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Estuarine and coastal transitional waters present a challenge for the interpretation
of radiometric remote sensing. Neighbouring water masses have strongly
contrasting optical properties at small spatial scales. Adjacency of land adds
optical contaminations (adjacency effect) and further complicates satellite use in
near-shore waters. In these areas, the lack of in situ observations has been the
bottleneck for the characterisation of the uncertainty of satellite products.
Radiometric underway measurements (e.g., ferries, ships of opportunity,
autonomous vehicles) produce large volumes of in situ observations that can
be used for radiometric validation. In this study, we evaluate the performance of
the POLYMER atmospheric correction algorithm for the Ocean and Land Colour
Instrument (OLCI) onboard Sentinel-3 (S3) for the retrieval of remote sensing
reflectance Rrs(λ) in the transitional waters of Plymouth, United Kingdom using
hyperspectral radiometric underway measurements. We explored the effect of
the selection of time window, averaged areas around the in situ measurement
and quality control flags into thematchup procedure. We selectedmatchups only
within 1 pixel and ±30min of the satellite overpass. Accuracy (RMSD) decreased
spectrally from blue to red wavelengths (from 0.0015 to 0.00025 sr−1) and bias
(Median Percentage Difference) was mostly positive (up to more than 100%) in
relation to in situ observations. We segregated the dataset with respect to optical
water types and distance to shore. Although no statistically significant difference
was observed among those factors on the measures of performance for the
reflectance retrieval, RMSD was the most sensitive metric. Our study highlights
the potential to use OLCI full resolution imagery in nearshore areas and the need
for more in situ data to be collected in the more turbid waters.
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1 Introduction

Spaceborne data collection offers a cost-effective solution to
global scale monitoring to complement in situ efforts. Ocean colour
remote sensing using coarse and medium resolution optical sensors
is especially relevant for monitoring water quality. Water quality
indicators (i.e., chlorophyll-a, suspended particulate matter,
coloured dissolved organic matter) derived from satellite remote
sensing reflectance (Rrs) are used to monitor changes in the coastal
zone. Some of these indicators are used for enabling the monitoring
of compliance with international agreements (e.g., OSPAR) and
would benefit from the daily revisit times of imaging spectrometers
such as OLCI on Sentinel-3.

Despite improvements in the spectral, temporal, and spatial
resolutions of optical sensors over time, environmental variability
poses challenges in the interpretation of the remote sensing signal
when studying the aquatic environment, particularly close to the
shore (Hieronymi et al., 2017). Accurate atmospheric correction
remains an essential component towards reliable remote sensing of
ocean colour since 80%–90% of the measured signal comes from the
atmosphere, primarily caused by molecular and aerosol scattering
(IOCCG, 2010). Other factors such as Sun glint and whitecaps pose
further challenge to remote sensing of ocean colour, and in coastal
waters, the adjacency of land also needs to be considered (Bulgarelli
and Zibordi, 2018; Warren et al., 2019; Vanhellemont and Ruddick,
2021). These effects represent the bulk of estimated ocean colour
product uncertainty, while optical complexity of the water column is
non-negligible (Mélin and Vantrepotte, 2015; Spyrakos et al., 2018).
Optically active constituents such as phytoplankton, phytodetritus,
colour dissolved organic matter (CDOM) and suspended sediments
contribute to the bulk optical properties. Optical water types, each
one representing the different contributions of the optically active
constituents (Moore et al., 2001; Jackson et al., 2017; Spyrakos et al.,
2018), may provide an avenue to disentangle the effects of in-water
optical complexity from the artefacts produced by contamination
outside the water (i.e., adjacency of land, complex changes in
aerosols) in satellite ocean colour products near the coasts
(Pahlevan et al., 2021).

To assess the reliability of remotely sensed products over
gradients of optical diversity, validation of the atmospherically
corrected signal with concurrent field measurements is usually
done. Although a great effort has been put into estimating
uncertainty of ocean colour products, validation is still limited by
the scarcity of validation data. Consequently, taking advantage of
automated platforms will help to increase the amount of field
observations (Zibordi et al., 2006; Simis and Olsson, 2013;
Vansteenwegen et al., 2019; Goyens et al., 2022).

Past research has successfully exploited the Aerosol Robotic
Network-Ocean Colour (AERONET-OC) dataset to validate ocean
colour products in offshore waters (Zibordi et al., 2006; Mélin
et al., 2016). From a combination of automatic and cruise
measurements, the uncertainty in Rrs mainly in the open ocean
has been estimated per optical water type (Moore et al., 2015).
More work is required in specific areas, particularly optically
complex coastal waters, where uncertainties in blue and red
bands are still in the order of 10%–20% (Moore et al., 2015).
Over lakes, rivers, and coastal waters, a similar exercise has been
conducted to assess atmospheric correction methods for Landsat-

8, MODIS-Aqua, VIIRS, Sentinel-2 and Sentinel-3 using
AERONET-OC data (Liu et al., 2021; Pahlevan et al., 2021;
Tilstone et al., 2022; Arena et al., 2024). Several recent studies
have concentrated efforts on the Sentinel-3 OLCI in a range of
optically complex water bodies through ground station and
shipborne data, including turbid waters such as the Eastern
English Channel (Mograne et al., 2019; Vanhellemont and
Ruddick, 2021) and British Columbia (Giannini et al., 2021), or
CDOM-dominated waters like the Baltic Sea (Alikas et al., 2020).
Compared to phytoplankton-dominated waters where
atmospheric correction uncertainties are highest in the blue-
green bands, documented uncertainty from remote sensing
reflectance (Rrs) measurements in optically complex waters is
particularly high in the red and near-infrared (NIR; Morel and
Prieur, 1977).

High uncertainty in the red and near-infrared documented in
optically complex waters can be explained by the adjacent land as it
is the spectral region where the contrast between land and water is
the highest, with water efficiently absorbing light whilst land is
highly reflective (Bulgarelli and Zibordi, 2018). The adjacency
effect has been shown to be a significant issue at distances of
up to 25 km for SeaWiFS and 30 km for MODIS observations in
the Northern Adriatic Sea. When considering mid-latitude coastal
regions, it is expected to be more pronounced in summer months,
for off-nadir views, for observations from over the land and for a
lower aerosol optical thickness (Bulgarelli et al., 2014). Whilst the
effect is strong in the NIR (865 nm) due to significant differences
between the respective reflectance of the terrestrial and the marine
environments, additional uncertainty in the blue-green region
(412–510 nm) originates from a difference in the angular
distribution of the water-leaving radiance (Bulgarelli and
Zibordi, 2018). High dependence on the reflectance of the
neighbouring land has been demonstrated, further affecting its
sensitivity to the viewing geometry and the optical water type.
Whilst it tends to be a serious concern for inland water bodies, it
also poses a significant challenge to nearshore coastal
environments (Warren et al., 2019). In addition, unlike clear
oceanic waters, no assumption can be made about total
absorbance of seawater in the NIR in these waters (Ruddick
et al., 2000; Goyens et al., 2013). In order to reduce these
uncertainties in near coastal waters, in situ observations
automated systems from vessels have been recently deployed
(Martinez-Vicente et al., 2013; Giannini et al., 2021; Wang and
Costa, 2022).

Despite all these difficulties, it is important to persevere on
efforts to quantify uncertainty in Rrs in coastal waters on medium
resolution satellite radiometers as their daily revisit times allow for
monitoring of coastal processes in SPM flows that could be linked to
novel pollutants (Sullivan et al., 2023), as well as to extend the
climate quality datasets to coastal waters such as the Ocean Colour
Climate Change initiative (Sathyendranath et al., 2019) and develop
further products to support biodiversity monitoring.

The present study aims to quantify the uncertainty in Rrs satellite
data in the optically complex waters surrounding the Tamar Estuary,
Plymouth (Western English Channel) and identify its potential
sources in the context of optimising ocean colour products in
optically complex waters. The focus is on the role of optical
water types and distance from land on the discrepancies between
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satellite and in situ Rrs. This is achieved by comparing shipborne and
remotely sensed reflectance from Sentinel-3 OLCI at full
resolution (300 m).

2 Materials and methods

2.1 Study area

The coastal waters surrounding Plymouth (United Kingdom)
are located on the North Western European Continental Shelf, a
dynamic environment heavily influenced by freshwater, tidal and
marine currents (Figure 1). The tidal cycle of the estuary governs
hydrodynamic processes in the area (Siddorn et al., 2007). In
combination with biological seasonality, these influence the
dynamics of the optically active constituents (total suspended
matter concentration, TSM; coloured dissolved organic matter,
CDOM and phytoplankton chlorophyll concentration, Chla;
Doxaran et al., 2006). Offshore, in coastal waters around station
L4 (water column depth 55 m, Figure 1), optically active constituents
are mostly influenced by biological seasonality and river outflows.
Phytoplankton dominates during spring/summer bloom events and
TSM (mainly made of inorganic particles) and/or CDOM in winter
(Groom et al., 2009; Martinez-Vicente et al., 2010). Low

concentrations of optically active constituents are present in the
area, with concentrations of chlorophyll-a around 1.5 mg m−3,
reaching 4 mg m−3 during spring bloom at L4 station and TSM
concentrations generally around 1 g m−3, reaching 9.94 g m−3 in
winter months (Martinez-Vicente et al., 2010).

2.2 Earth observation data

Ocean and Land Colour Instrument (OLCI) data were acquired
for the period between December 2016 and March 2021. The data
evaluated in this study are the fully normalised water-leaving
reflectance (ρw) full resolution (300 m × 300 m) for 15 selected
bands: 400, 412, 443, 490, 510, 560, 620, 665, 674, 681, 709, 754, 779,
865 and 885 nm. For comparison to field measurements, these were
then transformed to remote sensing reflectance (Rrs) by dividing
by π.

The processing stages included atmospheric correction using the
POLYMER v4.15 algorithm and the IDEPIX mask generation. The
POLYMER atmospheric correction algorithm was originally
developed for MERIS open water products to remove Sun glint
(Steinmetz et al., 2011), using a BRDF correction from Park and
Ruddick (2005) and selected because of its high performance for
Sentinel product (Mograne et al., 2019; Giannini et al., 2021).

FIGURE 1
Location of the matchup data points from the coastal waters surrounding Plymouth (1.1.), in the Western English Channel (1.2.) in the South West of
the United Kingdom (1.3.). The colour scheme represents the local bathymetry.
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IDEPIX (Identification of Pixel properties, in SNAP 8) masking is
used to remove land, cloud and spurious data points with high
uncertainty. The processing chain follows that developed in
Warren et al., 2019.

For the creation of a set of optical water types (OWTs), a spatial/
temporal subset of the processed satellite data acted as a training
dataset to represent the observed variability in the reflectance spectra
in the region of interest (Jackson et al., 2017). The optical water type
classification first involved the standardisation of the output
products by subtracting the mean and dividing by the standard
deviation for each band. Principal component analysis was then
performed on the standardised data whereby the resulting principal
components were used in the cluster analysis to classify the coastal
waters into OWTs. The cluster analysis consisted of a fuzzy c-means
clustering procedure using a cluster validity function to generate
clusters (Xie and Beni, 1991; Moore et al., 2001). The clustering
approach resulted in 6 OWTs in the study area (Figure 2).
Memberships to all OWT classes were calculated for every
satellite data matchup and assigned a dominant OWT class based
on highest membership value. The in situ spectra associated with
that satellite matchup pixel were assigned the same OWT class.

2.3 In situ observation data: collection,
processing and quality control

During field campaigns in 2017, 2018 and 2020, above-water
radiometric measurements were collected with the unsupervised
Hyperspectral Sur-face Acquisition System (HSAS, SeaBird Inc.).
The sky and water leaving radiance measurements were acquired
from the bow of R/V Plymouth Quest at about 5 m above the water
surface, whilst out at sea. R/V Plymouth Quest is a 21.5 m length
scientific vessel that has been used in previous works (Martinez-
Vicente et al., 2013; Jordan et al., 2023). The downward looking

radiometer has a field of view of 6°, which corresponds to about
0.6 m at the sea surface. The downwelling irradiance sensor was
located at the top of the wheelhouse, on the extreme side of the top of
a T shaped mast, away from any superstructure. The sensors and the
setup provide accuracy similar to other sensors and approaches
(Tilstone et al., 2020). The system continuously recorded
downwelling irradiance (Ed), sky radiance (Ls) and water leaving
radiance (Lt) at 169 wavelengths with 3.3 nm spectral resolution
between 340.0 and 897.7 nm. The scanning frequency was between
4 and 0.5 Hz, depending on the sensor optics. The optical data were
converted to physical units and processed to Level3a using the
manufacturer’s software (Prosoft v7.7.16) which merged the data to
1 Hz. Rrs was inferred following: Rrs(λ) = Lw+(λ)/Ed(λ) where
Lw+(λ) = Lt(λ)–ρs Ls(λ) with Lw+ the water leaving radiance
above the surface and ρs the surface reflectance factor (Martinez-
Vicente et al., 2013). At the normal speed of R/V Plymouth Quest,
the average number of Rrs spectra data per OLCI FR pixel (300 m) is
150. The spatial structure of reflectance dataset collected underway
from R/V Plymouth Quest is discussed in detail in Jordan et al.
(2023). Sensors were factory calibrated every year.

The data were then processed following the fingerprint
approach (Simis and Olsson, 2013; QC0 in Table 1) to resolve
ρs for each observation. Following the procedure, data flagged as
valid were retained and filtered according to published
recommendations. Quality control was done using
characteristics of the spectral shape (Simis and Olsson, 2013;
Qin et al., 2017; IOCCG, 2019; Warren et al., 2019). Quality
control consisted of removing spectra affected by significantly
negative values (QC1 in Table 1; Qin et al., 2017), removing
spectra affected by Sun glint and whitecaps (QC2 and QC3 in
Table 1; Qin et al., 2017; IOCCG, 2019), removing the effect of the
oxygen absorption feature from the instrument calibration
(QC4 in Table 1; Qin et al., 2017). It also consisted of
accurately selecting spectra representative of the study area

FIGURE 2
The reflectance (Rrs) means and standard deviation of the six optical water types represented in the selected transitional waters of Plymouth,
Southwest, United Kingdom. The means were calculated from the training dataset spanning 2016 to 2021.
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where dominance of mineral particles compared to coloured
dissolved organic matter can be found (QC5 in Table 1; Qin
et al., 2017; Warren et al., 2019). By applying those successive
gating criteria, the number of observations was reduced from
174,396 to 9,065 (Table 1).

In situ spectra that passed the filtering criteria were convolved to
the spectral response functions of the OLCI, instrument on
Sentinel-3A.

The distance to land (including smaller features such as islands
and breakwaters) for each in situ measurement was computed
using the great-circle distance (Distance to Nearest Hub tool in
QGIS). All data points were within 15 km of land. These were
grouped into three categories (namely, 0–5 km, 5–10 km, and
10–15 km), and used to investigate the effect of land adjacency
on the satellite data quality as described in Section 2.5.

2.4 Extraction and matchup routine

The selection of spatial and temporal windows has been
documented to potentially affect validation performance statistics
(Concha et al., 2021). Therefore, different matchup selection
routines were explored in this study. Two temporal windows
(±30 min and ±3 h) and two spatial windows (1 pixel and 3 ×
3 pixels) were considered (Table 2). In the case of the 3 × 3 pixel area,
only matchups yielding a minimum of six pixels and a coefficient of
variation <0.15 were retained (Brewin et al., 2016; Bailey and
Werdell, 2006). The mean in situ spectra were then used to
reduce the satellite data to unique validation points for
comparison purposes. A detailed study on the variability within
different spatial windows is not the subject of this paper and has
been explored elsewhere (Nasiha et al., 2022; Jordan et al., 2023).

The satellite matchup data points were filtered (as shown in
‘Filtering’ step in Table 2) for significantly negative values
(<−0.0005 sr−1) to allow for consistency with the in situ dataset
(QC1 in Table 1; Qin et al., 2017). In the case that multiple field
measurements were present in the same pixel, the median value was
taken (‘Median’ step in Table 2).

For very dynamic waters or stations close to the coast,
EUMETSAT (2021) states that reduction of the matchup time
window to 1 hour and the spatial window to 1 pixel is acceptable.
Thus, given the spatiotemporal variability in the study area, the ±30 min
and 1 × 1 pixel matchup selection routine was selected. The resulting
matchup in situ spectra span across 19 sampling dates, covering a
transect of approximately 12 km (Respective in situ spectra retained:
0–5 km: N = 11, 5–10 km: N = 38, 10–15 km, N = 22) and spanning six
optical water types. The environmental conditions for those sampling
dates were clear to slightly overcast skies for all days other than 14th July
2020 showing hazy skies. Most matchups occurred in OWTs 1 and
3 with N = 23 and N = 18, respectively.

From the initial 174,396 reflectance spectra collected, 430 were
preserved, and converted to 71 median spectra that were then used
for the statistical matchup, coming from a temporal window of
30 min and a spatial window of 1 × 1 pixel.

2.5 Matchup metrics

A set of performance metrics was then calculated to describe the
difference between the OLCI and in situ data. Root Mean Square
Difference (RMSD), Median Absolute Percentage Difference
(MdAPD) and Median Percentage Difference (MdPD) were
computed to quantify the accuracy, dispersion and bias of the
data, respectively, with x the in situ data, y the satellite data and
N the number of matchups 1–3:

RMSD �

�������������
1
N
*∑N
i�1

yi − xi( )2
√√

(1)

MdAPD � Median |yi − xi

xi
* 100| (2)

MdPD � Median
yi − xi

xi
* 100 (3)

These metrics were chosen since they are most common in
validation exercises within the Ocean Colour Radiometry

TABLE 1 Summary of in situ data filtering criteria with the number (N) of retained spectra per year. φs is the viewing azimuth angle relative to the Sun.

Criteria 2017 2018 2020 Total

QC0 Minimisation of atmospheric absorption features 76,873 46,269 51,254 174,396

QC1 ∑400
λ�340

Rrs(λ)
(400−340)≥ − 0.0005 sr−1 and ∑900

λ�800
Rrs(λ)

(900−800)≥ − 0.0005 sr−1 23,719 12,811 22,327 58,857

QC2 90°≤φs ≤ 136° 3,814 4,241 5,630 13,685

QC3 Rrs(400 − 885)< 0.015 sr−1 3,639 3,156 5,627 12,422

QC4 MaxRrs(760 − 770)< 0.1 × MinRrs(560 − 600) 3,072 2,692 4,497 10,261

QC5 MaxRrs(λ) at λ< 600 nm 3,072 2,262 3,731 9,065

TABLE 2 Number of in situ spectra retained after distinct matchup selection
criteria, with different spatial and temporal windows considered. Bold
writing shows the number of in situ spectra used in the main analysis and
discussion of this study.

Temporal window 3 h 30min

Spatial window 1 × 1 pixel 3 × 3 pixel 1 × 1 pixel 3 × 3 pixel

Matchup Selection 2,817 2,772 432 427

Filtering 2,732 2,215 430 170

Median 583 409 71 49
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community (Concha et al., 2021). In addition, the distribution of the
datasets was investigated.

Data were then segregated by distance to land and by optical
water types. Performance metrics were then calculated for subsets
depending on the OWT and distance from land. Following a
Levene’s test for heterogeneity of variance and Shapiro-Wilk test
for normality of distribution, non-parametric tests were used.
Mann-Whitney tests were carried out to test for statistically
significant differences. A permutational analysis of variance
(PERMANOVA) with 1,000 permutations based on Euclidian
distances was conducted to test for differences in the
performance metrics between the distinct OWTs and
distance from land.

A comparison of performance metrics between the various
matchup selection routines can be found in Section 3.1. Results
and discussion are, however, mainly focused on the matchups with a

temporal window of 30 min and a spatial window of 1 × 1 pixel, on
all data and on data segregated by OWT dominance and distances to
the shore. Scatterplots, histograms and descriptive statistics for the
other spatial and temporal match up windows explored (as
described in Section 2.4) are provided in Supplementary
Materials S2–S4.

3 Results

3.1 Discrepancies between satellite and in
situ data across various matchup
selection routines

First, satellite and in situ data were compared using various
matchup selection criteria using distinct temporal and spatial

FIGURE 3
Performancemetrics for the respectivematchup selection routines averaged over the electromagnetic spectrum and represented spectrally for the
selected wavelengths. (A) Root Mean Square Difference (RMSD), (B)Median Absolute Percentage Difference (MdAPD), (C)Median Percentage Difference
(MdPD). The plots of MdAPD and MdPD are shown on a log scale due to the large variation between wavelengths.
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windows. The respective performance metrics were calculated across
the spectrum and for each spectral band, and further displayed
in Figure 3.

The spectral distribution in the RMSD was similar across data
from all matchup selection routines with a peak at 490 nm with an
overall decrease with a smaller temporal and spatial window, going

FIGURE 4
Per-band scatter plots. The dotted line represents the 1:1 ratio line. The red line represents the line of best fit between the satellite and in situ Rrs, with
the regression equation and coefficient of determination (R2) noted in the plot. Details of the respective optical water types (OWTs) and distance to land
have been included. Temporal window of 30 min and spatial window of 1 × 1 pixel (300 × 300 m).
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from 0.0021 sr−1 with a ±3 h and 3 × 3 pixel window to 0.0013 sr−1

with a ±30 min and 1 × 1 pixel window (Figure 3A). Similarly, the
spectral distribution of the MdAPD was consistent across all data

with a higher median value of 64% for the matchup data selected
within a 3-h window (Figure 3B). On the other hand, the highest
median MdPD value could be observed for the most stringent

FIGURE 5
Relative frequency distribution of Rrs of the in situ data (grey bars) compared with Sentinel-3 OLCI data (red outline bars). Asterisks refer to
statistically significant differences between the datasets (Mann-Whitney test, N = 71, p < 0.01). Median for each distribution is indicated by the solid line,
grey for the in situ dataset, red for the satellite dataset. Temporal window of 30 min and spatial window of 1 × 1 pixel (300 × 300 m).
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dataset (±30 min 1 × 1 pixel selection window) with a peak of 200%
depicted at 779 nm (Figure 3C).

3.2 Discrepancies between satellite and in
situ data for the dataset as a whole

Next, the most stringent matchup selection criteria (±30 min
and 1 pixel) were delved into further. Overall, when comparing the
satellite reflectance estimates with in situ measurements, small
differences were observed, yet a positive bias could be seen over
most of the spectral range. To illustrate any discrepancies between
satellite and in situ Rrs for the whole matchup dataset (N = 71),
scatter plots and histograms for each of the S3-OLCI bands are
shown in Figures 4, 5. The distribution of the data can further be
observed in relation to optical water types and distance to land as
depicted in Figure 4. Performance metrics were then calculated for
each spectral band (Table 3; Figure 6).

In general, there was a large scatter across the wavelengths, but a
positive slope of the regression between satellite and in situ Rrs can be
seen for all wavelengths but 754 nm and 779 nm (Figure 4). A positive
bias of the satellite estimates can be observed in relation to in situ
measurements for most wavelengths, except in the range from 490 to
560 nm, Figure 4. It is, however, essential to notice that the R2 values
depicted are very small (≤0.08, Figure 4). It is also worth noticing, that
when looking at the distribution of the data points in relation to optical
water types, measurements in waters dominated by OWT 6 were
particularly out of range (Figure 4).

As the range of observations is limited, another way to visualise the
data is by means of histograms. The histograms show amaximum range
of 0.007 sr−1 at 490 nm (Figure 5). Figure 5 shows the non-normal

distribution of Rrs at most wavebands (Shapiro-Wilk normality test, p <
0.05, N = 71) except 412 nm (W=0.98, p = 0.25) and 443 nm (W= 0.97,
p = 0.11) in the satellite dataset and 665 nm (W = 0.98, p = 0.21) and
674 nm (W = 0.97, p = 0.08) in the in situ dataset. The data also showed
overall positive skewness, particularly for the satellite dataset where
outliers were present in three of the bands, namely, 560, 620 and 665 nm.

Testing for the differences between performance metrics,
statistically, we found that significant differences between the
median Rrs were shown for some of the bands (Mann-Whitney
test, p < 0.05, N = 71) where there was a general shift towards higher
reflectance values in the satellite dataset as suggested by the bias
metric (Figure 6). This was clear at 674 nm, 681 nm, 754 nm and
779 nm where the median satellite reflectance values were at least
double the in situ measurements (e.g., Median Rrs_ satellite (674) =
4.57 × 10−4 sr−1 vs. Median Rrs_ in situ (674) = 2.10 × 10−4 sr−1).

When comparing the satellite with the in situ measured
reflectance, we used a set of metrics commonly used in the field.
RMSD (a measure of accuracy) increased from 0.0001 to 0.001 sr−1

from the red to the blue parts of the spectrum (Figure 6A), which is
small compared to the range in Rrs in the blue (i.e. 0.001 sr−1 at
490 nm; Table 3). Conversely, the MdAPD (a measure of
dispersion), was lower in the green (~30%) than in the red bands
(MdAPD(779) = 204%; Table 3). This was similar to strongly
negative bias at 400 nm (MdPD (400) = −4%) and 865 nm
(MdPD(865) = −16%; Table 3). The rest of the wavelengths
exhibited a positive bias ranging between 2.59% and 201%
(Table 3). A gradual increase was observed between 510 nm and
779 nm, both in the dispersion and the bias metrics (Figures 6B, C).

Overall, this validation exercise at relatively low reflectance
values in coastal waters depicted that full resolution OLCI Rrs

using POLYMER produced lower accuracy and higher dispersion
at shorter wavelengths than at higher wavelengths compared to
underway above water Rrs. To try to disentangle the causes affecting
this performance, the matchup datasets were then separated in terms
of optical water types and distance to the coast.

3.3 Discrepancies between satellite and in
situ data for the dataset segregated by
optical water types

3.3.1 Spatial distribution of optical water types
Membership values to the optical water type clusters for the

matchup Rrs spectra were calculated and spectra grouped by
dominant optical water type are shown in Figure 7. All OWTs in
the study area depict a peak in reflectance between 490 nm and 560 nm
(Figure 7). Both OWT 1 and OWT two show a peak in Rrs at 490 nm
(Rrs (490) = 0.007 sr−1; Figure 7). A seemingly good accordance between
the in situ and satellite datasets can be seen for OWT 2, whilst a more
defined peak can be seen in the in situ dataset for OWT 1. A peak in Rrs
between 490 nm and 560 nm can be seen, once again, for OWTs 3 and
4 with, however, a smaller range of reflectances with a maximum value
of 0.004–0.005 sr−1 at 490 nm (Figure 7). Despite the lack of matchup
data forOWT5, a clear peak can be observed at 490 nmwhilst a defined
peak at 560 nm is present for OWT 6 (Figure 7).

From the matchup dataset, the dominant OWTs found in each
zone of the study area were the following: OWT 2 in 0–5 km, OWT 3
in 5–10 km and OWT 1 in 10–15 km, representing 36%, 42% and

TABLE 3 Performance metrics over the electromagnetic spectrum: Root
Mean Square Difference (RMSD), Median Absolute Percentage Difference
(MdAPD), Median Percentage Difference (MdPD).

(nm) RMSD (sr−1) MdAPD (%) MdPD (%)

400 1.50 × 10−3 42.72 −3.87

412 1.36 × 10−3 43.05 15.15

443 1.22 × 10−3 23.58 15.09

490 1.33 × 10−3 20.12 2.72

510 1.30 × 10−3 17.62 2.59

560 1.30 × 10−3 18.68 10.03

620 5.36 × 10−4 50.17 37.08

665 3.70 × 10−4 69.16 39.28

674 4.63 × 10−4 60.26 53.99

681 4.47 × 10−4 58.4 20.91

709 3.22 × 10−4 118.3 73.76

754 4.83 × 10−4 161.1 161.1

779 3.44 × 10−4 204.3 200.9

865 1.51 × 10−4 60.48 −16.04

885 2.74 × 10−4 70.72 30.43
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64% of the data, respectively (Figure 8). It is also worth noticing the
presence of OWTs 1 and 2 in nearshore waters (0–5 km)
corresponding to two distinct days: 6th July 2017 and 26th June
2018, respectively. OWTs 5 and 6, on the other hand, were found in
more offshore waters (10–15 km) corresponding to data collected on
5th April 2017 (Figure 8).

3.3.2 Performance metrics: dataset segregated by
optical water types

The discrepancy metrics between satellite and field
measurements of Rrs were investigated separating the
matchups by optical water types (OWT). Although no
statistically significant difference was found among the groups

(PERMANOVA, F5 = 0.845, R2 = 0.063, p = 0.388), separation by
the distinct OWTs was observed. Performance metrics were
calculated for subsets of the matchup dataset averaged across
all wavelengths (Figure 9) and on a per-wavelength basis
(Figure 10). Concerning the satellite vs. in situ matchup
metrics grouped by optical water types, the RMSD metric
indicated higher uncertainty in the OWT 6 subset with a
mean value of 0.0014 sr−1, double the RMSD for the rest of
the OWTs found in the study area (Figure 9A). Spectrally, RMSD
peaked at 560 nm with a value of 0.004 sr−1 (Figure 10A). The
measure of dispersion per optical water type, the median MdAPD
metric, was high, ranging between 60% and 91% (for OWTs 3 and
4, respectively; Figure 9B). Spectrally, peaks were present for

FIGURE 6
Performance metrics for different wavelengths: (A) Root Mean Square Difference (RMSD), (B)Median Absolute Percentage Difference (MdAPD), (C)
Median Percentage Difference (MdPD). The plots of MdAPD and MdPD are shown on a log scale. Number of matchups (N) N = 71.
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OWTs 1-3 with a main peak at 400 nm (MdAPD = 289%) for
OWT 1 followed by a second peak at 779 nm (MdAPD =
186–241%) for OWTs 1–3 (Figure 10B). OWTs 4-6 depicted a
generally higher MdAPD at longer wavelengths (665–885 nm)
with a peak at 865 nm (Figure 10B). Concerning the measure of
bias, the MdPD metric was on average positive, ranging between

11 and 74 with a general increase from OWTs 1 towards 6
(Figure 9C). Yet, the comparison of the satellite reflectance
estimates with in situ measurements revealed negative bias
(negative MdPD) between 400 and 560 nm for OWT 1, only
at 400 nm for OWT 2, and at 865 nm for OWTs 1, three and
6 (Figure 10C).

FIGURE 7
The reflectance (Rrs) spectra of the six optical water types represented in the selected transitional waters of Plymouth, Southwest, United Kingdom.
Both satellite (red) and in situ spectra are displayed.
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Overall, the dispersion measures were similar across the optical
water types in this study, with the two extremes (clearest waters from
OWT 1 and more turbid waters of OWT 6) being well defined
spectrally. Negative bias appeared at the shorter parts of the
spectrum in OWT 1, while lower accuracy (higher RMSD) was
more evident in middle parts of the spectrum. On the other hand,
OWTs two to 4 seemed to have similar performance statistics.

3.4 Discrepancies between satellite and in
situ data for the dataset segregated by
distance to land

The discrepancy metrics between satellite and field measurements
of Rrs were investigated separating the matchups by their distance to
land. Despite no statistically significant relationship (PERMANOVA,
F2 = −0.049, R2 = −0.001, p = 0.969), the influence of varying distance
from land on discrepancies was observed and summarised through
performance metrics (Figure 11).

The RMSD metric had a higher mean value for measurements
in the nearshore waters (RMSD = 0.001 sr−1 for 0–5 km to land)
compared to more offshore waters (RMSD = 0.0006 sr−1 for

10–15 km to land; Figure 11A). A clear peak was associated
with the 560 nm for the 0–5 km to land group (RMSD (560) =
0.002 sr−1; Figure 11D) coinciding with the peak observed in OWT
6 (Figure 10A). From the location of the matchups (Figure 8),
OWT 6 appeared both within the <5 km to land and 10–15 km to
land regions. The averaged MdAPD (dispersion) was similar for
the three groups, and varied between 64% and 72% across all
wavelengths (Figure 11B), with a peak at the 709 nm for
waters <5 km to land (MdAPD(709) = 142%) and at 779 nm
for the two groups further offshore (MdAPD(779) = 210–221%;
Figure 11E). Spectrally, the minimum for this metric was found at
443 nm for 0–5 km (MdAPD(443) = 15%), at 510 nm for 5–10 km
(MdAPD(510) = 18%) and at 560 nm for 10–15 km
(MdAPD(560) = 12%; Figure 11E). The MdPD metric (Bias)
was overall positive (MdPD = 35–46%). This indicates a
positive bias of satellite estimates in relation to in situ
observations across all distance partitions considered
(Figure 11C). When looking at the spectral variation of this
metric, however, matchups at 5–10 km from the shore were the
only ones revealing a positive bias of the satellite derived
reflectance (Figure 11F). At other distances (0–5 km and
10–15 km), bias was variable and sometimes negative.

FIGURE 8
Location of the matchup data points from the study area with the colour scheme representing the respective optical water types (OWTs). Contour
lines represent successive distance from shore (5 km, 10 km and 15 km). Location of the Western Channel Observatory station L4 is among the dots and
marked with an arrow for clarity.
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4 Discussion

4.1 Performance compared to other studies
for OLCI full resolution in coastal waters

Previous studies assessing the performance of atmospheric
correction processors have highlighted that disparities in results
between study areas arise from differences in reflectance ranges, in
part due to varying degrees of turbidity (Vanhellemont and
Ruddick, 2021).

The coastal areas assessed in the present study can be classed as
moderately turbid, with total suspended matter concentrations
between 1 and 10 g/m3 (Martinez-Vicente et al., 2010). These
turbidity conditions differ substantially from those of recent
studies (Mograne et al., 2019; Alikas et al., 2020; Giannini et al.,
2021), which included moderately turbid to very turbid water bodies

with reflectance values 10 times greater in magnitude
(0.02–0.05 sr−1) than the values observed in the present study
(0.003 sr−1, Figure 4). The study area, characterised by a narrow
range of relatively low reflectances (Figure 4), revealed a positive bias
of satellite estimates in relation to in situ observations. Although the
present observations are low in magnitude, they are in line with
previous measurements in the area (Martinez-Vicente et al., 2013;
Jordan et al., 2023). They align with the lower end of values recorded
in coastal waters by Giannini et al. (2021) (at 443 nm they report in
situ Rrs less than 0.005 sr−1). They are also similar to more offshore
waters in the Canadian coast (Vishnu and Costa, 2023).

When comparing the performance metrics for the whole dataset
of this study to other studies, similarities arise with regards to the
wavelength dependency. The dispersion and bias metrics indicated
higher dispersion and bias at the edges of the spectral band range
(<490 nm and >674 nm) with a peak in the red region (Figure 6C).

FIGURE 9
Spectrally averaged performancemetrics per optical water types (OWTs). (A) Root Mean Square Difference (RMSD), (B)Median Absolute Percentage
Difference (MdAPD), (C)Median Percentage Difference (MdPD). The plots of MdAPD and MdPD are shown on a log scale. OWT 1 N = 23, OWT 2 N = 16,
OWT 3 N = 18, OWT 4 N = 6, OWT 6 N = 5. Error bars are the standard deviation.
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The spectral differences in the dispersion and bias metrics are
consistent with the metrics obtained by selecting different spatial
or temporal windows explored in this study (Figures 3B, C). Lower
performance at 400 nm and 865 nm may result from the low Rrs

signal, given that there is a relationship between the dispersion
metric and the intensity of the signal (Vanhellemont and Ruddick,
2021), and less likely to come from high absorption and
backscattering by optically active constituents (Mograne et al.,
2019). Larger uncertainties at shorter wavelengths could also be
attributed to difficulties with aerosol correction (Soppa et al., 2021).
Larger uncertainties at longer wavelengths, however, may instead be
attributed to the small Rrs signal from increasing water absorption
(Soppa et al., 2021). The positive bias of the satellite derived Rrs at
865 nm in relation to the in situ observations (Figure 6C) was also
indicated by the MPD (Mean Percentage Difference) metric in
Alikas et al. (2020) despite larger bias being observed
(MdPDpresent = −16%, MPDAlikas = −50%).

Conversely, the RMSD metric suggested lower accuracy at
shorter wavelengths than other studies (Figure 6A; Mograne
et al., 2019; Vanhellemont and Ruddick, 2021). Also, the RMSD
depicted strong differences with changes in the spatial and
temporal matchup windows (Figure 3). An increase in RMSD
(decrease in accuracy) was observed, mainly, at shorter
wavelengths (<600 nm) between the strictest matchup selection
routine (30 min and 1 × 1 pixel) and the most relaxed one (3 h and

3 × 3 pixels). Different causes have been proposed in the literature.
Giannini et al. (2021) raise the fact that POLYMER does not
consider the CDOM contribution to the optical signal adequately,
leading to uncertainties in shorter wavelengths. This is particularly
important in regions where the optical signal is significantly
affected by CDOM absorption, e.g., British Columbia aCDOM

(440) 0.23–4.91 m-1 (Giannini et al., 2021). The more offshore
part of our study area is not affected by high CDOM, with
aCDOM(440) 0.05–0.20 m-1 levels around L4 station (10–15 km
from shore, Groom et al., 2009). Higher concentrations of
CDOM are, however, expected in nearshore waters that could
result in error in the shorter wavelengths. Warren et al. (2019)
point out that the curve follows the wavelength dependency of the
aerosol optical thickness with particular difficulty in removing
aerosol contributions in shorter wavelengths, specifically at
443 nm (Pahlevan et al., 2021). Vanhellemont and Ruddick
(2021) propose the under correction of the increasing
atmospheric path reflectance between the NIR and the UV to
be a potential cause.

Disparity between the present results and other studies can
also be explained by the differences in the matchup selection
criteria and in the data processing chain, including atmospheric
correction methods and in situ data filtering. Not only have
previous studies assessed more turbid types of coastal waters,
different matchup selection routines and data filtering

FIGURE 10
Spectrally resolved performance metrics for optical water types (OWTs). (A) Root Mean Square Difference (RMSD), (B)Median Absolute Percentage
Difference (MdAPD), (C) Median Percentage Difference (MdPD). The plots of MdAPD and MdPD are shown on a log scale.

Frontiers in Remote Sensing frontiersin.org14

Gleratti et al. 10.3389/frsen.2024.1359709

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2024.1359709


procedures have been used resulting in possible mismatch
between satellite and field measurements. In this study we
have selected the matchups very strictly (30 min difference
between satellite and in situ observations), however for sun-
synchronous satellites such as MERIS or Sentinel-3 OLCI, tidal
dynamics are a known cause of bias in ocean colour products, for
instance TSM concentrations in estuaries (Eleveld et al., 2014).
Appropriate matchup selection criteria are therefore critical
according to the spatiotemporal variability of the study area
(Concha et al., 2021). It is also worth pointing out that the

present study and previous studies cited have used different
methods of atmospheric correction, with various versions of
POLYMER used as well as different flags or correction
methods to target bidirectional effects (Table 4).

Whilst both matchup selection and quality control are crucial
for high quality data to support satellite ocean colour validation
activities (IOCCG, 2019), strict criteria cause a large proportion of
the acquired data to be discarded. Particular attention should be
given to the sampling strategy and the validation protocol to obtain
high quality ground measurements for accurate measures of

FIGURE 11
Spectrally averaged performance metrics with the distance from land and spectrally resolved. Averaged performance metrics in sub-figures (A–C).
Per wavelength performance metrics in sub-figures (D–F). Root Mean Square Difference (RMSD), Median Absolute Percentage Difference (MdAPD),
Median Percentage Difference (MdPD).
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performance. Users should follow accepted protocols (IOCCG,
2019; EUMETSAT, 2021).

4.2 Effects of optical water types and land
adjacency on the results

Few sources in the literature describe the performance of
atmospheric correction models while considering optical water
types or distance from land (as proxy for adjacency effects) as
potential contamination factors (Pereira-Sandoval et al., 2019;
Warren et al., 2019; Pahlevan et al., 2021; Hieronymi et al., 2023).

When considering nearshore waters (0–5 km from land), the
large RMSD values were present at the 560 nm band and could be
a result of either nearshore enhanced TSM scattering (OWT 6)
and/or adjacency from neighbouring land (Groom et al., 2009).
The latter was suggested by Warren et al. (2019) when assessing
the performance of atmospheric correction models for the
Sentinel-2 MSI data. In their study, the RMSD at 560 nm
increased by 25%–55% between the coastal and inland
matchup datasets. With distance from land ranging between
0.2 and 1.2 km, this was associated with the contribution of
land adjacency to the atmospheric path reflectance. The under
correction of the land adjacency effect could explain the positive
bias of the satellite derived reflectance in such waters. This is
supported by the decreasing tendency observed in RMSD with
increasing distance to land. When considering the RMSD metric,
the results of the current study therefore point to the adjacency
effect from neighbouring land as being a potential issue for
Sentinel-3 OLCI data up to approximately 5 km from land.
The dispersion (MdAPD) and bias (MdPD) metrics do,
however, not show similar tendencies. This could be the result
of other factors such as environmental conditions at the time of
sampling such as aerosol optical depth, Sun and observation
geometry. Increased efforts in the in situ Rrs sampling collocated
with aerosol optical properties measurements within that
distance to the shoreline would help to reduce uncertainties
and improve confidence on Sentinel-3 OLCI to increase its use
in water quality monitoring applications. Concerning the
relationship between OWT and performance statistics, the
accuracy (RMSD) and the dispersion (MdPD) measures
provide the worse results, pointing to worse Rrs retrievals in

more optically complex waters. This points to an application of
OWT to flag coastal areas where satellite retrievals should be used
with caution.

Finally, several limitations could be attributed to this analysis, in
particular related to in situ data collection and analysis of
radiometric data from unsupervised equipment. Non-ship
superstructure, uncertainties associated with instruments and
possible environmental conditions affect all measurements
collected in this manner and have been discussed in specifically
designed intercomparisons (e.g., Tilstone et al., 2020). In addition,
some variations could come from the processing approach, which
has been discussed extensively elsewhere (Groetsch et al., 2017).
Ideally, optical instruments should be collected in tandem to provide
closure, however, this is not always possible in the context of satellite
validation from opportunistic, unsupervised platforms, which, in
contrast, provide large amounts of data with the possibility to filter
them. Progress could be made in the direction of improving the
automatic orientation of the platform. In this way, data would be
collected in the best conditions.

5 Conclusion

The present study assessed the performance of the POLYMER
atmospheric correction processor for data from the Ocean and Land
Colour Instrument (OLCI) onboard Sentinel-3. The focus was on
the coastal regions of Plymouth Sound and the Western English
Channel, dynamic ecosystems characterised by a complex
geomorphology and influenced by tides. The validation activity
carried out used high spatial resolution hyperspectral Rrs in situ
data allowing convolution over the spectral response function of
OLCI to emulate satellite data. These in situ data were strictly filtered
and matched very closely to satellite data (to within 30 min and
300 m). The performance of POLYMER was evaluated by grouping
matchup datasets according to optical water types and varying
distance offshore.

The study demonstrated positive bias of the satellite Rrs

estimates in relation to the in situ measurements collated in these
relatively clear coastal waters, especially pronounced in nearshore
more turbid regions. Considering that the in situ data can also have
large uncertainties, and for the Near-Infrared (NIR) bands often
have negative reflectance, we cannot state that this bias corresponds

TABLE 4 Summary of atmospheric correction steps used in the present study compared to past research. BRDF = Bidirectional Reflectance Distribution
Function.

Reference POLYMER
version

Data flags BRDF correction

This study, 2024 v4.15 IDEPIX masking Correction using Park and
Ruddick (2005)

Alikas et al. (2020) v4.10 POLYMER internal masking: Bitmask None

Giannini et al. (2021) v4.9 POLYMER internal masking Correction using Park and
Ruddick (2005)

Mograne et al. (2019) v4.10 Negative back-scattering coefficient, out of bounds, exception, thick aerosol, high
air mass, and inconsistency flags

None

Vanhellemont and Ruddick
(2021)

v4.13 POLYMER internal masking: Bitmask, Case 2 waters flags, Inconsistency flags None
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purely to an error in the satellite measurement. Issues related to
aerosol correction by POLYMER have, however, been proposed as
well as potential errors related to the adjacency of land and the low
level of signal coming out of the water in nearshore regions.

Differences in the performance of POLYMER were observed
across optical water types. Notably, poorer performance was
observed in waters classified as OWT 6. Future sampling efforts
in field campaigns should target optically active constituents to
better characterise water types, specifically for OWT 6 and within
5 km of the shoreline to improve characterisation of uncertainties in
those areas and improvement of products usability. These should be
organised as close as possible to the satellite overpass to increase the
size of the matchup dataset whilst considering the regional
variability (tides, river flushing times, etc.) to limit spatial and
temporal mismatch.
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