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High spatial resolution (HSR) remote sensing imagery presents a rich tapestry of
foreground-background intricacies, rendering semantic segmentation in aerial
contexts a formidable and vital undertaking. At its core, this challenge revolves
around two pivotal questions: 1) Mitigating Background Interference and
Enhancing Foreground Clarity. 2) Accurate Segmentation in Dense Small
Object Cluster. Conventional semantic segmentation methods primarily cater
to the segmentation of large-scale objects in natural scenes, yet they often falter
when confronted with aerial imagery’s characteristic traits such as vast
background areas, diminutive foreground objects, and densely clustered
targets. In response, we propose a novel semantic segmentation framework
tailored to overcome these obstacles. To address the first challenge, we leverage
PointFlow modules in tandem with the Foreground-Scene (F-S) module.
PointFlow modules act as a barrier against extraneous background
information, while the F-S module fosters a symbiotic relationship between
the scene and foreground, enhancing clarity. For the second challenge, we
adopt a dual-branch structure termed disentangled learning, comprising
Foreground Precedence Estimation and Small Object Edge Alignment (SOEA).
Our foreground saliency guided loss optimally directs the training process by
prioritizing foreground examples and challenging background instances.
Extensive experimentation on the iSAID and Vaihingen datasets validates the
efficacy of our approach. Not only does our method surpass prevailing generic
semantic segmentation techniques, but it also outperforms state-of-the-art
remote sensing segmentation methods.
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1 Introduction

Deep neural networks (DNNs) have revolutionized city management, achieving
remarkable success (Shao et al., 2021; Shao et al., 2022a; He et al., 2022; Kang et al.,
2022; He et al., 2023). However, the complexity intensifies in high spatial resolution (HSR)
remote sensing images, featuring diverse geospatial entities like aircraft, vessels, and
buildings. Deciphering these entities is crucial for urban monitoring (Volpi and Ferrari,
2015; Kemker et al., 2017; Shao et al., 2022b), posing challenges due to unique imaging
mechanisms and scene intricacies. In this context, semantic segmentation in very-high-
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resolution (VHR) aerial imagery becomes a formidable task, acting
as a crucial intermediary step between raw images and vector
map layers.

The semantic segmentation process involves extracting
foreground objects and predicting pixel-level probabilities
within these objects. This intricate task is crucial for
understanding the urban environment and its complexities.
Compared with the semantic segmentation task in natural
scenes, semantic segmentation of geographical objects is more
challenging in VHR aereial imagery, surpassing conventional
large-scale variations (Zheng et al., 2020; Hou et al., 2022), as
shown in Figure 1. In iSAID dataset imagery (Zamir et al., 2019),
foreground objects like vehicles occupy a mere 10 m2 within
images spanning several square kilometers (Ma et al., 2022).
Furthermore, given the relatively elevated altitude at which HSR
remote sensing images are captured, these images often harbor
densely clustered small objects, further exacerbating the intricacies
of image segmentation (Li et al., 2021; Ma et al., 2022; Niu et al.,
2022). Consequently, when addressing the task of semantic
segmentation in HSR imagery, we confront several pressing
challenges:

(1) Mitigating Background Interference and Enhancing
Foreground Clarity: HSR imagery often exhibits an extreme
imbalance between foreground and background elements,
necessitating an emphasis on accentuating foreground
features. This challenge involves mitigating background
interference and refining foreground saliency modeling.

(2) Accurate Segmentation in Dense Small Object Clusters: In
scenarios with densely distributed small objects, the primary
challenge is precision in pinpointing object clusters and
delineating intricate contours. This requires a meticulous
approach to edge segmentation and object localization
within crowded contexts.

The general semantic segmentation methods (Pinheiro and
Collobert, 2014; Long et al., 2015; Chen et al., 2018a) mainly
focus on multi-scale modeling. However, for aerial imagery, these
semantic segmentation methods ignore the problem of foreground-
background imbalance and small object aggregation. Recently, in
order to solve the problem of foreground-background imbalance in
aerial imagery, some researches (Zheng et al., 2020; Li et al., 2021)
improve the segmentation performance by enhancing foreground
significance. However, these methods do not take into account that
there are a large number of densely distributed small objects in the
foreground, so the foreground target may be lost and the boundary
tends to be fuzzy.

In this paper, our enhanced semantic segmentation framework
addresses both foreground-background imbalance and dense small
object challenges. In our pursuit of reducing background
interference and enhancing the clarity of foreground objects, we
draw inspiration from the innovative work of PointFlow (Li et al.,
2021) and FarSeg (Zheng et al., 2020). To achieve this, we introduce
two essential components into our framework: the PointFlow
Modules (PFMs) and the Foreground-Scene (F-S) Module.
PointFlow modules serve as a bulwark against the undue influx

FIGURE 1
Illustration of two pressing challenges when addressing the task of semantic segmentation in HSR imagery. As the blue box shows, there is a clear
imbalance in the proportion of aircraft and airports. And in the orange box there are a lot of dense cars.
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of background information, preserving the integrity of foreground
modeling. Meanwhile, the F-S module orchestrates the cultivation of
a symbiotic relationship between the scene and foreground,
bolstering the prominence of foreground features.

The PFMs play a pivotal role in curtailing the intrusion of
background information during foreground modeling. We
strategically incorporate PFMs into the feature pyramid network
(FPN) to carefully select representative points between adjacent
feature pyramid levels. This approach is a departure from previous
techniques like simple fusion or dense affinity propagation (Fu et al.,
2019) applied to each point, as seen in non-local modules (Wang
et al., 2018). The outcome is twofold: a noticeable reduction in
background noise and a substantial improvement in segmentation
efficiency. Meanwhile, the Foreground-Scene (F-S) Module
capitalizes on the symbiotic connection between the scene and
foreground. By assimilating foreground-related context, we boost
the features of foreground objects. This modeling of the relationship
between foreground and geographic spatial scenes is used to
enhance the input feature map. This, in turn, widens the gap
between foreground and background features, ultimately
enhancing the distinctiveness of foreground features.

In our pursuit of accurate segmentation within densely
populated small object clusters, we emphasize the explicit
modeling of foreground and boundary objects as
indispensable in aerial imagery semantic segmentation. Here,
our inspiration comes from disentangled learning
methodologies (Higgins et al., 2017; Niu et al., 2022). We
adopt a two-branch structure, dedicating one branch to the
aggregation positioning of small objects through Foreground
Precedence Estimation (FPE) and the other to dynamically
correcting the edge contours of small objects via end-to-end
training, which we term Small Object Edge Alignment (SOEA).
This dual-branch disentangled learning approach effectively
mitigates issues such as the loss of fine-grained information
and the production of blurry boundary contours, common
drawbacks in joint learning schemes.

The challenge of foreground-background imbalance
frequently results in background samples dominating the
training process, causing early saturation and hindering model
optimization. Drawing inspiration from approaches like Xu et al.
(2023); Zheng et al. (2020), we recognize that in the latter stages
of training, further refinement of intricate background features,
like distinctive texture characteristics, is essential to prevent
overfitting and enhance the segmentation model’s
performance. To address this issue, we propose the
introduction of a foreground saliency guided loss. This loss
function serves to suppress the undue influence of numerous
easy background examples, effectively mitigating the foreground-
background imbalance challenge. We note that a shorter
conference version of this paper appeared in CBASE 2023 (Jin
et al., 2023). Our initial conference paper did not provide
experimental validation that the foreground and scene are
related, nor does it perform ablation studies on the SOEA
module. In this manuscript we conducted more experiments
to verify our method. Some parts of the paper have also been
reasonably rearranged. In summary, our study contributes
significantly to the field of aerial image semantic segmentation
through the following key advancements:

• Comprehensive Analysis and Framework Proposal: We
conduct a thorough analysis of challenges in aerial images
for semantic segmentation, leading to the introduction of a
novel framework based on feature pyramids. This framework
adaptively addresses issues of foreground-background
imbalance and the complexities of dense small object
distribution.

• Innovative Module Integration: To overcome foreground
modeling challenges, we integrate PointFlow Modules
(PFMs) and a foreground-scene module. PFMs enhance
foreground saliency by mitigating background interference,
while disentangled learning ensures accurate segmentation of
densely distributed small objects, avoiding risks associated
with joint learning.

• Foreground Saliency Guided Loss: We introduce a novel
foreground saliency guided loss during training to prevent
segmentation errors resulting from model overfitting to
simplistic background features, ensuring robust performance.

• Empirical Validation: Extensive experiments on widely
recognized datasets provide solid empirical evidence
supporting the effectiveness of our proposed
segmentation framework.

2 Related work

2.1 General semantic segmentation

The field of semantic segmentation has witnessed significant
evolution, primarily driven by advancements in deep learning
techniques. Traditional methods heavily reliant on handcrafted
features and rule-based approaches have faced limitations in
performance and generalization. The advent of deep learning,
particularly convolutional neural networks (CNNs), has
revolutionized semantic segmentation. Early explorations
employed CNNs for patch-wise classification, a structured feature
representation approach (Gupta et al., 2014; Pinheiro and Collobert,
2014). However, this method posed challenges such as information
loss and redundant computations in overlapping areas between
patches. To overcome these limitations, the fully convolutional
network (FCN) (Long et al., 2015) was introduced, replacing fully
connected layers with convolutional layers to preserve spatial
information. While FCN marked a significant advancement,
subsequent CNN-based methods have continued to push the
boundaries of semantic segmentation. Deeplab v1 (Chen et al.,
2015), for instance, leveraged atrous convolution to expand the
CNN’s receptive field and enhance spatial context awareness.
Approaches like ASPP (Chen et al., 2018a) and PPM (Zhao
et al., 2017a) further extended these ideas by utilizing atrous
convolutions with different rates and generating pyramidal
feature maps through pyramid pooling. Nevertheless, these
methods often struggled to capture fine details, particularly object
boundaries. To address this limitation, architectures like U-Net
(Ronneberger et al., 2015) and SegNet (Badrinarayanan et al.,
2017) introduced the “encoder-decoder” network paradigm,
effectively refining output details. NLNet (Wang et al., 2019)
took a different approach by incorporating non-local operators
or losses to capture global context in input images. RefineNet
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(Lin et al., 2017a), on the other hand, presented a multi-path
refinement network designed to progressively recover spatial
details, resulting in improved accuracy and enhanced object
boundaries. The above method does have a good performance in
the natural scene, but the effect is not satisfactory if directly applied
to aerial imagery. These methods ignore the complex background
information of aerial imagery and the challenges of dense object
distribution (as mentioned in Section 1).

2.2 Semantic segmentation in
remote sensing

The realm of semantic segmentation in remote sensing boasts a
diverse array of noteworthy contributions, each tailored to specific
applications. The applications span across Land Use/Land Cover
(LULC) classification (Onim et al., 2020), building extraction (He
et al., 2021), road delineation (Bastani et al., 2018; Dickenson and
Gueguen, 2018; Liang et al., 2019), and more, all of which hinge on
the accurate delineation of objects within remote sensing imagery. In this
landscape, deep learning has emerged as a focal point, revolutionizing
computer vision and pattern recognition (Chen et al., 2016). One notable
endeavor by Wang et al. (Wang et al., 2021) introduces a hierarchical
neural network search framework that automatically crafts architectures
for remote sensing recognition. While these semantic segmentation
CNNs often build upon or adapt advanced CNN architectures, they
frequently neglect the nuances within small objects prevalent in High
Spatial Resolution (HSR) imagery. To address this limitation, relation
networks Mou et al. (2019) have made significant strides in semantic
segmentation by modeling spatial relationships among pixels and
interactions between objects. This approach bolsters segmentation
accuracy, consistency, and overall coherence. More recently, FarSeg
(Zheng et al., 2020) has harnessed spatial relationship modeling to
discern foreground-background boundaries accurately, particularly
addressing the foreground-background imbalance issues prevalent in
remote sensing imagery. Concurrently, PFNet (Li et al., 2021) has made
strides in advancing the comprehension and propagation of semantic
information within the context of semantic segmentation. FactSeg, a
groundbreaking contribution by Ma et al. (Ma et al., 2022), pioneers a
foreground activation-driven approach to small object semantic
segmentation. In a quest to streamline architectural complexity, Xie
et al. (Xie et al., 2021) introduce SegFormer, a transformer-based model
that maintains a lightweight design and employs a simplified
segmentation head to yield final results. However, these methods
usually only get better results by improving the model of foreground
significance, ignoring the dense distribution of small objects in the
foreground target, and their segmentation methods are easy to make
the foreground small objects lost and the boundary tends to be blurred.
Different from these methods, our method can better segment dense
small objects in fine detail while improving foreground saliency.

3 Methods

3.1 Overall Framework

Semantic segmentation in aerial imagery presents a multifaceted
challenge, particularly when it comes to discerning foreground and

boundary objects. To overcome these challenges, we introduce an
advanced semantic segmentation framework, illustrated in Figure 2.
This framework encompasses a suite of critical components, including
a Feature Pyramid Network (FPN) enhanced with Point Flow
Modules (PFMs), a Foreground-Scene (F-S) Module, disentangled
learning, and optimization guided by foreground saliency.

As we mentioned in Section 1, aerial imagery semantic
segmentation needs to address two key challenges. For the
problem of foreground background imbalance, PointFlow
modules serve as a bulwark against the undue influx of
background information, preserving the integrity of foreground
modeling. Meanwhile, the F-S module orchestrates the cultivation
of a symbiotic relationship between the scene and foreground,
bolstering the prominence of foreground features. Specifically, we
embed PFMs in FPN to selectively select feature points in different
feature layers of FPN. Meanwhile, the F-S Module delves into the
intricate interplay between the scene and foreground, endowing
foreground features with enhanced discriminatory capabilities.
Moreover, considering that there are a large number of dense
small objects in the extracted foreground that need to be finely
segmented, we incorporate disentangled learning into our
framework. This strategic approach heightens the significance of
intermediate features, imbuing the network with stronger
discriminative abilities while effectively aligning boundary
features. Finally, in order to solve the problem of overfitting
background features in the training process caused by the wide
coverage of background, we propose the introduction of a
foreground saliency guided loss. This loss function serves to
suppress the undue influence of numerous easy background
examples, effectively mitigating the foreground-background
imbalance challenge. This comprehensive framework equips us to
navigate the complexities of semantic segmentation in aerial
imagery, paving the way for more accurate and robust results.

3.2 FPN with PFMs

A prominent challenge in semantic segmentation arises from the
semantic disparities within the Feature Pyramid Network (FPN),
primarily concerning foreground objects. This disparity manifests as
a gap between high-resolution features, which offer limited semantic
information, and low-resolution features, endowed with more
profound semantic content. Notably, addressing this gap proves
crucial for tiny objects that necessitate richer semantic information,
even within high-resolution layers. However, prior methods,
exemplified by the fusion of the entire feature set (Zhang et al.,
2020), inadvertently emphasize background objects like roads,
exacerbating the well-documented imbalance issue in aerial
imagery. To redress this imbalance and quell background noise,
we introduce a modified version of the Feature Pyramid Network
(FPN) (Li et al., 2021).

Our strategy involves the integration of PointFlow Modules
(PFMs) into the FPN architecture to facilitate targeted semantic
point propagation between adjacent features. Unlike conventional
methods (Wang et al., 2018), which apply uniform fusion or dense
affinity propagation across all points, PointFlow takes a distinctive
approach. It selectively identifies a subset of representative points
between adjacent feature pyramid levels, subsequently computing
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point-wise affinities among these selected points. Ultimately, high-
resolution, low-semantic points benefit from their low-resolution,
high-semantic counterparts, guided by the estimated affinity
map. Through the incorporation of PFMs into the FPN’s feature
pyramids, we concurrently surmount the semantic challenges and
foreground-background imbalance.

As depicted in Figure 2, our segmentation framework is
structured around a dual-path architecture, comprising a bottom-
up encoder and a top-down decoder. The encoder, serving as the
foundation of the network, generates multiple feature pyramid
outputs. Conversely, the decoder utilizes an enhanced FPN,
bolstered by the integration of PFMs, replacing the conventional
bilinear upsampling employed in the top-down FPN pathway. Parallel
to the original FPN, this top-down pathway, complemented by lateral
connections, generates pyramidal feature maps vi) with uniform
channel numbers. With this top-down connection and horizontal
connection, feature maps can get more detailed information from
shallow layers and more semantic information from deeper layers. In
addition to vi, to better aggregate global information, we have also
introduced a auxiliary branch for creating a geospatial scene feature
represented as f, which can help model the relationship between the
foreground and the scene. To obtain f, we use global average pooling
as the aggregation function. The geospatial scene feature assumes a
pivotal role in modeling the intricate relationship between the scene
and the foreground, a concept elaborated further in Section 3.3.

3.3 Foreground-scene module

HSR remote sensing imagery introduces a significantly more
intricate background compared to conventional imagery. This
heightened complexity results in a greater intraclass variance
within the background, consequently giving rise to the issue of
false alarms in semantic segmentation. To mitigate this problem, we
introduce a F-S Module, inspired by the work of Zheng et al. (2020).
This module is designed to capture the close relationship between

the scene and foreground, with a specific focus on enhancing the
foreground while reducing the impact of irrelevant background
information. The main concept behind the F-S Module is to
clearly represent how foreground objects interact with the
surrounding scene. It uses hidden spatial information to create
meaningful connections between individual foreground objects
and their surroundings. Once these connections are established,
they are used to enhance the input feature maps, making it easier to
distinguish between foreground and background features. This
enhancement helps improve the accuracy of identifying
foreground objects and reduces false alarms.

Our main idea is shown in Figure 3. We first model the
relationship between foreground and scene, and then use
geospatial scene feature fto associate foreground and related
context information. Finally, these relationships are used to
enhance the input feature map to improve the foreground
salience. As shown in Figure 3, the pyramidal feature maps vi)
undergo a compression process aimed at achieving uniform channel
depth. This is achieved through 1 × 1 convolution layers, which are
subsequently subjected to batch normalization and ReLU activation.
Simultaneously, a scene embedding vector u) is computed using a
1 × 1 convolutional layer with an output channel size of du, applied
to the geospatial scene feature f). Notably, this scene embedding
vector u) remains consistent across all pyramids, as latent geospatial
scene semantics inherently exhibit scale-invariance. Consequently,
the relation maps (ri) are naturally derived via pointwise inner
product computations, ensuring a streamlined and computationally
efficient process.

The formation of the new feature map (zi) is subsequently
carried out using the following equation:

zi � 1
1 + exp −ri( ) · ψθi

vi( ), (1)

where ψθi
(·) denotes the encoder, which has specific settings called

parameters (θi). The encoder introduces an additional non-linear
component to counteract feature degradation, as the weighting

FIGURE 2
Overall framework of our proposed framework. The PFMs (see Section 3.2) are embedded in each stage of the FPN. The foreground represents the
foreground-scene module (see Section 3.3). The disentangled learning is shown in Section 3.4.
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operation is inherently linear. Consequently, we use an efficient
encoder design, comprising a 1 × 1 convolutional layer followed by
batch normalization and ReLU activation, optimizing both
parameter efficiency and computational speed. The relation maps
(ri) serve as weighting factors, employing a normalized relation map
that utilizes a sigmoid gate function (Hu et al., 2018). We tested the
effectiveness of the F-S module in the different pyramid levels on
iSAID dataset, as shown in Table 1. From left to right: original scene,
segmentation prediction results, and images with F-S relation
heatmaps in the different pyramid level. It can be seen from the
experimental results that the spatial scene and the foreground
information are related.

3.4 Disentangled learning

In contemporary semantic segmentation methodologies, the
prevailing trend involves joint learning approaches that, while
effective, may inadvertently neglect potential ambiguities inherent to
coupled features. Recent advancements in the field (Yin et al., 2020;
Yuan et al., 2020; Niu et al., 2022) have illuminated the benefits of
disentangled designs for the explicit extraction of features tailored to
various tasks. Inspired by the work of Niu et al. (2022), we adopt a
disentangled learning method to explicitly represent foreground objects
and align the edge features of small objects. This disentangled approach
encompasses two pivotal components: Foreground Precedence
Estimation and Small Object Edge Alignment.

3.4.1 Foreground precedence estimation
Considering the serious foreground and background imbalance

in aerial imagery, we hope to model more important foreground
objects. As depicted in the upper portion of Figure 4, this process
begins with obtaining a compact feature using a specialized type of
convolution called depthwise separable convolution. This feature is
then made larger and combined with the original feature. Then, the
foreground mask Mfg ∈ R1×H×W is generated through the 1 × 1
convolution. These priors capture both foreground and background
contexts, expressed as:

B � δ Mfg · I‖ 1 −Mfg( ) · I‖I( ), (2)

Here, I ∈ R512×H×W represents the combined feature obtained
from the FPN, and ‖ represents the concatenation operation. The
aggregated feature B ∈ RC/2×H×W is subsequently utilized for
propagation. The transformation function δ(·) is achieved
through a 3 × 3 convolution followed by batch normalization
and ReLU activation.

3.4.2 Small object edge alignment
As visualized in the lower section of Figure 4, dense prediction

tasks often struggle with boundary pixels due to object
characteristics and image resolution limitations. These boundary
pixels correspond to high-frequency regions within the image,
marked by rapid feature changes. Drawing inspiration from Niu
et al. (2022) and Yuan et al. (2020), we adopt a small object edge

FIGURE 3
Foreground-scene module.

TABLE 1 The results of F-S module in the different pyramid levels on iSAID dataset. OS stands for output stride.

Scene Prediction Relation (OS = 4) Relation (OS = 8) Relation (OS = 16)

airport 0.75 0.72 0.69 0.66

harbor 0.73 0.71 0.67 0.64

parking-lot 0.76 0.73 0.71 0.67
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alignment (SOEA) approach to indirectly supervise the alignment of
edge features.

Starting with the feature I ∈ RC×H×W from the FPN, we use a 1 ×
1 convolution to reduce the channel dimension, yielding
I′ ∈ RC/2×H×W. Subsequently, the convolution operation and
pooling operation are employed to gather contextual information.
This information significantly contributes to guiding the subsequent
small object edge alignment. This process results in the creation of a
boundary flow field denoted as △b ∈ RH×W×2, defined as:

△b � η I′‖φ conv I′ + avgPool I′( )( )( )[ ], (3)

Here, φ(·) signifies bilinear interpolation, conv (·) denotes the 3 ×
3 strided dilated convolution, and avgPool (·) is constructed via
applying successive 3 × 3 pooling with a certain step size followed by
a 1 × 1 convolution. η(·) represents a 3 × 3 convolutional layer.

Once △b is established, each edge representation j within the
feature I′ is transformed into a new value k using the learned flow
field. This process is defined as follows:

Ĩ′ � ∑
j∈Sb

W Ij′;△b,j→k( ), (4)

Where Ĩ′ represents the warped feature, and Sb encompasses the
group of pixels related to the boundary. W(x;w) represents the
outcome of input x using w. The warped feature Ĩ′, upon
concatenation with the input, undergoes further processing via a
convolutional layer, ultimately producing the final output.

3.5 Foreground saliency guided loss

The significant imbalance between foreground and background
samples within HSR imagery presents a formidable challenge for
segmentation task. This imbalance often results in the domination of
background infromation during the training process. It is crucial to
recognize that the optimization of the network is profoundly
influenced only by the challenging portions of both foreground
and background samples. Therefore, effectively leveraging these
challenging samples becomes paramount. Drawing inspiration
from Zheng et al. (2020); Xu et al. (2023); Lin et al. (2017b), we
introduce the foreground saliency guided loss to guide the model’s
attention towards foreground and challenging examples, thus
achieving a balance in optimization while enhancing
foreground saliency.

To derive weights that accurately reflect the difficulty level of
examples and tailor the pixel-wise loss distribution, we use (1 − p)γ
as the weight for estimating challenging samples. In this
formulation, p ∈ [0, 1] represents the predicted probability, while
γ acts as the focusing factor. Specifically, higher weights are assigned
to more challenging examples. To modify the distribution of loss
without changing the total sum and prevent the issue of gradients
disappearing, we introduce a normalization constant, Z, which leads
to the following expression:

∑L pi, yi( ) � 1
Z

∑ 1 − pi( )γL pi, yi( ), (5)

FIGURE 4
Overview of disentangled learning module. The top half: Foreground Precedence Estimation. The bottom half: Small Object Edge Alignment.
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Here, L(pi, yi) signifies the cross-entropy (CE) loss for the ith
pixel, which is computed using pi and the ground truth yi.

In our pursuit of dynamically adjusting the model’s
discrimination, a pivotal aspect of estimating challenging
examples, we introduce a dynamic weighting strategy based on
Cosine annealing (Loshchilov and Hutter, 2017). This strategy is
formulated as follows:

L′ pi, yi( ) � 1
Z

1 − pi( )γ + τ t( ) 1 − 1
Z

1 − pi( )γ( )[ ] · L pi, yi( ), (6)

Here, τ(t) represents a cosine annealing function that depends
on the current step t, with τ(t) ∈ [0, 1] constituting a monotonically
decreasing function. This strategy gradually shifts the focus of the
loss distribution towards challenging examples as the network’s
confidence in estimating challenging examples increases with
training steps.

4 Experiments

4.1 Experimental setting

4.1.1 Dataset
The iSAID dataset (Zamir et al., 2019) is our primary

benchmark for aerial imagery semantic segmentation tasks.
With 2,806 high-resolution images ranging from 800 to
13,000 pixels in width, it offers a diverse collection captured by
various sensors and platforms. Featuring 655,451 instance
annotations across 15 object categories, iSAID stands out as the
most extensive dataset for instance segmentation within High
Spatial Resolution (HSR) remote sensing imagery. For
experimentation, 1,411 images are used for training, and
458 images are reserved for evaluation. The Vaihingen dataset1

complements our evaluation and contains 33 aerial images of
varying sizes, covering an area of 1.38 square kilometers. The
dataset categorizes pixels into six distinct land cover classes and
includes Digital Surface Models (DSMs) providing crucial height
information. Following the division in Mou et al. (2019) and Xu
et al. (2023), our utilization divides the dataset into a training set
with 11 images and a test set with five images (identified by image
IDs 11, 15, 28, 30, and 34).

4.1.2 Implementation detail
As the backbone of our architecture, we leverage ResNet-50/

101 (Ferjaoui et al., 2022) models pretrained on the ImageNet
dataset (Russakovsky et al., 2015). To adapt these models for our
task, we remove the final fully connected layer. All models
undergo 16 epochs of training on cropped images. Training
employs the stochastic gradient descent (SGD) optimizer with
a weight decay of 0.0001 and momentum of 0.9. The
implementation of these networks is carried out using the
PyTorch deep learning framework, with the added advantage
of NVIDIA’s automatic mixed-precision training strategy for

expedited computations. Augmentation techniques include
horizontal and vertical flips, as well as rotations in increments
of 90 × k degrees, where k takes values of 1, 2, and 3. In terms of
data preprocessing, we crop images to a fixed size of (896, 896)
using a sliding window approach with a stride of 512 pixels. For
our model, we set the number of channels of FPN to 256, and the
dimension of shared manifold in F-S module to 256. For our
Foreground Saliency Guided Loss, set annealing_step to 10k and
decay_factor to 0.9.

4.1.3 Evaluation metric
The performance of our networks is rigorously evaluated using

three commonly accepted metrics: mean F1 score (mF1), mean
intersection over union (mIoU), and overall accuracy (OA). OA
signifies the proportion of correctly classified pixels in relation to the
total pixel count. The mIoU is calculated as:

mIoU � TP

FP + FN + TP
, (7)

where TP represents true positives, FP stands for false positives, and
FN denotes false negatives. The F1 score, a harmonic mean of
precision P) and recall R), is expressed as:

F1 � 1 + β2( ) · P · R
β2 · P + R

, β � 1, (8)

P � TP

TP + FP
, (9)

R � TP

FP + FN
, (10)

In these equations, P stands for precision, R represents recall, TP
is the count of true positives, FP corresponds to false positives, and
FN indicates false negatives. The metrics collectively provide a
comprehensive assessment of our segmentation models’
performance.

4.2 Comparison on the iSAID dataset

In this section, we comprehensively assess the efficacy of our
framework through a comparative analysis against contemporary
state-of-the-art methods. We utilize the iSAID dataset as the testing
ground for this evaluation, with the results compiled in Table 2. The
benchmarked methodologies encompass a diverse selection, including
PSPNet (Zhao et al., 2017b), Semantic FPN (Liu et al., 2019), FarSeg
(Zheng et al., 2020), FactSeg (Ma et al., 2022), SegFormer (Xie et al.,
2021), RSSFormer (Xu et al., 2023), and PFNet (Li et al., 2021). To
ensure fairness, we meticulously standardized the settings across all
methods. This standardization process ensures uniformity and
impartiality in our evaluation. The implementation of these
networks is carried out using the PyTorch deep learning framework,
with the added advantage of NVIDIA’s automatic mixed-precision
training strategy for expedited computations.

Our thorough evaluation on the iSAID validation set,
presented in Table 2, emphatically underscores the
remarkable performance of our proposed framework in the
realm of geospatial object segmentation. Notably, both
Semantic FPN (Liu et al., 2019) and PSPNet (Zhao et al.,
2017b) exhibit relatively lackluster results, primarily

1 http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-

vaihingen.html
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attributed to their limited prowess in foreground modeling. The
performance of FarSeg (Zheng et al., 2020) and SegFormer (Xie
et al., 2021) also falls short of expectations, likely due to their
constraints in effectively handling the intricate task of
segmenting small objects densely scattered across the imagery.

In stark contrast, our innovative framework outshines these
baselines, achieving an impressive mIoU (mean Intersection over
Union) score of 67.3%. This accomplishment, in comparison to
existing object semantic segmentation techniques, marks a
significant leap in performance. Our approach not only excels in

foreground modeling but also excels in the meticulous segmentation
of small objects, further validating its suitability for tackling the
formidable challenge of small object semantic segmentation in
HSR imagery.

4.3 Comparison on the Vaihingen dataset

In this section, we present an evaluation aimed at affirming
the superior performance of our method. To achieve this, we
conduct a comprehensive comparative analysis using the
Vaihingen dataset as our testing ground. Our chosen
benchmarks encompass several state-of-the-art segmentation
networks, including PSPNet (Zhao et al., 2017b), DeepLabV3+
(Chen et al., 2018b), SegFormer (Xie et al., 2021), RSSFormer
(Xu et al., 2023), FactSeg (Ma et al., 2022), and PFNet (Li et al.,
2021). To ensure a fair and meaningful comparison, we
meticulously adhere to the experimental settings detailed
in Section 4.1.

The results of these comparative experiments are meticulously
summarized in Table 3. It is of paramount importance to note that
our proposed framework consistently outperforms the competing

TABLE 2 Comparative Results on the iSAID dataset with State-of-the-Art Methods. The abbreviations for each category in the iSAID dataset respectively
represent plane, baseball diamond, bridge, ground track field, small vehicle, ship, tennis court, basketball court, storage tank, soccer ball field, roundabout,
harbor, swimming pool, and helicopter. The metric used is mIoU (mean Intersection over Union), where the highest-performing results are highlighted in
bold.

Method IoU per category (%) mIoU

PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC

PSPNet 83.8 76.8 31.2 53.4 47.3 58.2 63.9 86.5 56.7 68.3 67.4 52.6 53 44 33.3 60.9

Semantic FPN 81.2 71.5 33.8 52.2 45.4 60.1 63.5 87.1 57.8 61.5 60.2 59 51.5 46.6 31.2 60.1

FarSeg 82 77.7 36.7 56.7 46.3 60.6 65.4 86.4 62.1 61.8 72.5 71.4 53.9 51.2 35.8 63.7

FactSeg 84.1 78.3 36.3 54.6 49.5 62.6 68.3 88.9 64.8 56.8 73.5 69.4 55.7 51.4 42.7 64.7

SegFormer 83.4 79.3 35.9 53.8 48.8 61.7 68.1 87.9 63.7 55.7 73.1 68.7 55.1 50.9 42.4 62.8

RSSFormer 82.9 78.1 34.8 53.4 47.9 61.5 67.4 87.5 63.1 54.9 72.8 68.2 54.6 50.2 41.8 65.8

PFNet 84 79.8 36.9 54.2 49.3 62.4 68.3 88.5 64.5 56.4 73.3 69.4 55.3 51.4 42.5 66.9

Ours 84.2 80 37.1 56.9 49.7 62.8 68.5 89.2 65.4 68.7 74.1 72.6 56.3 52.8 43.1 67.3

TABLE 3 Quantitative comparison results (%) on the Vaihigen dataset. The abbreviations for each category in the Vaihigen dataset respectively represent
impervious surfaces, buildings, low vegetation, trees, and cars. OA is overall accuracy (%). mF1 is mean F1 score (%). The best results are indicated in bold.

Method OA Imp. Surf Building Low veg Tree Car mF1

PSPNet 88.0 90.2 93.8 80.9 86.7 81.7 86.7

DeepLabV3+ 89.05 89.98 93.91 80.66 89.41 83.39 87.47

SegFormer 89.05 89.98 93.70 80.67 89.41 81.39 87.03

RSSFormer 90.84 93.71 96.86 81.31 91.77 89.20 90.57

FactSeg 90.4 92.8 96.7 80.9 91.4 88.7 90.1

PFNet 91.2 93.9 96.91 82.3 92.5 90.2 92.3

Ours 91.7 94.12 97.01 82.9 92.7 90.67 92.83

TABLE 4 The mIoU results of different methods on the vaihingen dataset.
The best results are indicated in bold.

Method mIoU

PSPNet 0.62

DeepLabV3+ 0.65

FactSeg 0.59

SegFormer 0.68

Ours 0.72

Frontiers in Remote Sensing frontiersin.org09

He et al. 10.3389/frsen.2024.1370697

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2024.1370697


methods across various performance metrics, including mean
F1 score, overall accuracy, and category-specific accuracy. In
addition, we also compared the mIoU indicators of different
methods, as shown in Table 4.

Notably, our method showcases remarkable improvements
over its counterparts. When contrasted with PSPNet (Zhao et al.,
2017b) and SegFormer (Xie et al., 2021), our framework exhibits
substantial increments in mean F1 score, boasting an impressive
6.13% and 5.8% improvement, respectively. These noteworthy
enhancements underscore the efficacy of the innovative modules
seamlessly integrated into our framework.

Furthermore, in comparison to state-of-the-art segmentation
networks specifically tailored for aerial imagery, our proposed
framework emerges as the undisputed champion, boasting the
highest overall accuracy and mean F1 score. Of particular
significance is our framework’s exceptional proficiency in
identifying scattered vehicles, a testament to its unparalleled
capability to capture small objects effectively. This distinctive
feature sets it apart from the competition, establishing our
framework as the preferred choice for scenarios demanding
exceptional small object segmentation prowess.

4.4 Ablation study

In this section, we delve into a series of meticulous ablation
experiments designed to dissect the individual contributions of
various components within our proposed network. These
components encompass the PointFlow Modules (PFMs), the
Foreground-Scene module, disentangled learning, and the
foreground saliency-guided loss. To establish a performance
baseline for these experiments, we use the vanilla ResNet-50 +
Feature Pyramid Network (FPN). The primary evaluation metric

utilized throughout this section is mIoU, and the assessments are
conducted on the iSAID validation set.

1) Ablation Study on Overall Framework: Table 5 presents a
comprehensive overview of the relative improvements
achieved by each proposed module in comparison to the
baseline. The baseline, characterized by the vanilla ResNet-
50 + FPN, exhibits a suboptimal performance, yielding an
mIoU score of merely 67.3%. This underscores its inherent
limitations in effectively addressing the intricate task of
small object semantic segmentation within HSR imagery.
With the introduction of PFMs into the FPN architecture,
we observe a notable 2.8% increase in mIoU, highlighting
the substantial contribution of these modules.
Subsequently, the incorporation of the foreground-scene
module elevates the mIoU to 71.04%, surpassing the
baseline by a considerable margin. Further enhancements
in performance are achieved with the introduction of
disentangled learning, resulting in an mIoU of 72.9%.
Ultimately, the amalgamation of all three components,
coupled with our specialized loss function, culminates in
the highest mIoU of 76.8%. These experimental findings
underscore the pivotal role played by PFMs, the
foreground-scene module in enhancing foreground
saliency, and the significance of disentangled learning in
the context of object segmentation, particularly within
imbalanced scenes.

2) Ablation Study on Loss: To ascertain the efficacy of our
foreground saliency-guided loss, we conduct a thorough
investigation comparing it with different loss functions.
Table 6 showcases the results of this ablation study.
Specifically, we compare our foreground saliency-guided
loss with cross-entropy (CE) loss and focal loss (FL).
Additionally, we explore various combinations,
including our loss with CE, our loss with FL, and our
loss with FL + CE. Notably, the weights for the latter
combination are identical. The findings reveal that the
exclusive utilization of either cross-entropy or focal loss
results in lower F1 scores and mIoU. Although the
combination of cross-entropy and focal loss leads to an
improvement in segmentation performance, it still lags
behind our foreground saliency guided loss. This
divergence arises primarily because HSR remote sensing
images often contain a significant proportion of
background. The adoption of a standard loss function

TABLE 5 Ablation study for each component of the proposed method on iSAID dataset. PFMs: PointFlow Modules, Disentangled learning includes
Foreground Precedence Estimation and Small Object Edge Alignment, and loss: foreground saliency guided loss. The best results are indicated in bold.

PFMs Foreground-scene relation module Disentangled learning Loss Method mIoU (%)

Baseline 67.3

✓ Ours 70.1

✓ ✓ 71.04

✓ ✓ ✓ 72.9

✓ ✓ ✓ ✓ 76.8

TABLE 6 Ablation study for the loss functions in the iSAID dataset. CE is the
cross-entropy loss. FL means the focal loss. FL + CE indicates that the total
loss function is a simple addition of focal loss and cross-entropy loss. Our
loss is the foreground saliency guided loss. The best results are indicated in
bold.

Variants F1 (%) mIoU (%)

ours with CE 76.9 77.3

ours with FL 77.8 78.1

ours with FL + CE 78.5 77.64

ours with our loss 80.4 79.05
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can lead to overfitting on simpler background examples
during the later stages of training, thus impeding the final
efficacy of the segmentation. In contrast, our foreground
saliency guided loss introduces an adjustment factor that
enhances learning on challenging background examples in
the later stages of training, effectively elevating the
segmentation network’s overall performance.
Consequently, our approach achieves a higher mIoU of
79.05%, highlighting its effectiveness in addressing the
unique challenges presented by HSR imagery.

3) Ablation study on SOEA: We evaluated the effectiveness of
SOEA using three common image processing metrics, as
shown in Table 7. Edge Alignment Accuracy is used to
measure the accuracy of the algorithm to align image
edges. The ideal accuracy is close to 100%. Feature
Extraction Efficiency is used to measure the efficiency of
the algorithm in extracting image features, including
calculation time and accuracy. The higher the efficiency,
the closer the value is to 100%. Color Fidelity is a measure
of color consistency before and after image processing. If the
color stays the same, it is close to 100%. It can be seen from
the experimental results that our SOEA can effectively
improve the segmentation effect.

4.5 Discussion

4.5.1 Computational Cost
Our framework contains multiple modules, which intuitively

require more computing power and time costs than other
approaches. However, from the details of the framework design,
we can see that most of these modules only apply the basic
convolution operations, which we believe do not cost too much
computational cost.

4.5.2 Applicability to domains other than semantic
segmentation in aerial imagery

We propose a new semantic segmentation framework for
aerial imagery. We believe that this framework is not only
applicable to HSR remote sensing images, but also can be
applied to other long-distance semantic segmentation tasks,
such as long-distance semantic segmentation in autonomous
driving. This will also be an interesting research direction in
the future.

5 Conclusion

This article delves into two critical challenges within the
realm of aerial imagery: 1) Mitigating Background Noise and
Enhancing Foreground Saliency. 2) Accurate Segmentation in
Dense Small Object Distributions. To surmount these challenges,
we introduce an upgraded semantic segmentation framework
founded on feature pyramids. This framework comprises three
core components: PointFlow modules, the foreground-scene
module, disentangled learning, and the foreground saliency
guided loss. Specifically, we integrate PointFlow modules into
the Feature Pyramid Network (FPN) architecture. These modules
are designed to select representative points between adjacent
feature pyramid levels, replacing the conventional methods of
simple fusion or dense affinity. The foreground-scene (F-S)
module plays a pivotal role in associating context relevant to
the foreground, thereby enhancing the saliency of foreground
features. Our disentangled learning explicitly models foreground
objects and aligns edge features, contributing to more precise
segmentation outcomes. Furthermore, we train our network
using the foreground saliency guided loss, ensuring a balanced
approach between foreground and background. The
comprehensive set of experimental results, spanning the iSAID
and Vaihingen datasets, demonstrates the efficacy of our
proposed framework. Looking ahead, we anticipate broader
applications in various domains, envisioning adaptation for
in-orbit satellite challenges (Zhong et al., 2020).
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