and recommendations on the most suitable ML and
DL approaches for land system classification tasks, aiming to
advance land cover classification methodologies and guide
researchers and practitioners in their methodological choices for
land cover change and system analysis.

In the context of land system science, ML and DL serve as
advanced techniques for classifying land cover and monitoring
changes using remote sensing data. ML encompasses a variety of
algorithms, such as decision trees (DT), RF, and SVM, that can
identify patterns within large-scale land cover data (Kotaridis and
Lazaridou, 2023). In LSS, ML methods have been instrumental in
classifying land cover, predicting land use changes, and assessing
environmental impacts. Key ML methods include Sparse Coding,
Low-Rank Learning, Manifold learning, and the use of Hybrids.
Sparse Coding focuses on finding a sparse representation of input
data among an overcomplete basis set. Sparse coding is particularly
useful in LSS for compressing large datasets and identifying
significant features for land cover classification. Low-Rank
Learning aims to discover a low-dimensional structure in high-
dimensional data, and as such, this method is beneficial for
processing and analyzing satellite imagery, where it can help in
denoising and completing missing information in temporal
sequences. Manifold Learning seeks to determine a lower-
dimensional space in which the data points lie. It is adept at
capturing the intrinsic geometry of spatial data, making it
valuable for analyzing geographical patterns and trends in LSS.
Hybrids result from the combining of two or more ML techniques,
to leverage the strengths of each approach, and have been used in
LSS to improve prediction accuracy and robustness over single-
method approaches. In comparison are DL methods, which are a
more complex subset of ML, involving neural networks with many
layers. These methods have significantly advanced the field of LSS by
enabling more sophisticated image classification, object detection,
and semantic segmentation tasks. DL’s ability to automatically learn
hierarchical features from data makes it especially powerful for
analyzing complex land system dynamics. DL is commonly used in
fine-scale mapping and object-based image analysis. This approach
includes techniques like CNN’s, fully convolutional networks
(FCN), and deep neural networks (DNN) (Xie and Niculescu,
2021; Zaabar et al., 2022). Both ML and DL operate on the
principle of training models with labeled data to recognize
patterns corresponding to various land covers. However, they
differ significantly in complexity and application. Traditional ML
algorithms, which are generally “shallower”, work with fewer layers
and parameters, making them simpler but sometimes less versatile
in handling intricate data patterns. DL models, in contrast, generally
feature many layers, allowing them to capture more complex, high-
level abstractions in data, often achieving greater accuracy,
particularly in image recognition tasks (Solórzano et al., 2021;
Taye, 2023).

ML stands out for its automatic feature extraction, flexibility,
and scalability, though it requires substantial training data and is
prone to overfitting. While supervised ML offers more accuracy,
unsupervised methods are useful when labeled data is scarce.

Conversely, DL’s strength lies in its ability to learn directly from
data, eliminating the need for manual feature engineering and
efficiently handling high-dimensional data. However, DL models
typically demand more computational power, larger datasets for
training, and are more susceptible to overfitting, which can limit
their practicality in certain scenarios (Sarker, 2021; Cheng et al.,
2023). In practical terms, ML algorithms like RF are often employed
for tasks such as large-scale land cover mapping due to their
effectiveness and lesser computational demands. DL methods,
with CNNs as a prime example, are preferable for detailed image
classification tasks due to their proficiency in learning local patterns
within data, making them ideal for intricate image-based land cover
classification (Fujiyoshi et al., 2019). RNNs, another DL
methodology, are suited for analyzing time series data, useful in
monitoring temporal changes in land cover (Campos-Taberner
et al., 2020; 2023; Masolele et al., 2021). However, their training
process can be more complex, and they may need smaller datasets
compared to CNNs. The choice between using ML or DL should
factor in the specific project requirements, data availability, and
computational resources, ensuring the selected method aligns with
the research objectives.

In this paper, we review the current status of ML and DL
approaches for LSS research, with a specific focus on the
application of AI techniques in land cover classification and
change analyses. As providing a detailed description of every
method is beyond the scope of this paper, we focus on
representative characteristics of the ML and DL models most
commonly used. We highlight these common or typical
approaches with the use of significant research examples and
featuring specific studies. As such, most of the limitations,
advantages, disadvantages, and other considerations of each of
the ML and DL approaches discussed refer to those models
currently in common use. We then develop a decision tree
approach to help guide researchers in selecting the more suitable
of the two methods (ML or DL) for distinct research objectives and
questions; datasets of varied spatial and temporal resolution; and
different skill levels and computing power available to a researcher
or research team. Given the somewhat recent inundation of remote
sensing analyses with new or more accessible AI methods and the
inclination of many researchers to employ ML/DL approaches, the
need to pause and evaluate the usefulness of these advanced
techniques is opportune. Although AI conjures an impression of
“new and improved” or a higher degree of learning and
sophistication, the assumption of new methods irrefutably being
better equates to the age-old logical fallacy called the “ad novitalem
argument.” The excitement that often accompanies innovation and
the emergence of new technology often obscures the practical
application of such new and exciting tools. The logical approach
in developing research methods may be obscured as researchers are
focused on the latest available technologies. Indeed, trends in recent
publications evidence that many RS researchers appear to be
pushing to utilize ML and DL techniques in a race to be on the
cusp of the latest technique while discarding more traditional- and
possibly in some scenarios more appropriate-methods (Liu et al.,
2017; Abdi, 2020; Jamali, 2021; Zaabar et al., 2022). Thus, an
evaluation of the usefulness of AI methods in RS and
considerations of when the different approaches should be
utilized, is very timely. Given that the determination of which
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technique to use is very much a function of the questions being
asked, this paper examines the use of ML versus DL approaches
within the field of LSS only. As many of the factors being considered
in this review are already known, it is possible to develop a decision
tree model to highlight which of the most commonly used ML/DL
classification approaches is most suitable for a given study. In
addition, in the discussion section, we will also revisit newer
methods and approaches now being developed, to overcome
some of these discussed ML and DL limitations or decision
points, in order to highlight some of the possible future
directions, where models are currently being developed to
overcome some of the discussed limitations or constraints.

The primary objective of this paper is to articulate and provide a
structured decision-making framework, specifically a decision tree,
to guide researchers in selecting an appropriate computational
method for land cover classification analysis within the field of
LSS. The decision framework is presented as a decision tree, which
serves as a pragmatic tool to aid researchers in navigating the
complexities of method selection, given the distinct nature of
frequently employed ML and DL techniques. The need for such a
tool has become increasingly evident with the diversification of data
sources and the exponential growth in data volume, coupled with the
sophisticated demands of contemporary human-environment
research. This decision tool is fundamental and must consider
several factors, each of which may significantly influence the
integrity of the research outcome. These considerations are as
follows: 1) the researcher’s familiarity with AI techniques and
computing expertise, 2) the computing requirements and
available resources, 3) what type of research question within LSS
the researcher is addressing, 4) the types of image data available, 5)
the time period the study is covering which also links back to image
data availability, 6) what training data is available for the
classification analysis, and 7) the required accuracy level.
Determining whether ML or DL is more appropriate for a land
classification task is contingent on these multifaceted
considerations. Researchers must reflect on their objectives,
resources, and constraints before selecting a methodology,
ensuring it not only addresses their central question effectively
but also aligns with the logistical parameters of their study. This
balanced decision-making process paves the way for more robust,
efficient, and suitable research outcomes in LSS.

2 Evaluating ML and DL for LSS
applications

In the realm of LSS, understanding and modeling LULC
transformations are paramount, significantly benefiting from
advancements in remote sensing bolstered by ML and DL
techniques. These advanced algorithms have revolutionized
LULC tasks, extending from classification to intricate
predictive modeling, primarily when employed with satellite
or aerial imagery. The research landscape is replete with
instances where ML and DL have been instrumental in
enhancing LULC classifications (Singh et al., 2021; C. Zhang
et al., 2020a; X. Zhang et al., 2020b), characterizations (Ahmed
and Lin, 2021; Akar and Tunc Gormus, 2022), and
comprehensive mapping (Alhassan et al., 2020). Notably,

Zhang et al. (2019) leveraged CNNs in their LULC study to
bridge the gaps between predictive outputs and expected results.
In a similar vein, Alhassan et al. (2020) utilized deep neural
networks for nuanced LULC mapping, categorizing individual
pixels of multispectral satellite imagery into diverse LULC types.
These advancements, however, underscore the importance of
selecting the appropriate technical approach with research
objectives and resources, as this choice can significantly
influence a project’s trajectory and outcome. To address this,
our review delineates the competencies essential for employing
popular ML and DL methodologies in LSS research. A pivotal
component of this analysis is a decision-tree-style flowchart
(Figure 1), synthesized from comprehensive reviews and direct
research insights. This guide serves as a navigational tool,
underscoring the skills, data prerequisites, and specific criteria
that dictate the choice between commonly employed ML and DL
pathways. Our objective extends beyond mere comparison,
constructing a fully developed decision model as the
culmination of this review. This model encapsulates the
critical facets pertinent to LSS, offering researchers a clear
direction based on their unique constraints, resources, and
expertise levels. Consequently, it will enable informed
decision-making regarding the adoption of common ML or
DL techniques in individual LSS endeavors.

FIGURE 1
Decision tree model framework for deciding the outcome of
either machine learning (ML) or deep learning (DL) classification
techniques for each topic of review. Eachmodel has specific criteria to
be considered with a set of conditions leading to different
potential outcomes.
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2.1 Data type and system studied

2.1.1 Research question within LSS
LULC classification has emerged as an essential application

within LSS, particularly in the interpretation of remote sensing
imagery. The era of ‘big data’ has ushered in a deluge of Earth
Observation data, presenting researchers with new avenues for
groundbreaking methodologies and approaches (Karpatne et al.,
2016). The intricacy lies in aligning the AI technique with the
specific LSS research question at hand, thereby selecting the most
appropriate approach within the vast spectrum of AI
methodologies.

ML, employing a bottom-up approach, excels in deciphering
patterns within massive data sets—patterns often imperceptible to
human analysis. Conversely, traditional earth science modeling,
characterized by a top-down approach, leverages established
understanding of physical laws, often at the expense of
computational simplicity and the agility needed to uncover
unexpected insights. A synergistic integration of these
methodologies has been the focus of contemporary research,
striving to embed physical laws within the flexible architectures
of ML and DL models. This fusion facilitates more interpretable
models, capable of addressing the multifaceted challenges faced in
the earth sciences (Karpatne et al., 2016). In LSS, research objectives
vary widely, influencing the data requirements, study area
parameters, and even the pixel characteristics within remote
sensing images. Consequently, the research design and
methodologies in LULCC studies must be meticulously
customized. Notably, DL techniques, especially CNNs, have
enhanced capabilities for object detection, segmentation, and
traditional classification, empowering detailed image analyses
(Barbierto et al., 2020; Du et al., 2020; Guo et al., 2021; Pešek
et al., 2022). Furthermore, DL autonomously learns data features, a
marked advancement over traditional ML, eliminating the need for
manual, domain-specific feature engineering (Liu et al., 2017; Shih
et al., 2019; Magalhães et al., 2022).

With the advent of commercial satellite imagery and
advancements in computer vision, DL techniques have
revolutionized the monitoring of land cover and land-use
changes. Harnessing DL, researchers can now distill invaluable
insights from decades-long satellite data repositories, providing a
dynamic view of environmental changes and aiding in crucial
decision-making processes. One noteworthy development is ML’s
role in monitoring temporal processes, such as land cover
transitions, with significant implications for policy decisions. For
instance, insights derived from ML analyses can guide investments
in agricultural water management or initiatives to rehabilitate
deteriorated landscapes (Yomo et al., 2023).

In LSS, multi-spectral and hyperspectral imagery stand out as
the predominant data types in ML and DL image classification.
Multi-spectral imagery, encompassing specific wavelength bands, is
instrumental in distinguishing various land cover types (Chen et al.,
2017). In contrast, hyperspectral imagery offers a higher spectral
resolution, enhancing the identification precision for specific cover
types—essential for detailed applications like mineralogy, vegetation
studies, and pollution monitoring (Ghamisi et al., 2016; Yu et al.,
2017; Li et al., 2019; Lei et al., 2021). Additionally, panchromatic
imagery, with its higher spatial resolution, finds its niche in

analyzing feature textures and shapes, critical for detailed object
recognition tasks (Zhang X. et al., 2020; Sertel et al., 2022; Zhang
et al., 2022). Similar to ML, DL models in LSS commonly utilize
multi-spectral, hyperspectral, and panchromatic imagery, benefiting
from their capacity to learn directly from data. These models,
particularly adept with CNNs, have proven instrumental for a
plethora of tasks, including land cover mapping, crop
identification, and change detection, capitalizing on the rich
information provided by these advanced imaging methods
(Barbierato et al., 2020; Du et al., 2020; Guo et al., 2021; Wang
J. et al., 2022; Wang L. et al., 2022; Pešek et al., 2022).

The judicious application of AI in LSS requires a nuanced
understanding of the specific research questions, the
characteristics of the available data, and the computational tools
at one’s disposal. The convergence of ML and DL with traditional
scientific methods is paving the way for innovative solutions in LSS,
transcending the limitations of each approach when used in
isolation. As we venture further into this era of big data and AI,
the strategic integration of these technologies in LSS will continue to
play a pivotal role in shaping our understanding and stewardship of
the Earth’s land systems.

2.1.2 Image availability
Both ML and DL approaches used in LULC classification

fundamentally depend on high-quality image data, but they differ
significantly in their specific data requirements and preprocessing
steps. ML algorithms require preprocessed, accurately labeled image
data, where each pixel or segment is clearly categorized into different
land cover types. These algorithms can efficiently process various
data formats, such as raster (e.g., GeoTIFF) and vector formats (e.g.,
shapefiles), but their effectiveness heavily relies on the quality and
representativeness of the training data, emphasizing the importance
of careful data curation (Hermosilla et al., 2022).

In contrast, DL algorithms, though fundamentally reliant on
similar types of data as ML, are more forgiving with respect to data
quality and representativeness. They demand more extensive
preprocessing, which often involves transforming image data into
array formats suitable for feeding into neural networks. This
difference in data handling underscores DL’s adaptability in
managing a wider range of data qualities and volumes for LULC
classification. Rigorous data transformations, including
normalization, scaling, and sometimes augmentation, are
indispensable for optimizing model performance. The advent of
RNNs equipped with Attention Mechanisms (AM) marks a
significant evolution in the DL landscape. As Campos-Taberner
et al. (2020) illustrate, these advanced networks have gained traction
beyond traditional applications, demonstrating proficiency in
enhancing classifications derived from high-resolution imagery,
notably in time series predictions and text classifications. A
distinguishing characteristic of DL methodologies, particularly in
the context of land cover classification, is their voracious demand for
extensively labeled datasets. Given the intricate architectures of DL
models, the training phase mandates substantial data volumes to
effectively ‘learn’ and generalize. This requirement often compels
researchers to employ strategies like data augmentation, expanding
the effective size of available datasets. These techniques are crucial,
especially in scenarios where access to vast repositories of labeled
images is limited.
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While both ML and DL paradigms mandate access to labeled
image data, the DL algorithms distinguish themselves through their
demand for larger datasets and specific data formatting
prerequisites. Moreover, they exhibit a resilience against
fluctuations in data quality and representativeness, unlike their
ML counterparts. This relative robustness, alongside the
advanced capabilities of models like RNNs with AM, highlights
the compelling advantages of DL in tackling the complexities of land
cover classification within the burgeoning domain of LSS.

2.1.3 Time period of study
The evolution of Earth Observation (EO) technologies has

precipitated a paradigm shift in the temporal resolution of
remotely sensed images utilized in computational modeling,
enhancing the depth and frequency of time-series data for land
cover studies (Southworth and Muir, 2021). This progression
diverges markedly from historical methodologies that relied on

sparse two or three-date change detection analyses.
Contemporary approaches enable researchers to dissect land
cover transformations across extended periods, encompassing
diverse seasons and years. Such temporal breadth enhances the
comprehension of terrestrial dynamics integral to discerning land
cover traits. However, the wealth of time-related data also brings its
own set of challenges. The inundation of data, while contributing to
accuracy, introduces ancillary complications like extraneous noise in
predictive modeling and computational burdens (Davenport et al.,
2012; Chen et al., 2017; Cheng et al., 2020; Arruda et al., 2021). These
challenges underscore the necessity for advanced analytical tools
and robust computing infrastructures.

Recent innovations, such as the integration of red-edge spectral
bands in Sentinel-2 sensors, have revolutionized accuracy levels in
land cover classification, independent of denser time-series data
(Delegido et al., 2013; 2011a; Xie et al., 2018; Abdi, 2020). These
technological leaps signify that enhanced sensor capabilities, even in

FIGURE 2
Decision Tree outline, highlighting the initial criteria, conditions, and outcomes, based on image data available, time period of the study, and training
in land system science, for deciding on a typical DL versus ML classification approach in their research.
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TABLE 1 Published research analyses that utilized machine learning and deep learning classification approaches for land cover, with specific details
regarding the various methodological approaches, characteristics of the input imagery, and study conclusions and limitations.

Citation Study purpose Classification
approach:
Machine learning
(ML) or deep
learning (DL)

Imagery type Time period Conclusions and
limitations [when
available]

Barbierato et al.
(2020)

Classification of urban
forests from proximate
sensing techniques

DL- CNN (Semantic
Segmentation Network)

MS, LiDAR UltraCam XP
(four band red, green, and
blue + NIR); Google Street
view images

Single date, Oct. 2013 ⁃ NDVI and LiDAR data were
combined and used.

⁃ With respect to the
classification of vegetated areas,
the results of the study confirm
the efficacy of the combined use
of NDVI and LiDAR and
semantic segmentation using
DL for Google Street View
(GSV)images

Du et al. (2020) Map forested wetland
inundation

DL- CNN U-net Semantic
Segmentation

Worldview- 3 2015 ⁃ The model accurately
determined inundation status
with 95% accuracy (Kappa =
0.90) and high overlap (IoU =
70%) with field data and lidar
intensity-derived labels.

Campos-Taberner
et al. (2023)

Decision making on the
European Common
Agricultural Policy

DL- RNN Sentinel-2 May 2019 and April
2020.

⁃ Ground truth data captured the
spatial variability of land use
classes.bands + kNDVI +

EkNDVI

Shih et al. (2019) Evaluate classifiers in
various software

ML- RF, DT, SVM Landsat TM and ETM+ November 1, 28 May
2010, 2011, and

⁃ Model selection is a key factor
for classification. For instance,
the accuracy of LULC maps
derived from ML classification
is lower for the FNNR dataset
due to limited training data and
challenging terrain and
illumination conditions.

DL- ANN 16 August 2011. ⁃ The limitation might be the use
of manually digitized training
data for six LULC classes from
2000 to 2003 Google VHR
images and the original Landsat
image, which overestimated the
overall accuracy of trained
classifiers.

Maxwell et al.
(2018)

Evaluate model selection,
input data and
parameters,
computational costs

ML- SVM, DT, RF, boosted
DT, k-NN.

AVIRIS (hyperspectral.),
GEOBIA

Single date images from
multiple years (1992,
2014)

⁃ ML techniques are more robust
than parametric methods for
remote sensing analysis, but
ideal classifiers, parameters and
sample size may differ based on
the analyst’s goal.

DL- ANN

Abdi (2020) Comparing classification
performance of four
nonparametric
algorithms

ML- SVM, RF, Xgboost Sentinel-2 multispectral 2017 and 2018 ⁃ DL underperformed, with
lowest accuracy for open land
and artificial surfaces (PA =
0.44 and 0.36). The use of tanh
activation likely caused the
underperformance.

⁃ Support vector machines
produced the highest
classification accuracy due to
their small number of complex
decision boundaries.

⁃ The limitation could be the
training data, which might not
be representative over large
areas.

(Continued on following page)

Frontiers in Remote Sensing frontiersin.org08

Southworth et al. 10.3389/frsen.2024.1374862

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2024.1374862


TABLE 1 (Continued) Published research analyses that utilized machine learning and deep learning classification approaches for land cover, with specific
details regarding the various methodological approaches, characteristics of the input imagery, and study conclusions and limitations.

Citation Study purpose Classification
approach:
Machine learning
(ML) or deep
learning (DL)

Imagery type Time period Conclusions and
limitations [when
available]

Pešek et al. (2022) Cloud detection in desert
landscapes

DL- CNN: U-Net, SegNet VENµS Nine tiles obtained
between Apr. 2018 -
Aug. 2019

⁃ The CNN architectures
outperform current cloud-
masking algorithms by
improving the false positive
detection ratio.

DeepLab

Guo et al. (2021) Mapping mangrove land
cover from multi-scale
contextual information

DL- CNN, U-net Landsat time series ⁃ Developing Capsule-Unet
which introduce the capsule
concept to U-net to extract
mangroves with high accuracy
via learning the spatial links
among the objects in the remote
sensing imagery.

Masolele et al.
(2021)

Mapping land-use change
driven by deforestation

DL- 2D and 3D CNN, RNN
LSTM, Hybrid models

Landsat 5 & 7 Median composites for
two annual values/year
(2000–2005)

⁃ In the pan-tropical setting,
Hybrid CNN-LSTM,
ConvLSTM, and CNN-MHSA
models outperformed 2D-
CNN, LSTM, and 3D-CNN in
terms of classification accuracy.

Campos-Taberner
et al. (2020)

Land use classification
using RNN

DL- Recurrent Neural
Network

Sentinel-2 time series Sep. 2017–Aug.2018 ⁃ Sentinel-2 bands convey the
most useful information.

⁃ Sentinel-2’s near-infrared and
red bands are particularly
valuable for vegetation
categorization due to their
ability to detect differences in
leaf area index and
pigmentation

⁃ LSTM networks overcome this
with a mechanism that allows
for memory, deciding what
information to retain or
discard.

⁃ The 2-BiLSTM network
achieved an overall accuracy of
98.7%, surpassing other
classification algorithms.

⁃ Accuracy rates were
consistently high, reaching up
to 99.9% for rice crops.

Alshari et al. (2023) Implementing the novel
technique for land use
classification

ML- Artificial Neural
Network

Sentinel-2A, Landsat-8,
and Normalized digital
elevation

2016 ⁃ They did geometric and
radiometric corrections, which
improved categorization and
corrected degraded images.

⁃ The combinations of classifiers
showed good results.

X. Zhang et al.
(2020b)

Comparing state-of-the-
art DL for high-res image
classification and object
detection to traditional
methods, using land
cover and wind turbine
detection case studies

DL - SegNet, U-Net, PSPNet RapidEye: 5-m resolution
imagery in five-bands:
blue, green, red, red edge,
and near infrared.

2012 ⁃ Images are too large to pass
through a DCNN (deep
convolutional neural network)
under current GPU memory
limitations.

⁃Used sliding window to split the
training data.

⁃ Label-preserving
transformations were used for
data augmentation to rotate,
flip, and mirror.

(Continued on following page)
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isolation, can precipitate substantial gains in classification precision.
In the context of employing DL and ML for image classification, the
selection of appropriate satellite imagery is contingent on the
specificity of the research objectives and the quantity of labeled
data available. Typically, high-resolution imagery is coveted for its
intricate detail, conducive to a broader spectrum of analytical tasks.
Nonetheless, the robust nature of DL models permits the
assimilation of expansive data volumes, rendering them
compatible with lower-resolution images when high-definition
resources are scarce. DL models demonstrate proficiency in
extracting features directly from diverse image datasets, spanning
multispectral, panchromatic, and hyperspectral imagery. This
versatility, combined with the models’ capacity to manage
extensive data from vast geographical expanses, positions DL as a
potent tool for satellite imagery analysis. Conversely, traditional ML
models, while potent, often necessitate tailored feature engineering
and may exhibit restrictions in data handling capabilities,
particularly for extensive datasets typical in satellite observations.
The crux of effective DL application, however, resides in the
availability of substantial labeled datasets, a prerequisite that
might be elusive in certain remote sensing ventures. Herein,
conventional ML models may hold an advantage, albeit with the
trade-offs of requiring feature engineering and potential limitations
in data processing breadth (Figure 2).

Expanding the temporal domain of DL image classification
introduces additional challenges. A key issue is the lack of
labeled training data when using older images. Over time,
changes in sensor technology, differences in image resolution,
and varying image quality make it harder to analyze images

consistently over a long period. To deal with these problems, it is
important to use a standardized method for preparing data and
choose images from similar types of sensors or those with
comparable features. Also, to use old data effectively, we need
more labeled datasets that accurately show how land cover has
changed over time. So, while DL is promising for long-term studies
of land cover, it is crucial to carefully consider the limitations related
to data labeling, changes in sensor technology, and differences in
image quality over time (Alhassan et al., 2020; Xu et al., 2021; Wang
J. et al., 2022). The authors have compiled an extensive list of
recently published articles that utilize ML and DL for LSS and
include some of the considerations detailed above (Table 1). This
table serves as an integral data analysis component for this research,
highlighting published research analyses that utilized ML and DL
classification approaches for land cover, with specific details
regarding the various methodological approaches, characteristics
of the input imagery, and basic information regarding the study
conclusions and limitations Additionally, it may also serve as a
resource for those wanting to expand their ML/DL analyses for LSS
research (Table 1).

2.1.4 Available training data
Training data is the cornerstone for both ML and DL models

used in image classification. However, the requirements differ
significantly between the two, primarily in terms of data volume,
quality, and representation. For ML, the emphasis is on the precise
labeling and quality of data, even though the quantity required is
relatively modest (Wang J. et al., 2022; Wang L. et al., 2022). The
datasets must be meticulously curated to avoid misleading the

TABLE 1 (Continued) Published research analyses that utilized machine learning and deep learning classification approaches for land cover, with specific
details regarding the various methodological approaches, characteristics of the input imagery, and study conclusions and limitations.

Citation Study purpose Classification
approach:
Machine learning
(ML) or deep
learning (DL)

Imagery type Time period Conclusions and
limitations [when
available]

⁃ DL models’ convolution layers
handle spatial-spectral
information with a convolution
kernel, boosting classification
accuracy, especially in
hyperspectral image
classification.

Arruda et a. (2021) Mapping spatial fire
dynamics for ecosystem
management

DL- DNN (Multi-Layer
Perceptron Network
Structure)

Landsat bands
2–7 MCD64A1, INPE

Individual model runs
for May & December of
2017

⁃ 97% accuracy; 36% agreement
with other datasets (due to
cloud cover)

Bhargava et al.
(2021)

Estimate erosion and
progradation of
mangroves (case study)

ML -K means clustering
algorithm

Global Mangrove Watch
(GMW) Global Surface
Water Explorer the GSWE
dataset contains the spatial
and temporal distribution
of surface water and
provides the extent of and
change in water surfaces
from

1984–2018 ⁃ The accuracy evaluation was
greater than 90%.

⁃ The overall kappa coefficient
was highest.

⁃ The GEE platform utilized
cloud computing and big data
methods, providing cost and
time efficiency as the data and
platform usage were free of
charge. Additionally, it was fast,
efficient, and capable of scaling
to meet increasing demands.
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models, necessitating perhaps thousands of samples, each clearly
annotated to represent different classes accurately. This process
demands considerable time and expertise, especially in cleaning
the data of noise and errors that can skew results. Conversely, DL
models demand extensive datasets, often requiring massive training
data. However, DL models are inherently designed to sift through
data to detect patterns and correlations, allowing for some leniency
regarding inconsistencies or anomalies within the datasets. Yet, the
sheer volume of training data needed poses a challenge, as
insufficient data leads to underdeveloped models. The
representativeness of the data is also crucial, ensuring all possible
variations of each class are included, preventing the model’s
performance from degrading from lack of diversity in the
training phase. The stark requirement for large datasets in DL
necessitates resources often beyond reach for many projects,
leading to reliance on data augmentation methods or synthetic
data to bolster training sets. This approach has its pitfalls, as
synthetic data may not capture the complexity of real-world
variations (Han et al., 2023).

Furthermore, the practical challenges of acquiring and
processing different data types—as this forms the backbone of
the training process—must also be addressed. Optical data from
platforms like Landsat is commonplace, but often requires
significant preprocessing to be usable in training models. Radar
data, such as that from the Sentinel-1 mission, offers all-weather
capabilities but brings complexities in interpreting and utilizing
data for non-expert users. Moreover, while airborne and ground-
based data collection methods provide higher resolution and
detailed data, they come with logistical, financial, and technical
challenges, restricting their use in broader studies. These methods,
though highly detailed, are not always scalable or feasible for large-
area studies due to cost, accessibility, and data processing
constraints (Shirmard et al., 2022). Data fusion is another
underexplored area that deserves attention. Integrating different
data types (optical, radar, etc.) can significantly enhance model
robustness, allowing more reliable performance across varying
conditions and terrains (Zhu et al., 2017). However, this
requires sophisticated processing techniques and expertise to
ensure compatibility and meaningful synthesis of diverse data
sources. The choice between ML and DL is not merely a
technical decision but a strategic one, hinging on available
resources, expertise, and project objectives (Figure 2). While DL
holds promise with its ability to process and learn from vast
datasets, its resource-intensive nature and need for substantial,
diverse training data can limit its applicability. Conversely, ML can
operate on leaner datasets but requires more rigorous data
preparation and may not capture complex patterns within data
as effectively as DL models.

2.1.5 Level of accuracy required
In LULCC research, particularly studies focusing on specifics

like urban expansion, deforestation, or cropland conversion, DL
techniques often surpass traditional ML methods in accuracy. These
studies typically analyze vast quantities of remote sensing imagery,
requiring precise detection of often subtle changes in land cover or
use. DL methods, especially CNNs, excel in identifying these
changes due to their superior object and pattern recognition
capabilities (Kussul et al., 2017; Yu et al., 2017; Zhang et al.,

2018). ML, despite requiring fewer training data, serves well in
applications like data mining and complex software applications
(Lary et al., 2016). In contrast, DL, with its multilayered NNs, deals
with high-level data abstractions. Modern CNNs, with their
elaborate architecture, are particularly adept at handling diverse
data arrays, such as those in image data (Fu and Menzies, 2017).
However, these networks require extensive training datasets,
significantly larger than those needed for ML, making data
augmentation techniques a necessity, albeit not a panacea,
especially for more complex or larger models.

The emphasis in using CNNs for remote sensing imagery is
often on achieving high classification accuracy, sometimes at the
expense of training time efficiency. Advanced computing resources
and methodologies, including GPUs, can expedite model training
and testing. However, pitfalls like over-fitting due to insufficient
training data remain, potentially harming the model’s performance
on test data. Techniques like dropout can mitigate over-fitting by
randomly disabling certain nodes, enhancing overall network
performance (Gupta and Nanda, 2022). DL’s data-hungry nature
aligns it with big data, demanding not only vast amounts of varied
data but also counter examples for training (Raj et al., 2019). Data is
processed through sophisticated, pretrained CNNs, producing high-
level features for subsequent categorization—a beneficial approach
in RS, where acquiring labeled data is costly and labor-intensive
(Marmanis et al., 2016). Despite their potential, DL models face
limitations due to the scarcity of training data, with the large-scale
nature of the datasets introducing new analytical challenges.
Discriminating between classes becomes difficult with large
spatial coverages, as internal variability within classes increases.
This issue is compounded when using moderate or coarse-
resolution images, where field data cannot comprehensively
represent a pixel’s entire area, leading to potential scaling
problems (Elmes et al., 2020).

The extent of accuracy improvement DL offers over ML varies
by the task and dataset. However, DL, particularly through CNNs,
generally achieves superior results (Table 2). For instance, CNNs
outperformed traditional ML in land cover classification tasks,
reaching 94.6% accuracy compared to 88.7% with ML (RF) in
satellite imagery (Kussul et al., 2017), and 85.24% versus 80.95%
(SVM) in aerial imagery (Yu et al., 2017). Yet, higher accuracy with
DL is not guaranteed. From 29 studies comparing ML and DL in
LULC mapping, DL offered less than 10% improvement in
17 cases, and in 10 instances, the increase was under 4%.
Surprisingly, ML even surpassed DL in four studies (Liu et al.,
2017; Abdi, 2020; Jamali, 2021; Zaabar et al., 2022). Thus, the
choice between ML and DL extends beyond just accuracy,
encompassing considerations like computational resources and
model interpretability. While DL aims to enhance LULC
classification accuracy, various factors determine the choice of
approach, and accuracy is just one of them. Table 2 compiles the
model accuracy results from studies employing both ML and DL
for LULC mapping. Results indicate that while DL can lead to
accuracy improvements, these are not always substantial (Ienco
et al., 2019; Interdonato et al., 2019; Xie and Niculescu, 2021;
Magalhães et al., 2022). Performance varied widely, with accuracy
ranging from 51.56% to 99.59% for ML and 61.45%–99.79% for
DL, highlighting the impact of factors beyond the classification
algorithm, such as training data and imagery type.
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TABLE 2 Reported accuracies and potential accuracy improvement by the use of deep learning (DL) classification approaches from 29 published studies
where both traditional machine learning (ML) methods and DL methods were used for land cover classification.

Citation/Title Accuracy Modeling method Imagery type

ML DL aChange in DL
over ML (%)

ML DL

Magalhães et al. (2022) Comparing machine and DL
methods for the phenology-based classification of land
cover types in the amazon biome using Sentinel-1 time
series

92.16 93.49 1.44 SVM Bi-GRU Sentinel-1

Wang et al. (2022b) Evaluation of a deep-learning model
for multispectral remote Sensing of land use and crop
classification

73.47 97.28 32.40 RF UNet++ Sentinel-2A

79.04 97.04 22.77 RF UNet++ Sentinel-2A

80.23 97.72 21.79 RF UNet++ Sentinel-2A

72.69 96.86 33.25 RF UNet++ Sentinel-2A

70.96 75.34 6.17 RF UNet++ Gaofen PMS

74.72 97.72 30.78 RF UNet++ Gaofen PMS

80.75 87.66 8.55 RF UNet++ Gaofen PMS

70.65 91.17 29.04 RF UNet++ Gaofen PMS

Zaabar et al. (2022) Application of convolutional neural
networks with object-based image analysis for land cover
and land use mapping in coastal areas: a case study in Ain
Témouchent, Algeria

91.8 93.5 1.85 RF-OBIA OB-CNN Pléiades VHSR

91.0 83.4 −8.35 RF-OBIA OB-CNN Sentinel-2A

Jamali (2021) Land use land cover modeling using
optimized ML classifiers: a case study of Shiraz, Iran

93.55 91.02 −2.70 SVM DNN Landsat-5

98.37 95.29 −3.13 SVM DNN Landsat-8

Rousset et al. (2021) Assessment of DL techniques for land
use land cover classification in Southern New Caledonia

77.55 81.41 4.97 XGboost DeepLab SPOT-6

51.56 61.45 19.18 XGboost DeepLab SPOT-6

Solórzano et al. (2021) Land use land cover classification
with U-Net: advantages of combining Sentinel-1 and
Sentinel-2 imagery

0.53 0.76 43.39 RF U-Net Sentinel-1 and
Sentinel-2

Xie and Niculescu (2021) Mapping and monitoring of
land cover/land use (LCLU) changes in the Crozon
Peninsula (Brittany, France) from 2007 to 2018 by ML
algorithms (support vector machine, random forest, and
convolutional neural network) and by post-classification
comparison (PCC)

80.23 83.11 3.58 RF CNN SPOT-5

78.14 79.85 2.18 SVM CNN Sentinel-2B

Abdi (2020) Land cover and land use classification
performance of ML algorithms in a boreal landscape using
Sentinel-2 data

0.75 0.73 −2.66 SVM multilayered feed-forward
deep neural network

Sentinel-2

Campos-Taberner et al. (2020) Understanding DL in land
use classification based on Sentinel-2 time series

94.9 98.7 4.00 RF 2-BiLSTM Sentinel-2

Ienco et al. (2019) Combining Sentinel-1 and Sentinel-2
satellite image time series for land cover mapping via a
multi-source DL architecture

88.27 89.88 1.82 RF TWINNS Sentinel-1 and
Sentinel-2

86.00 87.50 1.74 RF TWINNS Sentinel-1 and
Sentinel-2

Interdonato et al. (2019) DuPLO: A DUal view Point DL
architecture for time series classification

82.99 83.72 0.87 RF DuPLO Sentinel-2

96.04 96.36 0.33 RF DuPLO Sentinel-2

Li et al. (2019) DL for hyperspectral image classification:
an overview

76.88 84.56 9.98 SVM DFFN Airborne sensor

90.78 98.57 8.58 SVM DFFN ROSIS-03

90.92 99.71 9.66 SVM DFFN AVIRIS

Wan et al. (2019) Multiscale dynamic graph convolutional
network for hyperspectral image classification

88.34 93.47 5.80 JSDF MDGCN AVIRIS

(Continued on following page)
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TABLE 2 (Continued) Reported accuracies and potential accuracy improvement by the use of deep learning (DL) classification approaches from
29 published studies where both traditional machine learning (ML) methods and DL methods were used for land cover classification.

Citation/Title Accuracy Modeling method Imagery type

ML DL aChange in DL
over ML (%)

ML DL

90.82 95.68 5.35 JSDF MDGCN ROSIS

95.69 99.79 4.28 JSDF MDGCN AVIRIS

Zhang et al. (2019) Joint DL for land cover and land use
classification

82.38 89.64 8.81 SVM Joint DL Vexcel UltraCam Xp

80.26 87.58 9.12 OBIA-
SVM

Joint DL Vexcel UltraCam Xp

82.26 90.72 10.28 SVM Joint DL Vexcel UltraCam Xp

80.42 88.26 9.74 OBIA-
SVM

Joint DL

Mahdianpari et al. (2018) Very deep convolutional neural
networks for complex land cover mapping using
multispectral remote sensing imagery

76.08 96.17 26.40 RF InceptionResNetV2 RapidEye

Ndikumana et al. (2018) Deep recurrent neural network
for agricultural classification using multitemporal SAR
Sentinel-1 for Camargue, France

87.1 89.6 2.87 SVM GRU Sentinel-1

Zhang et al. (2018) An object-based convolutional neural
network (OCNN) for urban land use classification

79.54 89.52 12.54 OBIA-
SVM

OCNN Vexcel UltraCam Xp

80.37 90.87 13.06 OBIA-
SVM

OCNN

Guidici and Clark (2017) One-dimensional convolutional
neural network land-cover classification of multi-seasonal
hyperspectral imagery in the San Francisco Bay Area,
California

87.5 88.0 0.57 SVM CNN AVIRIS

89.5 89.9 0.44 SVM CNN AVIRIS

Ienco et al. (2017) Land cover classification via
multitemporal spatial data by deep recurrent neural
networks

74.28 75.18 1.21 RF LSTM Pléiades VHSR

81.59 86.23 5.68 SVM LSTM Landsat-8

Kussul et al. (2017) DL classification of land cover and
crop types using remote sensing data

88.7 94.6 6.65 RF CNN Landsat-8 and
Sentinel-1A

Liu et al. (2017) SVM or DL? A comparative study on
remote sensing image classification

92.38 91.12 −1.36 SVM-
RBF

SAE ROSIS-03

96.19 94.92 −1.32 SVM-
RBF

SAE ROSIS-03

99.59 97.79 −1.80 SVM-
RBF

SAE AVIRIS

93.59 70.89 −24.25 SVM-
RBF

SAE AVIRIS

91.38 86.58 −5.25 SVM-
RBF

SAE AVIRIS

Sharma et al. (2017) A patch-based convolutional neural
network for remote sensing image classification

75.22 85.60 13.79 RF a deep patch-based CNN
system

Landsat-8

Wu and Prasad (2017) Convolutional recurrent neural
networks for hyperspectral data classification

95.43 98.61 3.33 SVM-
RBF

CRNN-LOP ITRES-CASI

95.13 98.08 3.10 SVM-
RBF

CRNN-LOP ProSpecTIRinstrument

Yu et al. (2017) Convolutional neural networks for
hyperspectral image classification

58.31 64.19 10.08 SVM CNN AVIRIS

80.95 85.24 5.29 SVM CNN AVIRIS

61.24 67.85 10.79 SVM CNN ROSIS

(Continued on following page)
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2.2 Familiarity with AI techniques and
computing expertise

Understanding the nuanced requirements of both ML and DL
applications in LSS, specifically for LULC research, necessitates a
comprehensive grasp of various skill sets and computational
proficiencies. Diving into ML and DL methodologies for
analyzing LULC through remote sensing requires not only
theoretical knowledge but also practical competencies in software
and algorithmic applications (Zhang et al., 2018; Ienco et al., 2019;
Xie and Niculescu, 2021). Researchers venturing into this domain
need a solid foundation in several critical areas.

1. Proficiency in Programming: Essential for crafting and
manipulating algorithms, with languages like Python, R,
or MATLAB being the cornerstones in both ML and
DL realms.

2. Mastery of ML Algorithms: This encompasses understanding
simpler, more accessible algorithms for those venturing into
ML, including but not limited to DT, RF, and SVM.

3. Expertise in DL Algorithms: DL requires a deeper dive into
more complex model structures, notably CNNs and their
ilk, demanding a higher level of understanding
and resources.

4. Data Management Skills: These involve preprocessing, feature
extraction from image data, and understanding the sensitivity
of DL to input data, which often demands a more intricate
handling process.

5. Visualization Competencies: BothML and DL necessitate skills
in result interpretation and the visual representation of
classified data, employing tools like confusion matrices and
Receiver Operating Characteristic (ROC) curves.

6. Domain-Specific Knowledge: A comprehensive understanding
of LULC changes, remote sensing parameters, and the specific
environmental context of the study is paramount.

7. Software and Framework Literacy: Familiarity with specialized
tools, libraries, and frameworks—such as TensorFlow, Keras,
and PyTorch—is vital, especially in the DL context, for effective
image classification research.

8. Cloud Computing and Hardware Understanding: Given the
intensive computational demands, especially of DL,
researchers need to be adept at utilizing cloud platforms
(Amazon Web Service (AWS), Google Cloud Platform
(GCP), Microsoft Azure) and understanding the hardware
specifics like graphics processing units (GPUs) and tensor
processing units (TPUs) (Ferreira et al., 2020; St. Onge
et al., 2020).

The intersection of these skills defines the researcher’s
preparedness for engaging with ML or DL. While there is
substantial overlap, DL generally demands a deeper engagement
with aspects like specific libraries/frameworks, data sensitivity, and
computational resources. Furthermore, the underlying statistical
and mathematical models forming the bedrock of ML algorithms
necessitate proficiency in statistics. These statistical models not only
form the basis of the algorithms but also serve as evaluation metrics
(F-score, accuracy, precision, etc.) ensuring the reliability of the
models (Bhosle and Musande, 2019; C. Zhang et al., 2020a). Skills in
Natural Language Processing (NLP) and data structures also become
relevant in this regard, with a spectrum of algorithm types
(Supervised, Unsupervised, and Reinforcement) each having
unique applications and requirements (Rousset et al., 2021; Mou
et al., 2022). Additionally, LULC tasks demand particular domain
knowledge, including classification strategies, image interpretation,

TABLE 2 (Continued) Reported accuracies and potential accuracy improvement by the use of deep learning (DL) classification approaches from
29 published studies where both traditional machine learning (ML) methods and DL methods were used for land cover classification.

Citation/Title Accuracy Modeling method Imagery type

ML DL aChange in DL
over ML (%)

ML DL

Ghamisi et al. (2016) A self-improving convolution neural
network for the classification of hyperspectral data

78.20 81.66 4.42 SVM SICNN AVIRIS

78.21 82.67 5.70 SVM SICNN ROSIS-03

Li et al. (2016) Stacked autoencoder-based DL for remote-
sensing image classification: a case study of African land-
cover mapping

77.86 78.99 1.45 ANN SAE Landsat

Geng et al. (2015) High-resolution SAR image
classification via deep convolutional autoencoders

76.92 88.11 14.54 SVM DCAE TerraSAR-X

Hu et al. (2015) Deep convolutional neural networks for
hyperspectral image classification

87.60 90.16 2.92 RBF-
SVM

CNN AVIRIS

91.66 92.60 1.02 RBF-
SVM

CNN AVIRIS

90.52 92.56 2.25 RBF-
SVM

CNN ROSIS

Lv et al. (2015) Urban land use and land cover
classification using remotely sensed SAR data through
deep belief networks

0.76 0.81 6.57 SVM DBN RADARSAT-2 SAR

aWhere percentage of change, is calculated as: Percentage change = [(New Value - Old Value)/Old Value] * 100.
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and modeling methodologies (X. Zhang et al., 2020b). Effective
LULC classification leverages various image features, necessitating a
nuanced understanding of these elements for accurate land cover
categorization. More recently, DL has emerged as a robust
technique, setting new standards in LULC classification tasks and
broader remote sensing analyses (Pashaei et al., 2020). While the
foundational skills for ML and DL in LULC studies are closely
related, the depth and specificity of knowledge, particularly when
delving into DL, require a more robust, comprehensive skill set.
Whether a researcher or a collaborative effort, the venture into
LULC via ML or DL demands a blend of technical, analytical, and
domain-specific expertise.

Finally, in addition to these critical aspects, there are other more
fluid considerations a researcher should consider. The discussion
above heavily implies the need for various skills and theoretical
understanding, but the importance of practical, hands-on
experience is also key (Barbierato et al., 2020; Campos-Taberner
et al., 2023). Real-world problem-solving enhances theoretical
knowledge, and this aspect is often as critical as the academic
background itself. The integration of ML and DL into LSS and
specifically LULC studies does not occur in isolation. As such, it is
important to highlight the value of interdisciplinary knowledge and
collaboration between data scientists, environmental scientists, and
domain experts in geography, remote sensing, etc., to ensure the
models’ applicability and efficacy. There is also a growing need for
researchers to understand the ethical implications of these
technologies. Researchers must be aware of and know how to
mitigate biases in their models and understand the ethical
considerations of utilizing satellite or aerial data, privacy
concerns, and potential impacts on policies or communities
(Holloway and Merngersen, 2018; Elmes et al., 2020; Campos-
Taberner et al., 2023). Finally, the field of AI and ML is rapidly
evolving, and new techniques, algorithms, and best practices are
continually emerging, and as such, researchers must commit to
ongoing learning and adaptability with emerging technologies
(Sarker, 2021; Southworth and Muir, 2021).

Enhancing classification accuracy in LSS significantly depends
on the effective integration of diverse data sources. This integration
enriches ML and DL models, providing a more comprehensive
dataset for analysis. Key to this process is the utilization of public
databases and application programming interfaces (APIs) from
organizations such as the US Geological Survey (USGS), NASA
(EarthData), and the European Space Agency (ESA). These
platforms offer a rich array of socioeconomic, environmental,
and satellite imaging data, crucial for LSS analysis. Additionally,
citizen science initiatives and crowdsourcing platforms like
OpenStreetMap and Global Forest Watch introduce unique
datasets that blend satellite data with ground-level observations,
providing a multifaceted view of land use patterns. To effectively
combine these varied data sources, robust preprocessing and data
fusion techniques are employed. These methods, including image
registration, normalization, and transformation, address the
challenges of inconsistent data coverage, formats, and resolutions,
preparing the data for comprehensive analysis. Data standardization
and the adoption of interoperable formats, such as GeoTIFF for
spatial data, are essential for facilitating seamless integration across
different datasets. Standards set by the Open Geospatial Consortium

(OGC) play a pivotal role in ensuring data compatibility, enhancing
the ease of data manipulation and analysis.

Advanced ML techniques further support data integration by
enabling efficient feature extraction and dimensionality reduction.
Methods such as principal component analysis (PCA) and
autoencoders help in transforming diverse data into an
analytically suitable format. The application of unsupervised
learning techniques also aids in identifying latent patterns within
the integrated data, enriching the analysis. The synthesis of data
from various sources not only expands the feature space for ML and
DL models but also improves classification outcomes. Techniques
like domain adaptation and transfer learning demonstrate the
potential for enhanced model generalizability and accuracy across
different contexts. Rigorous model evaluation and validation,
through AUC-ROC curves, confusion matrices, and cross-
validation, are critical in assessing the impact of data integration
on classification accuracy. The integration of heterogeneous data
sources presents a formidable avenue for boosting classification
accuracy in LSS. As such, the strategies for data access,
standardization, and analytical processing, as mentioned here
briefly, highlights the significant advancements in ML and DL
models’ analytical capabilities, underscored by comprehensive
data integration.

2.3 Machine and deep learning software and
libraries for land use land cover

Implementing ML and DL in LULC classifications requires a
nuanced selection of software and libraries, each offering distinct
advantages. The burgeoning field of LSS necessitates an in-depth
understanding of these tools for optimal outcomes in
classification tasks.

1. PyTorch: An open-source machine learning framework known
for its flexibility, dynamic computational graph, and effective
GPU support. It is widely used in LULC for its ability to process
large-scale visual data (Song et al., 2021; Kim et al., 2022; Liu
et al., 2022).

2. TensorFlow: this comprehensive platform is suitable for both
machine learning and deep learning. It is known for handling
high-dimensional datasets and is versatile in deployment
environments (Baylor et al., 2017; Silaparasetty, 2020), and
Cherif et al. (2022), highlight its proficiency in intricate LULC tasks.

3. Keras: A user-friendly neural network library that works on top
of TensorFlow. It is known for its ease of use in developing and
testing ML models, making it a popular choice for LULC
studies (Nhu et al., 2020; Cherif et al., 2022).

4. H2O.ai: Offers distributed computing for machine learning and
deep learning. It is recognized for its efficient algorithms and user-
friendly interface (Balakrishnan, 2019; GitHub, 2022).

5. Neural Designer: Focuses on neural network-based analysis
with an intuitive interface. It is suitable for various data
analytics applications in LULC (Yilmaz et al., 2020; Wang
et al., 2021).

6. Microsoft Cognitive Toolkit (CNTK): Known for scalability
and speed, this toolkit is suitable for developing deep learning
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models and is compatible with multiple programming
languages (Chrisbasoglu, 2022).

7. ConvNetJS: A JavaScript library for browser-based computation,
allowing for on-the-fly training of neural networks. It is practical
for real-time LSS research scenarios (Andrej et al., 2022).

8. Geospatial Data Abstraction Library (GDAL): GDAL is a
widely used open-source translator library for raster and
vector geospatial data formats (GDAL/OGR contributors,
2024). GDAL was originally developed to meet the
requirements for efficient and flexible file format translation,
with the capability to adapt to new formats. It plays a crucial
role in machine learning (ML) and deep learning (DL)
workflows by enabling the preprocessing of remote sensing
data. This includes tasks such as representing and transforming
coordinate reference systems, format conversion, and
resampling, making data compatible for ML/DL models
(Warmerdam, 2008).

There are several other notable tools and libraries essential in the
realm of LULC and LSS research. Among them is Scikit-learn, a
Python package that is essential for LULC classifications and is
praised for its simplicity and effectiveness in machine learning
(Feizizadeh et al., 2023). With support for a broad range of raster
and vector data formats necessary for LULC preprocessing, GDAL
(Geospatial Data Abstraction Library) stands out for its key role in
processing geospatial data (Hütt et al., 2020; Sawant et al., 2023).
One of the major players in remote sensing is ERDAS IMAGINE,
which is well-known for its sophisticated processing of satellite
imagery and aerial photography and is frequently used in LULC
analysis (Vivekananda et al., 2021). With its vast satellite imaging
resources and analytical tools, Google Earth Engine emerges as a
cutting-edge cloud-based platform for environmental data analysis.
This makes it an invaluable tool for LULC and environmental
monitoring (Tassi and Vizzari, 2020; Feizizadeh et al., 2023).
Using high-level components for quick and effective LULC
applications, Fast. ai, created on PyTorch, democratizes deep
learning (Vivekananda et al., 2021; Neupane et al., 2023). The
open-source deep learning framework MXNet is widely used in
LULC due to its huge dataset management capabilities and
scalability across GPUs and machines (Neupane et al., 2021). A
crucial piece of software for remote sensing is ENVI (Environment
for Visualizing Images), which provides powerful tools for image
processing and analysis and is especially pertinent for LULC
research (Saharan et al., 2018; Olorunfemi et al., 2020). Finally,
the R programming language is a powerhouse in LULC research
because it provides extensive statistical and analytical tools,
particularly with packages like “caret,” “random forest,” and
“raster” (Amini et al., 2022; Aryal et al., 2023).

While there is insufficient space in this review to discuss the
strengths and weaknesses of each option, the main tools used (Keras,
PyTorch, and TensorFlow) may be compared briefly. When
considering PyTorch and TensorFlow, the choice is often
contingent upon the user’s preference between flexibility and a
rich feature set. PyTorch offers more control for real-time
changes and is rapidly gaining ground for research purposes. In
contrast, TensorFlow’s broad adoption in the industry is due to its
comprehensive infrastructure and scalability, essential for deploying
large-scale applications. On the other hand, Keras is not directly

comparable with PyTorch and TensorFlow, as it is a high-level API
capable of running on top of TensorFlow. It abstracts many of the
complexities of building a DL model, making it accessible and
reducing the need for detailed technical knowledge. However, for
intricate and customized model building, researchers might prefer
the control offered by PyTorch or the depth of resources available in
TensorFlow. The selection of a tool or library hinges on the specific
needs of the project, the team’s expertise, and the long-term goals
associated with the application’s development and deployment.
Directly comparing these tools based on these parameters allows
teams to align their choice with their strategic objectives.

These tools are renowned for their seamless compatibility with
diverse computing environments, including integration with cloud
platforms, third-party APIs, and various data systems. For example,
TensorFlow’s robustness is exemplified by its deep integration with
Google Cloud, while PyTorch enjoys widespread support due to its
alliances with multiple cloud service platforms. Similarly, H2O.ai’s
platform-independent nature makes it a versatile choice for various
operating systems, enhancing its reach and applicability. Moreover,
the open-source character of these libraries—particularly PyTorch,
TensorFlow, Keras, and H2O.ai—democratizes access, allowing a
wide spectrum of users, from researchers to enterprise-level users, to
leverage advanced ML capabilities without hefty licensing fees. The
Neural Designer, while not entirely open source, offers
comprehensive solutions in NN applications, often justifying its
cost. In contrast, Microsoft Cognitive Toolkit provides an
enterprise-grade solution, reflecting its pedigree and focus on
scalability and performance. ConvNetJS stands out by enabling
ML directly in the browser, eliminating certain logistical hurdles
and inviting a broader audience of developers into the ML sphere.
This accessibility underscores the inclusive philosophy driving
innovation in these tools. While these software and libraries are
generally accessible due to low or no initial acquisition costs, it is
prudent for users to consider ancillary expenses. These might
include costs related to the computational resources, especially in
DL applications, and potential investments into cloud services for
data storage, processing, or model deployment, particularly in large-
scale projects (Zhu et al., 2017; Cheng et al., 2020; Wang L.
et al., 2022).

Ultimately, the choice of a specific tool or library will hinge not
only on its standalone capabilities but also on its synergistic fit
within the user’s existing technological infrastructure, budget
constraints, and the specific requirements of their projects. This
holistic assessment, considering both the direct and indirect costs,
ensures that users can harness the full potential of these advanced
technologies in their ML and DL endeavors. In conclusion, the
landscape of ML and DL software and libraries is rich and varied,
each contributing uniquely to LULC classifications within LSS.
While traditional ML algorithms like RF, SVM, and KNN excel
with smaller, less complex datasets, DLmodels (e.g., CNN, RNN) are
poised to handle larger, more intricate datasets. The choice between
these paradigms hinges on the specific requirements and constraints
of the research project, underscoring the need for proficiency in
different tools and a strategic approach to their application
(Figure 3). Both ML and DL demand a skill set that spans
programming, data handling, and visualization, critical for
navigating the complexities and maximizing the potential of
LSS studies.
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2.4 Computing requirements for analysis
and available resources

The nuanced computing requirements for image classification in
ML versus DL pivot significantly around the hardware utilized and
the associated resources. Analyzing these requirements necessitates
a deep dive into the processors involved, namely, central processing
units (CPUs) and graphics processing units (GPUs), as well as the
burgeoning field of application-specific integrated circuits (ASICs).
CPUs, adept at sequential complex calculations, have historically
sufficed for traditional ML models. In contrast, the advent of DL,
particularly in tasks like image processing, has necessitated GPUs,
recognized for their parallel processing capabilities. GPUs expedite
the efficiency of learning and inference algorithms, making them
indispensable for DL. This need arises from the GPU’s architecture,
a single instruction, multiple data (SIMD) device, allowing extensive
parallelization and enhanced performance due to its numerous
simpler cores, compared to the more complex CPU cores (Ota
et al., 2017). The demand for specialized hardware escalates further
with ASICs, such as Google’s Tensor Processing Unit (TPU) and
innovations like ShiDianNao, a customASIC engineered to optimize

memory access, thus slashing latency and energy costs (Chen and
Ran, 2017). Beyond the hardware, the requirements extend to local
memory for data and code storage, with sophisticated algorithms,
especially in deep NNs, demanding rapid, extensive memory.
Simpler models, like DTs, are less taxing on resources.

Recent leaps in cloud computing technologies have been
revolutionary, with platforms like Google Earth Engine (GEE)
and Amazon Web Services (AWS) offering substantial computing
power, often complimentary, and direct access to extensive satellite
data repositories from National Aeronautics and Space
Administration (NASA), United States Geological Survey (USGS),
and European Space Agency (ESA) (Sagan et al., 2020). These
advancements are crucial, especially in remote sensing,
circumventing the traditional high processing costs that impede
research progress. The landscape of computing in DL extends to
cluster and grid computing, with the latter now embracing extreme
heterogeneity in high-performance computing systems, thanks to
technological evolution over time. Grid computing, especially, has
surfaced as a pivotal technology in managing remote sensing data
across dispersed computing environments. Cloud computing
further augments this by integrating disparate specialized nodes,

FIGURE 3
Decision Treemodel, highlighting the initial criteria, conditions, and outcomes, based on AI and computing expertise of the researcher, for deciding
on a typical DL versus ML classification approach in their research.
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presenting a resilient, cost-effective methodology for handling
voluminous remote sensing data (Duffy et al., 2023). However,
the computational needs in an overparameterized setting spiral,
often quadratically, relative to the data points, as training DLmodels
correlate with the number of parameters and data points. This
underscores the necessity for a more-than-linear surge in training
data to achieve linear performance enhancements (Yao et al., 2022.).
A revelation in this domain is the potential for sustaining
performance upgrades without escalating energy consumption,
courtesy of algorithmic advancements and the burgeoning
parameters. This trend mirrors the auto industry’s evolution,
where increased efficiency has not negated the overall rise in
vehicles, thus energy usage, underscoring the challenge of
balancing technological progress with sustainable practices
(Holloway and Mengersen, 2018; Cheng et al., 2020; Sarker, 2021).

Contrasting the computing requisites for ML and DL, it is
evident that DL, especially in image classification, mandates more
formidable hardware, given the extensive NNs’ training. The
memory requirements are also steeper, owing to the networks’
complexity and parameter abundance. While both fields require
substantial data storage and specific software (e.g., Python, R,
TensorFlow, Keras, scikit-learn, PyTorch), DL necessitates greater

familiarity with these tools due to its intricate algorithms.
Furthermore, though cloud computing can host both ML and DL
tasks, the latter’s resource intensity typically translates to higher
costs. DL’s demands in image classification outstrip those of ML,
encompassing hardware, memory, data storage, and specialized
software knowledge. Though cloud platforms can accommodate
both, DL’s complexity and resource intensity often imply a costlier
process. This comparative analysis elucidates the distinct
considerations pivotal in choosing between ML and DL for
typical image classification endeavors (Figure 4).

3 Discussion: guiding LSS researchers
through ML or DL method selection
with a decision tree model

In the continuously evolving field of AI, the allure of novel tools
and techniques is undeniable. However, it is imperative for
researchers to exercise caution and undertake a meticulous
suitability analysis before employing these advancements within
diverse research landscapes. In this study, we have explored the
application of ML and DL techniques in the scientific classification

FIGURE 4
Decision Tree model, highlighting the initial criteria, conditions, and outcomes, based on computing requirements and resources needed to
successfully undertake a typical DL versus ML classification analyses.
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task of land systems. Our findings reveal both strengths and
weaknesses inherent in these methodologies, as well as illuminate
potential directions for future development in this domain. This
discussion synthesizes the distinct demands, advantages, and
constraints of employing ML versus DL techniques in image
classification tasks, aiming to provide a navigational aid for
researchers. This examination is especially pertinent given the
expanding prevalence of these tools within academic and
practical applications. Our comprehensive analysis culminates in
a decision tree model, delineating critical factors warranting
consideration when oscillating between ML and DL
methodologies for image classification in LSS studies.

1. Assessment of Expertise & Resources: Researchers must
introspectively evaluate their proficiency and the resources
at their disposal. DL demands a deeper understanding,
encompassing familiarity with specific programming
frameworks and the need for robust computational
backbones. Conversely, ML is more accessible, demanding
less esoteric knowledge and offering broader software
compatibility.

2. Computational Demands: The availability of computational
power is pivotal. DL’s reliance on substantial computational
support, particularly potent GPUs and extensive memory for
model training, contrasts with ML’s modest resource
requirements, compatible with standard computing setups.
The computational demands of machine learning models,
including deep learning models, can differ greatly depending
on parameters including model structure, size, complexity,
hardware for training and inference, and optimization
methods used. Training deep neural networks usually
requires repetitive calculations on extensive datasets, which
can use up significant energy, particularly when utilizing
powerful processing hardware such as GPUs or TPUs.
Simple machine learning models such as decision trees or
linear models may consume less energy during both training
and inference stages when compared tomore complicated deep
learning models. Deep learning models may demand
substantial energy for training and inference, but energy
consumption is influenced by multiple factors. It is
inaccurate to generalize that they consistently consume
more energy than other machine learning models.

4. Research Questions & Information Complexity: The nature of
the research query and the intricacy of the requisite
information significantly influence the methodological
choice. DL thrives on high-dimensional data scenarios
where factors like varying light conditions, scaling, and
orientation diversities come into play. ML, however, suffices
for inquiries that demand less exactitude or engage less
convoluted data.

5. Image Data Availability: The decision hinges on the availability
and quality of accessible image data. DL’s hunger for
voluminous training datasets contrasts starkly with ML’s
resilience to data imperfections and lower data appetite.

6. Study Timeline Constraints: Temporal aspects of the study also
dictate methodology suitability. The quick deployment of ML
models offers advantages over the more prolonged, intricate
training demands of DL systems. Particularly for longitudinal

studies, the dearth of historical data fitting DL’s appetite often
results in the preference towards ML methodologies.

7. Training Data Sufficiency: The volume and integrity of data
available for training directly influences the decision. Where
DL necessitates a substantial repository of labeled imagery, ML
operates efficiently with far less.

8. Accuracy Imperatives: Researchers must balance their accuracy
requisites with pragmatic considerations like resource
allocation and model interpretability. While DL, with the
right conditions, typically surpasses ML in accuracy for
image classification tasks, this edge must be substantial
enough to justify the increased workload and resource
commitment (as the improvement often hovers below 10%,
and sometimes less than 4%, as per Table 2).

The field of artificial intelligence is continually evolving, offering
researchers a myriad of sophisticated tools and techniques.
However, the allure of novelty must be measured against the
genuine utility these innovations offer research domains. In this
discussion, we have sought to distill the essential factors whichmight
dictate the selection of either ML or DL for image classification
within the realm of LSS. While both ML and DL have carved out
their own respective niches, it is imperative to remember that each
has its strengths and drawbacks (Lary et al., 2016; Maxwell et al.,
2018; Cheng et al., 2020; Gupta et al., 2021; Sarker, 2021). Our
exploration serves as a roadmap, guiding researchers through the
labyrinth of considerations pivotal to choosing one method over the
other. The fact that DL tools have gained such a dominant presence
in recent remote sensing literature underscores the timeliness and
relevance of our analysis (Campos-Taberner et al., 2023; Barbierato
et al., 2020; Du et al., 2020; Table 1).

The decision tree structure depicted in Figure 5 reveals the
primary factors for consideration. Firstly, the expertise requisite to
wield these tools is non-trivial. DL demands a deeper dive into
specialized territories, necessitating familiarity with specific
programming frameworks and an arsenal of robust
computational assets. In contrast, ML is more forgiving in this
realm, offering a wider array of user-friendly software packages that
do not demand as deep a domain expertise. Next, the computational
constraints must be addressed. DL, with its intricate NNs, devours
computational power and memory—often compelling researchers
to turn to specialized GPUs. Conversely, ML’s modest
computational appetite means it can typically operate
comfortably on standard systems. The nature of the research
question is paramount. High-dimensional challenges, those
dealing with vast image datasets, and questions demanding an
acute level of precision find a formidable ally in DL. This
technique’s prowess lies in its ability to decipher nuances in
lighting, scale, and rotation. On the other hand, ML emerges as
the method of choice for less intricate problems, where a slightly
compromised accuracy is acceptable. The data pool from which
these models draw is also vital. DL requires substantial volumes of
data for training. However, its precision can falter if the data quality
is compromised. ML, in this context, displays more resilience,
operating effectively even with smaller data sets. Longitudinal
studies, especially those delving deep into historical archives
where data for earlier timelines might be unavailable, might find
ML to be a more pragmatic choice.
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Within the field of LSS, the choice betweenML and DL for image
classification hinges on a mosaic of factors. DL may be the most
effective choice when precision is paramount, and data is abundant.
Its capacity to discern complex patterns in vast datasets renders it
invaluable for intricate projects (Sharma et al., 2017; Li et al., 2019;
Wan et al., 2019). However, when data is scarce, or when the
research objectives do not demand the peak of accuracy, ML,
with its versatility and user-friendly nature, may be the most

effective choice (Abdi, 2020; Jamali, 2021; Wang et al., 2021;
Wang L. et al., 2022; Magalhães et al., 2022; Zaabar et al., 2022).
This decision tree, therefore, serves as a compass, enabling
researchers to navigate the intricate terrain of AI-driven image
classification with clarity and confidence. The findings presented,
along with Tables 1, 2, coupled with the insights from Figure 5,
underscore a critical observation: in the present landscape of LSS,
the constraints associated with deploying DL models are often more

FIGURE 5
Final Decision Tree highlighting the four sets of criteria explored to determine the ideal classification approach related to typical machine learning
(ML) or deep learning (DL) classification techniques in Land System Science: 1) AI Expertise, 2) Computing Requirements, 3) Image Data Type, Time Period,
and Training Data and 4) Study Requirements and Accuracy needs.
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significant than their advantages. While there is great potential for
DL to transform the field, Figure 5 unambiguously indicates that, in
most scenarios, ML models currently deliver optimum outcomes for
most classification tasks. It is a reminder that while we aspire for
future innovations, it is essential to recognize and harness the
proven capabilities of existing tools. While the field of LSS is not
fully utilizing DL yet, the future does indeed look bright. The
evolving DL tools and their advanced pattern recognition
capabilities are expected to greatly benefit the field and allow for
addressing much more complex environmental questions. As LSS
continues to progress, the potential of DL to revolutionize various
aspects of image classification and analysis is unmistakable. This
optimism, paired with the current effectiveness of ML, suggests a
future where DL not only complements but significantly enhances
our understanding and exploration in LSS. In addition, the model
developers themselves are acutely aware of many of the current
limitations to ML and DL models, as have been described here for
typical model studies. As such, new methods are being developed
that do address some of these limitations. For example, new
approaches being developed by Hong et al. (2021) are pushing
the boundaries of ML approaches, with data sizes exceeding 100,000
(Figure 2, this is a listed limitation of ML approaches). Similarly, DL
methods are being developed that do not have the current
requirements for large memory (Figure 4, listed as a limitation of
DL methods), being termed ‘lightweight’ DL methods (Choudhary
et al., 2022). However, while these methods are in development, they
are by no means mainstream, and the typical or current approaches
discussed here still dominate in LSS research.

3.1 Future directions of development

We have identified five areas on which future research should
focus: 1) the integration of multisource data; 2) semi-supervised and
unsupervised learning; 3); enhanced interpretability 4) domain
adaption and transfer learning; and 5) integration with decision
support system. Research in the field of LULCC and LSS should
continue to expand and enhance the integration of multisource
data—including satellite imagery, ground-based observations, and
socioeconomic data—in ML and DL applications to improve the
accuracy and robustness of land system classification models. Future
research on the efficacy and appropriateness of ML and DL
techniques in LSS should explore the evolving nature of these
techniques and their relative applications in the context of
multisource data integration. Further, the development of semi-
supervised and unsupervised learning approaches that can mitigate
the reliance on labeled data, allowing for more efficient utilization of
available datasets will prove invaluable to advancing the field of LSS
and its transdisciplinary research objectives. Issues of trust in and
interpretability of AI models is an area of critical importance that
necessitates the attention of researchers. As AI methods become
increasingly employed in LULCC analyses, research that seeks to
elevate the interpretability of ML and DL models through
techniques such as attention mechanisms, model distillation, and
post hoc explanations will be crucial for increasing trust and
acceptance of automated classification results. Future work
should also focus on developing techniques for domain
adaptation and transfer learning that can facilitate the

transferability of classification models across different
geographical regions and environmental conditions, reducing the
need for extensive retraining. Lastly, the future applicability of AI
techniques in the classification and change analysis of remote
sensing data will rely on the integration of ML and DL
classification models with decision support systems that can
enable real-time monitoring and management of land systems,
supporting sustainable land use planning and natural resource
management efforts. While ML and DL techniques offer
significant promise for land system classification, addressing their
inherent limitations and exploring new avenues for development
will be essential for realizing their full potential in scientific research
and environmental management.

4 Conclusion

The role ofML andDL in LSS image classification is evident (Tables
1, 2), especially when looking at Figure 5. This decision-making
framework is not just an academic tool; it has wider implications
beyond research. Integrating various data sources, like satellites, drones,
and ground observations, can improve land change detection.
Advanced DL architectures, especially CNNs, are leading this shift.
Techniques like unsupervised learning can efficiently identify patterns
in large sets of satellite imagery. However, challenges remain. Acquiring
quality data for certain regions is difficult. The computational demands
of DL are high, requiring significant resources. The complexity of some
DL models makes them difficult to interpret, and overfitting remains a
risk. Additionally, high-resolution imagery, while ideal, can be hard to
obtain or costly. To address these challenges, a multifaceted approach is
needed. Using diverse training datasets can lead to more resilient
models. Regular evaluations keep models accurate, and combining
different models can improve results. Collaborations between
domain experts and ML/DL specialists can produce more relevant
solutions. Making LULC datasets publicly available can stimulate new
research, and it is vital to consider the ethical aspects of this technology.
As the ML and DL fields evolve, staying updated is essential.

The benefits of this framework are wide-ranging. Better data quality
can lead to more informed environmental policies, aiding in resource
conservation, biodiversity, and carbon management. This improved
data can also have societal impacts, potentially influencing migration,
urban development, and socio-economic trends. For stakeholders in
fields like agriculture and urban planning, this data is invaluable for
making informed decisions. There are also potential economic benefits
from improved land management. At its core, this approach can
advance academic research in LSS, promoting interdisciplinary
collaboration and a deeper understanding of land systems. In
conclusion, as LSS evolves, the combined use of ML and DL,
supported by a solid decision-making framework, promises
significant advancements in research, policy, and practice.
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