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Validation of water reflectance using in situ data is essential to ensure the quality
of ocean colour satellite-derived products useful for water quality monitoring,
like turbidity and chlorophyll-a concentration. Since December 2021, the
HYPERNETS automated hyperspectral system has been collecting data in the
optically complex and highly turbid waters of the Río de la Plata, an ideal scenario
for testing atmospheric correction algorithms’ performance. The site, located
60 km south of Buenos Aires (Argentina), is described in relation to the water
reflectance spectral features and variability using high spatial resolution imagery
and amethodology is proposed to objectively select a sensor-specific location of
a reference pixel for satellite validation. Six months of data is used to evaluate
surface water reflectance operational products from multi-spectral systems like
Landsat 8&9/OLI (L89/OLI), Sentinel-2/MSI (S2/MSI) & Sentinel-3/OLCI (S3/
OLCI), and PlanetScope SuperDoves (PS/SD), and also non standard products
for Aqua/MODIS (Aqua/MODIS) and SNPP&JPSS1/VIIRS (SJ/VIIRS) missions.
Moreover, the standard surface water reflectance product from the
hyperspectral PRISMA mission could also be evaluated. The matchups show
general good results when in situ measurements are compared to L2 standard
products of high spatial resolution sensors that use land-based atmospheric
correction approach, if sun glint contamination is avoided. Low mean relative
percentage difference was found for S2/MSI (2.45%) and L89/OLI (−3.52%), but
higher for PS/SD (30.7%). In turn, S3/OLCI medium resolution also showed low
mean relative differences (2.31%), while SJ/VIIRS and Aqua/MODIS showed larger
and negative differences (−16.35 for SJ/VIIRS and −35.6% for Aqua/MODIS) which
showed a clear increase towards the shortest blue bands. The results show the
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great potential of the HYPERNETS automated system to provide high quality and
quantity of data for validation of satellite data at all visible and near infrared (VNIR,
400–900 nm) wavelengths in a multi-mission perspective.

KEYWORDS

ocean colour, satellite validation, hyperspectral reflectance, autonomous system, Río de la
Plata, turbid waters, LPAR

1 Introduction

Declining water quality of coastal and estuarine waters has
become a global issue of concern affecting human health,
ecosystems and the economic environment (IOCCG, 2018).
Given the increasing anthropogenic activities and water pollution
issues in populated coastal areas, there is a strong need to perform
integrated and regular water monitoring to improve the present
strategies concerning water treatment and management, as well as
governance. While traditional in situ water sampling and
measurements are expensive, both in cost and time, satellite
remote sensing technology has shown to be a cost-effective tool
for proving synoptic data for monitoring large scale and long-term
water quality (Mumby et al., 1999). Therefore, it is essential to
validate satellite-derived products, in particular water reflectance
(ρw), using in situ data to ensure the quality of derived parameters
useful for water quality monitoring, like turbidity and chlorophyll-a
concentration.

The Río de la Plata (RdP) estuary, located in the Southwestern
South Atlantic (~35°S), is the natural boundary limit between
Argentina and Uruguay where the respective capital cities of
Buenos Aires and Montevideo are located. The estuary and its
area of influence is of great social, economical and ecological
importance being the source of drinking water for millions of
people, a region for tourism, transportation, and fishing activities,
and the location of big harbours and industrial centers. It is a highly
active and human impacted area that receives the discharge of
domestic and industrial effluents as well as agro-chemicals that
drain from large areas of intensive agricultural production, leading
to an important increase in nutrient loading, showing symptoms of
eutrophication (Nagy et al., 2002; García-Alonso et al., 2019).
Moreover, cyanobacterial blooms have become a recurrent
phenomenon in the estuary, especially in the last 2 decades along
the northern Uruguayan coast (De León and Yunes, 2001; Aubriot
et al., 2020; Kruk et al., 2021), and also on the Argentine coast
(Sathicq et al., 2014; Dogliotti et al., 2021), although less frequent
and intense.

Therefore, water quality control and regular monitoring of
the trophic status of this estuarine system are very important
for which remote sensing is a powerful tool. However, due to
the optical complexity of RdP waters, i.e., high inorganic
suspended matter, they represent a challenging scenario for
both atmospheric correction and bio-optical algorithm
development.

The use of autonomous systems, like AERONET-OC, has shown
to be effective for increasing the number of validation match-ups
(Zibordi et al., 2009; Zibordi et al., 2020). However, the multispectral
nature of the instrument used in the AERONET-OC network,
prevents its use to validate hyperspectral missions and missions

with different spectral band configurations. Within the H2020/
HYPERNETS project, a new hyperspectral radiometer with a
pointing system and auxiliary sensors has been developed to
provide fine spectral resolution radiometric data in the visible
and near infrared (VNIR) region with high quality measurements
at lower cost. One of these autonomous hyperspectral systems has
been deployed for the first time in the turbid waters of Río de la Plata
estuary, close to the city of Buenos Aires, gathering high quality
radiometric information since December 2021. At the moment of
writing other five HYPERNETS systems have been deployed in a
wide variety of water types, i.e., in coastal waters with moderately
(Aqua Alta Oceanographic Tower in Italy) to more turbid
(Zeebrugge in Belgium) waters, in inland water bodies with clear
(Garda Lake in Italy) and turbid and productive (Etang de Berre in
France) waters, and in estuaries with turbid to highly turbid waters
like the Gironde estuary, in France, with similar optical
characteristics to the highly turbid waters in the Río de la Plata
estuary (LPAR site).

The objectives of the present paper are to introduce the
hyperspectral automated fixed station deployed in the turbid
waters of the Río de la Plata estuary in support for long-term
multi-mission satellite ocean colour validation, evaluate the
spatial variability of water reflectance around the site in order to
select the location of reference pixel to be used for satellite
validation, and to show its potential to provide high quality and
quantity of data by evaluating surface water reflectance operational
products from existing satellite missions operating in the visible and
near infrared (VNIR, 400–900 nm) spectral bands that are used for
aquatic applications.

2 Data and methods

2.1 HYPERNETS system andHYPSTAR
®
in situ

reflectance data

The HYPERNETS System, deployed at the LPAR site, is
comprised of an advanced hyperspectral VNIR spectrometer
with an embedded RGB imaging camera, a relative calibration
LED source, a pan-tilt mechanism that allows positioning and
pointing the radiometer in different directions, and auxiliary
sensors (pressure, humidity, temperature, rain, light, and
two external cameras). A detailed description of the system
and sensor can be found in Kuusk et al. (submitted to this
same Frontiers Research Topic). All the controlling,
positioning, and data transmitting parts of the system are
located in a water-proof main box and the whole system is
powered by a 12 V battery that is connected to a solar panel
and charge controler.
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The HYPSTAR® (HYperspectral Pointable System for
Terrestrial and Aquatic Radiometry) Standard Range
(HYPSTAR®-SR), developed within the European Union’s
H2020 HYPERNETS project, is a hyperspectral radiometer
system with radiance (Field Of View, FOV 2°) and irradiance
(FOV 180°) optical entrances that are optically multiplexed to
one VNIR spectrometer module that collects data between
380 and 1,020 nm with a FWHM of 3 nm (https://hypstar.eu/).
Since the same spectrometer is used for both radiance and irradiance
measurements, the three measurements needed to derive water
reflectance (ρw), i.e., the downwelling sky radiance (Ld),
upwelling radiance from the water (Lu) and downwelling
irradiance (Ed), are measured sequentially. The system is
programmed to collect data every 20 min between 09:00 to 17:
00 local time, and data is saved in a local device and automatically
transferred (3G) to a remote server where it is processed and quality
controlled using the HYPERNETS processor (https://github.com/
HYPERNETS/hypernets_processor, see Goyens et al., 2022
for details).

The standard water measurement sequence consists of
sequential measurements of Ed (three replicates), Ld (three
replicates), Lu (six replicates), and three more replicates of Ld
and Ed after the Lumeasurements. The zenith angles of the sea- and
sky-viewing radiance sensors are 40° and the relative azimuth angle
with respect to the sun is ±90° as in Zibordi et al. (2009). This
geometry is kept constant throughout the day thanks to the
automated pan/tilt mechanism that rotates the radiometer. Data
from a sequence that pass quality control are mean averaged, and if
sufficient replicates are available, i.e., at least 3 replicates of each
parameter, the water-leaving radiance reflectance (ρw) is
computed by:

ρw λ( ) � π
Lu λ( ) − ρFLd λ( )

Ed λ( )
Where ρF is the air-water interface reflectance factor that is

approximated as a function of the sun and viewing geometry and
wind speed (Mobley, 1999). Wind speed is derived from NCEP/
GDAS (National Centers for Environmental Prediction, National
Weather Service, NOAA, U.S. Department of Commerce, 2015)
when available or fixed to 2 m/s otherwise. As part of the
WATERHYPERNET network, an international prototype
network of sites running automated systems of pointable
hyperspectral radiometers with common data acquisition and
processing, a common quality control of the data is performed
(Goyens et al., 2022; De Vis et al.; Ruddick et al. submitted this
same Frontiers Research Topic) and further LPAR site-specific
quality control is applied in order to reduce perturbations from
the structure, e.g., avoiding certain viewing and illuminating
geometry, and removing variable ρw, i.e., with a coefficient of
variation (standard deviation to mean ratio) CV<10% in the VIS
400–900 nm. Further details the HYPSTAR® data processing are
available in Goyens et al. (2022), and De Vis et al., submitted this
same Frontiers Research Topic). The quality-controlled
hyperspectral water reflectance spectra have been convoluted to
the spectral response of the different multi-spectral sensors
analyzed in this study (Supplementary Figures S1, S2) and

smoothed using a moving average filter (15 window size) for
comparison with PRISMA data.

2.2 LPAR fixed station

The La Plata Argentine site (LPAR) is located 60 km south of
the city of Buenos Aires (Argentina) in the coastal waters of the
highly turbid of Río de la Plata middle estuary (Figure 1). The
fixed structure, that belongs to the “Escuela Naval Militar” (Naval
Academy), is located at the end of the 1.1 km long and 50 cm wide
jetty (34°49′04.8″ S, 57°53′45.3″ W), with a size of 5 × 5 m and a
height of ~8.5 m above water surface. Water flows freely under
the jetty, thus minimising impact of the jetty on the
hydrodynamics and ambient water colour. The HYPSTAR® is
located in the northwestern corner in the first level of this
platform. The LPAR site is located between a regional water
intake that distributes drinking water to 2.5 million people in the
Buenos Aires province and the active commercial harbour of La
Plata city, an area where intense phytoplankton
blooms (including toxic Cyanobacteria) have been recorded
frequently since 2020 (Dogliotti et al., 2021) presenting human
health risks and causing occasional problems for the water
intake site.

The Río de la Plata (RdP) is a large and shallow funnel shaped
estuary with high values of suspended particulate matter, ranging
from 100 to 300 g m−3 (Framiñan et la. 2006) and reaching 940 g m−3

in the maximum turbidity zone. The region is therefore an ideal site
to test atmospheric correction algorithm performance (Shi and
Wang et al., 2009; Gossn et al., 2019; Maciel et al., 2022). The
LPAR site is located in the southern limit of the middle estuary and
the average water depth is ~4 m.

In situ HYPSTAR® data at LPAR have been automatically
collected from 2021-12-16 until 2022-09-19, with some
downtime periods, and operating from 09:00 to 17:00 local time
every 20 min. Spectra collected during this period were quite
fluctuating depending on the month of the year, but spectral
shapes and magnitude are consistent with measured spectra
collected in this part of the estuary during previous campaigns
(Gossn et al., 2019; Dogliotti et al., 2021). Examples of monthly
mean spectra +/- 1 standard deviation collected in February and
July 2022 are shown in Figure 2. Data collected in July show typical
turbid waters water spectra features, i.e., highest ρw values in the
550–700 nm part of the spectra (0.10–0.14), a peak around 810 nm,
due to a local minimum of the water pure absorption, and
relatively high ρw values in the NIR (0.025–0.075). In turn,
spectra collected in February showed features more related to
moderately productive waters with indications of cyanobacteria
presence, i.e., a clear strong decrease in ρw around 675 nm (second
peak of chlorophyll-a absorption) and slight decrease in ρw around
620 nm (characteristic absorption peak of Phycocyanin, a typical
pigment found in cyanobacteria). Moreover, samples collected
during a field campaign on 2022-02-16 confirmed the presence
of high amount of phytoplankton cells, high chlorophyll-a
concentration (25 mg/m3) and the presence of cyanobacteria
cells (Dogliotti et al., 2023).
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2.3 Satellite data

With the aim of demonstrating the capability of HYPERNETS
system, different available optical VSWIR satellite missions, with
varying band sets and widths and spatial and temporal resolutions,
have been chosen. Satellite data acquired from 2021-12-16 to 2022-
09-19 covering the LPAR site were downloaded and compared to
HYPSTAR® L2 data. Given that the OBPG Level 2 standard

products fails in the turbid waters of RdP and pixels are
generally masked (Dogliotti et al., 2011), Level 1A MODIS and
VIIRS data have been downloaded and processed using alternative
atmospheric correction, i.e., the black pixel approach using the
SWIR bands (more details below). For the other sensors,
operational standard Level 2 images have been downloaded. All
the evaluated systems are summarized in Table 1 and
described below.

SuperDove (SD) satellites, third generation of PlanetScope
Earth-imaging constellation, are currently in orbit and produce
imagery with 8 spectral bands in the VNIR region at a ground
sampling distance at nadir of 3–6 m (Planet, 2022). Six of the SD
bands match and have similar relative spectral responses (RSRs) to
S2/MSI bands (Supplementary Figure S1). The absolute calibration
is performed using near-simultaneous SuperDove and S2/MSI
observations and validated with RadCalNet data (Collison et al.,
2022). Level-2 surface reflectance (ρs) orthorectified GeoTIFF files
with 3 m pixel size have been downloaded from the Planet Explorer
website (https://www.planet.com/explorer). Cloud free images
(CMO processor v4.1.4) over the LPAR site have been selected
during the deployment period.

Landsat 8 and 9 satellites, on orbit since 2013 and
2021 respectively, carry the Operational Land Imager (OLI) that
provides data at 9 spectral bands, eight of which at 30 m spatial
resolution and one panchromatic band at 15 m. Considering both
satellites together, the revisit time for data collection is every 8 days.
Level 2 Collection 2 images over the LPAR site (path row 225/084)

FIGURE 1
Location of the LPAR site next to La Plata harbor on the Sentinel-3A/OLCI (left) and Sentinel-2A/MSI images taken 2022-09-05 and photos of the
platform and HYPSTAR

®
sensor (right).

FIGURE 2
In situ HYPSTAR

®
L2 average spectra (bold lines) collected at

LPAR on February (green) and July (blue) 2022. The shadowed areas
delimit the +/-1 standard deviation respect to the average of all
available spectra for each month.

TABLE 1 Characteristics of the systems evaluated in the present study.

Platform/sensor Pixel Size (m) Spectral bands (400–1,000 nm) Revisit frequency (at equator) Launch

PlanetScope/SuperDove 3–6 8 Daily 2021onward

Landsat 8-9/OLI 30 5 8 days (2 sats) 2013/2021

Sentinel-2 A-B/MSI 10/20/60 9 (4/6/3) 5 days (2 sats) 2015/2017

Sentinel-3 A-B/OLCI 300 21 Daily (2 sats) 2016/2018

Aqua/MODIS 250/500/1,000 2/2/9 Daily 2000

SNPP-JPPS/VIIRS 750 7 Daily 2011/2017

PRISMA 30 66 On demand 2019
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have been downloaded from USGS EarthExplorer (http://
earthexplorer.usgs.gov/). Landsat 8/9 Level 2 science surface
reflectance (ρs) products are generated using the Land Surface
Reflectance Code (LaSRC) algorithm (Version 1.5.0).

Sentinel-2 A and B satellites, launched in 2015 and
2017 respectively, carry the MultiSpectral Imager (MSI) with
13 bands in the Visible to ShortWave InfraRed (VSWIR) part of
the spectrum with 4 bands at 10 m, 6 bands at 20 m and 3 bands at
60 m spatial resolution. The revisit frequency of each single
S2 satellite is 10 days and the combined constellation revisit is
5 days. Level 1C images over the LPAR site (tile 21HVA) have been
downloaded from the Sentinel Scientific Data Hub (https://scihub.
copernicus.eu/) and processed using Sen2Cor v2.11 atmospheric
correction (Louis et al., 2016) algorithm. The default configuration
was used giving the same as for the L2A “Core” Products processing
in Sentinel-2 Ground Segment with L2A processing baseline 04.00.
Surface reflectance (ρs) at all bands were resampled to 10 m
resolution using Sentinel Applications Platform (SNAP v9.0.0).

Sentinel-3 A and B satellites, launched in 2016 and
2018 respectively, carry the Ocean and Land Colour Instrument
(OLCI) with 21 bands in the VSWIR at 300 m spatial resolution.
Being an instrument designed for water applications, OLCI have
more and narrower bands (Supplementary Figures S1, S2) with
higher signal-to-noise ratio compared to land sensors. The two in-
orbit S3 satellites enable a short revisit time of less than 2 days for
OLCI at the equator. S3/OLCI Level 2-Water Full Resolution (L2-
WFR) images, processed by EUMETSAT with the Instrument
Processing Facility (IPF) IPF-OL-1-EO version 7.00
(EUMETSAT, 2021; Zibordi et al., 2022), were downloaded from
the Copernicus Online Data Access hosted by EUMETSAT (coda.
eumetsat.int). Data were available from the EUMETSAT Ocean
Colour baseline collection OL_L2M.003.

The Moderate Resolution Imaging Spectroradiometer
(MODIS), onboard of Terra and Aqua platforms launched in
1999 and 2002, has 36 spectral bands, with 19 bands in the
VSWIR range at 250 m (2 bands), 500 m (5 bands) and 1,000 m
(9 bands) spatial resolution. Only MODIS-Aqua imagery is here
evaluated given the difficulties in characterizing the MODIS
instrument on board of Terra satellite and its calibration history
(Franz et al., 2008). Level-1A images covering LPAR site in cloud-
free days were acquired from NASA ocean color website (https://
oceancolor.gsfc.nasa.gov) and processed to Level 2 at 1,000 m
resolution using SeaWiFS Data Analysis System (SeaDAS) ocssw/
l2gen processor version 8.1. The output product, the remote sensing
reflectance (Rrs in sr−1), is multiplied by π sr to obtain the water
reflectance (ρw). A two-band multiple scattering extrapolative
approach, similar to Gordon and Wang (1994), was used but
using two SWIR bands (Shi and Wang, 2009), i.e., the aerosol
signal was computed accounting for multiple scattering effects
and assuming black water in two specified bands in the SWIR
(GW94-SWIR). Given that four out of ten detectors for the Aqua/
MODIS SWIR2 band (1,640 nm) are inoperable and cannot be used,
the SWIR1 (1,240 nm) and SWIR3 (2,130 nm) bands are used
(SWIR13). Given the high reflectance of Río de la Plata waters,
the following l2gen configuration parameters have been modified
compared to the default processing. The bidirectional reflectance
distribution function correction (BDRF), based on the blue-to-green
ratio chlorophyll estimation, was disabled (brdf_opt = 0) given that

it generally degrades performance in turbid waters (Li et al., 2019).
The gaseous absorption correction was set to account for ozone,
carbon dioxide, nitrogen dioxide, and water vapor (gas_opt = 15).
Clouds were masked using the SWIR3 band using a threshold 0.
018 and pixels with high sun zenith angle (θs > 60°) and view zenith
angle (θv > 70°) were also masked. The high radiance (maskhilt = 0)
and straylight (maskstlight = 0) standard masks were switched off
since they usually erroneously mask turbid water pixels.

The Suomi National Polar-orbiting Partnership (Suomi-NPP)
and two Joint Polar Satellite System satellites (JPSS-1 and JPSS-2 or
NOAA-20 and NOAA-21), launched in 2011, 2017 and 2022, carry
the Visible Infrared Imaging Radiometer Suite (VIIRS) with
22 spectral bands that ranges from the blue (410 nm) to the long
wave infrared (12.5 μm). Five imaging (I) bands, covering the red,
near-, shortwave-, medium-, and long wave infrared, have a spatial
resolution of 375 m while the 16 moderate (M) resolution bands and
the day/night panchromatic band have 750 m spatial resolution.
VIIRS-JPPS/SNPP Level-1A cloud-free images covering LPAR site
were downloaded from NASA ocean color website (https://
oceancolor.gsfc.nasa.gov) and processed to Level 2 using SeaDAS
v8.1. The output product, the remote sensing reflectance (Rrs in sr

−1),
is multiplied by π sr to obtain the water reflectance (ρw). The same
atmospheric correction approach (WG94-SWIR) and l2gen
configuration parameters were applied, but given that VIIRS has
the three operating SWIR bands compared to MA, VIIRS data was
processed using three sets of SWIR band combinations, i.e.,
SWIR12, SWIR13, and SWIR23.

The hyperspectral PRISMA (PRecursore IperSpettrale della
Missione Applicativa) mission was launched by the Italian Space
Agency (ASI) in 2019. The hyperspectral camera takes images in a
continuum of spectral bands with 66 bands in the VNIR range
(400–1,010 nm) and 173 bands in the SWIR range (920–2,500 nm)
at 30 m spatial resolution. As acquisitions are taken by request, only
four cloud-free PRISMA images have been acquired during the
LPAR deployment period here analyzed. Level 2C images from the
PRISMA archive were downloaded from the ASI portal (https://
prisma.asi.it/). PRISMA Level 2 surface reflectance (ρs) product is
generated based onMODTRAN v6.0 and using a multi-dimensional
LUT approach. The processing uses a land-based atmospheric
correction where retrieval of aerosol optical thickness is based on
the Dense Dark Vegetation algorithm approach. A full description of
the algorithms is available in the PRISMA Algorithm Theoretical
Basis Document (ASI, 2021).

2.4 Match-up analysis

The comparison between in situ and satellite data (match-up)
has been performed by extracting a 3 × 3 pixel window centered at
the reference location for the LPAR site depending on the spatial
resolution of the system being evaluated. The location of the
reference pixel, as described later in Section 3.1, was selected by
evaluating the natural spatial variability of the water reflectance
around the platform using S2/MSI 2016-2022 time series at 10 m
spatial resolution imagery. If less than 50% of the pixels in the 3 ×
3 window were valid, i.e., less than 5 pixels out of 9, the matchup was
discarded, otherwise the mean and standard deviation were
calculated. Invalid pixels were determined by applying mission-
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specific recommended flags which varied with the sensor/processor
analyzed. Flags considered for each system are listed in Table 2. For
the L2 standard land products, which do not correct for sun glint but
have SWIR bands, pixels were masked if ρs(~1,600)>0.05. In order to
minimize the effect of outliers on the calculated mean value, pixels
beyond median ±1.5* standard deviation were excluded as in Bailley
and Werdell (2006). Finally, in order to evaluate spatial
homogeneity, the mean value of the valid pixels was used if the
median of the CV of ρw between 412 and 560 nm was less than 0.15
(Bailey and Werdell, 2006). The closest HYPSTAR® observation in
time with the satellite overpass, within 30 min, was selected and, if
bounding observations within a window of maximum 40 min were
available, observations were linearly interpolated to the satellite
overpass time and convolved to the relative spectral responses
(RSR) of the different sensors analyzed (Supplementary Figures
S1, S2). Vertical bars in the scatter plots corresponds to the standard
deviation of the 3 × 3 window, for satellite data, and the horizontal
bars, half the absolute difference between the bounding observations
for HYPSTAR® data. The time difference between in situ and
satellite overpass was always within 10 min.

2.5 Statistics

To describe the difference between satellite and in situ data,
regression analysis and a set of statistics were calculated. Linear
regressions between predicted (satellite) and observed (in situ)
water reflectance were performed using a reduced major axis
(RMA) type II regression analysis given that both satellite and in
situ measurements are subject to errors. Typical linear
regression statistics were obtained, i.e., slope, intercept, and
coefficient of determination R2. Considering N match-ups, the
differences between in situ (x) and satellite (y) data are
quantified by the mean relative percentage difference (RPD)
or bias, and the absolute percentage difference (APD), both
in percent

APD � 1
N

∑N
i�1

yi − xi

∣∣∣∣ ∣∣∣∣
xi

× 100

RPD � 1
N

∑N
i�1

yi − xi

xi
× 100

The root mean square difference (RMSD) is also computed,
which gives the uncertainty in the same units as the
evaluated variable.

RMSD �
��������������
1
N
∑N

i�1 yi − xi( )2√

3 Results

3.1 Selection of reference pixel location

The radiometer is located at the end of a slender (50 cm)
1.1 km long jetty. Given its relative closeness to land, it is
important to understand the natural horizontal variability of
the water reflectance around the deployment site in order to
evaluate its suitability to validate sensors with different spatial
resolutions. Therefore, an analysis is performed here considering
different satellite spatial resolutions in order to decide whether the
site exact location or a reference pixel is preferred and if the latter,
select the optimal location. To evaluate the spatial homogeneity of
the area, a 6 years time-series of Sentinel-2 (A & B) images
resampled to 10, 300, 700 and 1,000 m resolutions was used.
For each image, the reflectance value from the 10 m resolution
imaged at all bands have been extracted at the exact location of the
measurement site and used to calculate the relative percentage
difference between this value and each pixel of the same
image (Figure 3).

Similar daily maps have been calculated for the whole time series
comparing the original value at the site at 10 m resolution to the
pixels of the resampled images at the other spatial resolutions for the
same date (Figure 4).

It can be observed that lower relative differences are found for
shorter (e.g., 492 nm) compared to longer wavelengths (e.g.,
865 nm). To determine the region with lower spatial
variability, the frequency of pixels with APD lower than 15%
per band was calculated. Given that the NIR band showed the
highest variability, this band was used to define the reference
pixel (with its corresponding 3 × 3 window) to use for typical
spatial resolutions sensors. For the medium and lower
resolutions, i.e. 300, 700 and 1,000 m, the reference pixel was

TABLE 2 List of satellite/sensors, level-2 processor, and flags used for quality control of satellite data.

Satellite/Sensor Processor Flags

PS/SD CMO processor -

S2/MSI Sen2Cor Saturated_defective; dark_feature_shadow; cloud_shadow; unclassified; cloud_Midium/high_proba; thin_cirrus; snow_ice,
ρs(~1,600)>0.05

L89/OLI LaSRC ρs(~1,600)>0.05

S3/OLCI IPF-OL-2 INVALID, LAND, CLOUD and CLOUD_AMBIGUOUS

JS/VIIRS l2gen ATMFAIL, HIGHGLINT,NAVFAIL, LAND,HISATZEN, CLDICE,HISOLZEN

Aqua/MODIS l2gen ATMFAIL, HIGHGLINT,NAVFAIL, LAND,HISATZEN, CLDICE,HISOLZEN

PRISMA L2C v2.05 -
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selected within the region of lower variability (high frequency
of APD< 15%) and at a certain distance to the coast,
considering the satellite pixel size, in order to avoid
contamination (Figure 5).

In turn, for the higher spatial resolution sensors, i.e. 3 (PS),
10 (MSI) and 30 (OLI) m, the closest pixel to the platform to
the Northwest, considering also the 3 × 3 pixel window, is
selected in order to avoid contamination from the platform
structure (Figure 6). In this way the location of the reference
pixel to be used, depending on the resolution of the sensor
to evaluate, are shown in Figure 6 and listed in Table 3.
Statistics for the 492 nm and 865 nm bands are also
presented in Table 3.

3.2 Spectral consistency

Comparison of satellite and in situ ρw spectra for all the sensors
analyzed in this study are shown in Figure 7. In general, the average
spectral shape of all sensors were consistent with the in situ data,
however clear differences are obvious and varied for each sensor.
The average spectra of PS/SD tended to overestimate in situ data,
especially in the blue (400–500 nm) and NIR (800–900 nm) parts of
the spectra. In turn, L89/OLI and S2/MSI tended to overestimate in
situ data between 500 and 700 nm, while similar values (average)
and variability (standard deviation) were found in the blue and NIR
part of the spectra. The average ρw spectra of S3/OLCI was slightly
lower (higher) at wavelengths shorter (longer) than 600 nm. Both

FIGURE 3
Sentinel-2A/MSI RGB composite of ρw for LPAR site taken on 2020-02-28 (left) and relative percentage difference calculated at each pixel respect to
the value at LPAR site location for 492 nm (centre) and 865 nm (right) bands.

FIGURE 4
Sentinel-2A/MSI relative percentage difference maps taken on 2020-02-28 calculated at each pixel respect to the value at LPAR site location for
492 nm (top row) and 865 nm (bottom row) bands for resampled images at different spatial resolutions (columns).
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Aqua/MODIS and SJ/VIIRS sensors, processed using OCSSW/l2gen
and SWIR bands, systematically underestimated in situ ρw data. For
SJ/VIIRS, increased overestimation can be observed when
SWIR12 and SWIR13 bands are used compared to SWIR23. In
general, differences increased towards the shorter wavelengths,
retrieving negative ρw values in the blue bands, especially for

Aqua/MODIS. Finally, PRISMA also showed a systematic
underestimation of the in situ ρw throughout the spectra.

3.3 Matchups analysis

Comparisons between satellite-derived and HYPSTAR® in situ
water reflectance data for the six multispectral sensors (PS/SD, L89/
OLI, S2/MSI, S3/OLCI, JS/VIIRS, and Aqua/MODIS) considering all
bands together, are shown in Figure 8. A first evaluation of JS/VIIRS
atmospheric correction results comparing the three SWIR bands
combination showed that, even though a general underestimation at
all bands is evident for all configurations, differences between
satellite and in situ data were lower when the SWIR23 bands
were used (Figure 8 and Supplementary Figures S3, S4).
Therefore the analysis of JS/VIIRS matchups using only the
SWIR23 band combination are presented in the following results.
Given that comparisons with in situ measurements (plots and
statistics) for the same instrument on board of different satellites
are comparable, all data from each sensor regardless of the satellite
were analyzed and plotted together, i.e., OLI from Landsat-8/9, MSI
from S2A/B, and VIIRS from JPPS/SNPP. A breakdown per satellite
sensor statistics and scatterplots can be found in Supplementary
Figures S5–S12.

A high correlation for all bands together was found for all
sensors (R2 > 0.8), being higher (R2 > 0.9) for L89/OLI and S2/MSI
(Figure 8). The latter also showed the lowest average RPD (−3.52 and
2.45), APD (14.67 and 12.20) and RMSD (0.0124 and 0.0091) for
L89/OLI and S2/MSI respectively. In both cases, higher
underestimation is found at higher water reflectance
values (slope <1).

It is interesting to note that if images contaminated with sun
glint are not removed (using the ρs(~1,600)>0.05 criterion) and are
thus included in the analysis (grey symbols in Figures 8, 9 for S2/MSI
and L89/OLI), correlations decrease (R2 = 0.65 and 0.81) and all
statistics increase (Table 4). Moreover, higher overestimation
(RPD = 29.74% and 7.4%) and scatter (APD = 37.14% and

FIGURE 5
Frequency of APD values lower than 15% calculated using the
whole S2/MSI time series (left) and ρw at 865 nm for S3A/OLCI
(300 m), SNPP/VIIRS (750 m), and Aqua/MODIS (1,000 m) images
taken on 2022-09-05 (right). Location of the reference pixel
(black round symbol) and the corresponding 3 × 3 pixel window
(dashed black square) are indicated.

FIGURE 6
Frequency map of APD values lower than 15% where the location of the reference pixel and corresponding 3 × 3 pixel window are indicated for
different sensors: PS (grey), MSI (magenta), OLI (cyan), OLCI (white), VIIRS (blue), and MODIS (black). Detailed view of the LPAR site (right).
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24.11%) of the data is found for both S2/MSI and L89/OLI,
respectively when sun glinted images are not removed (Table 4).
The RMSD not only decrease for both sensors at all bands, but its
spectral shape changes from almost spectrally flat (when sun glinted
images are included) to a shape that resembles water reflectance
when contaminated images are excluded (Figure 9).

Results for PS/SD indicate lower correlation (R2 = 0.88) and on
average higher scatter (APD = 33.63%, RMSD = 0.0165) and
positive bias (RPD = 30.75%) tending in general to overestimate
in situ data especially at low reflectance values. For mid- and low-
spatial resolution sensors, i.e., S3/OLCI, JS/VIIRS, and Aqua/
MODIS, higher APD (20%–30%) and RMSD (0.014–0.025)
were found, with Aqua/MODIS showing higher scatter (APD =
36.30% and RMSD = 0.0259). Both JS/VIIRS and Aqua/MODIS
clearly tend to underestimate in situ values at all bands, even
retrieving negative values in the shorter bands. While S3/OLCI
showed better results, it also retrieved some negative values in the
blue, demonstrating clear problems of the atmospheric correction
in these turbid waters. PS/SD standard ρs products tend to
over(under) estimate in situ values at low(high) water
reflectance values (Supplementary Table S1). Given that only a
few PRISMA images were available for the period analyzed, only
the four match-ups spectra are shown in Figure 10. In general
water reflectances were underestimated over the whole spectra,
except for the image on 2022-08-25 which showed good
correspondence in the region between 550 and 710 nm and
overestimation below and above those wavelengths. In general,
the PRISMA spectra shape resembles that of the HYPSTAR
measurements, although some strange features can be observed,
i.e., there is an increase in water reflectance in the 400–420 nm part

of the spectra and there is a spike at ~760 nm that could be an
artifact due to the proximity to the region of atmospheric oxygen
absorption (Ruddick et al., 2023).

The spectral variation of the statistics is shown in Figure 11. In
general, for all multi-spectral sensors here analyzed, higher scatter
(APD = 20–90%) and worse fits (R2 < 0.5, Supplementary Table S1)
are found at the shorter bands (<550 nm), but while the average
relative difference is positive for S2 (RPD = 2–6%), and PS/SD
(RPD = 3–54%), it is negative for L89/OLI (RPD = −3/-10%), S3/
OLCI (RPD = −40/-10%), JS/VIIRS (−50/-10%), and Aqua/MODIS
(−25/-90%). The absolute relative differences also increases towards
the NIR (>700 nm), varying from 10% to 140%, with a general
overestimation of the in situ values for all sensors except for VIIRS
and MODIS which show a clear underestimation. Furthermore, JS/
VIIRS and Aqua/MODIS show a negative bias across the whole
spectrum, indicating a general overestimation of the atmospheric
path reflectance that increases from the near infrared to the shortest
blue bands with RPD, varying from −2.5% to −50% for JS/VIIRS and
from −18% to −90% for Aqua/MODIS (Figure 12). S2/MSI and L89/
OLI spectral RMSD resemble the shape of water reflectance spectra,
with higher values between 500 and 700 nm (0.014–0.017) and lower
in the shorter and longer wavelength (~0.007). A similar shape can
also be observed for S3/OLCI, but with higher RMSD at all bands,
and for JS/VIIRS but with higher RMSD at shorter wavelengths
(~0.015), while a general increase of RMSD with decreasing
wavelength is observed for Aqua/MODIS, evidencing an
imperfect correction of the atmospheric path reflectance. In turn,
PS/SD shows high RMSD towards both the shorter and longer
wavelengths reaching maxima of 0.022 and 0.025, respectively.
Results for PS/SD indicate on average low differences with

TABLE 3 Reference pixel location depending on the spatial resolution of the systems and statistics for 492 and 865 nm bands. medAPD: median absolute
percentage difference (%), medRPD: median relative percentage difference (%).

Resolution [m] Sensor Latitude [°] Longitude [°] Statistics 492 nm 865 nm

3 SD −34.817570 −57.896118

10/20 MSI −34.817493 −57.896960 medAPD 1.44 1.58

medRPD 0.05 0.12

RMSD 0.0014 0.0009

30 OLI/PRISMA −34.817356 −57.896229 medAPD 1.17 2.67

medRPD 0.51 0.60

RMSD 0.0018 0.0033

300 OLCI −34.814934 −57.895401 medAPD 2.85 7.14

medRPD 1.72 2.48

RMSD 0.0040 0.0058

700 VIIRS −34.809700 −57.893700 medAPD 4.75 12.47

medRPD 3.43 7.56

RMSD 0.0057 0.0087

1,000 MODIS −34.809700 −57.893700 medAPD 4.63 11.18

medRPD 2.80 6.14

RMSD 0.0051 0.0077
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HYPSTAR® observations for the five bands between 553 and
707 nm, with mean absolute relative differences (APD) 8.4%–

12%, while differences increases for the shorter bands
442–490 nm (APD = 25.7 and 54.2%) and the longest NIR band
(APD = 135.0%), showing in all cases a positive bias. Root mean
square differences are also lower for bands between 492 and 707 nm
(RMSD = 0.011–0.016) and higher scatter is found for the first
(444 nm) and the last (866 nm) bands (RMSD = 0.022 and 0.025).

4 Discussion

4.1 Spatial homogeneity

The quality of the match-ups at a test site will depend on how
representative is the point radiometric measurement at the site
compared to the satellite pixel of a given size. This will depend
the spatial homogeneity of the water and also on the proximity of the
site to land (possible mixed pixels or spatial straylight). Different
strategies/solutions to address this problem have been proposed, like

manually shifting the extraction window to avoid the influence of
the structure (Vanhellemont, 2019) or to extract a large pixel
window and discard the central pixels to minimize platform
contamination (Ilori et al., 2019). For more examples see Table 3
in Concha et al. (2021). In the present study a different and more
objective strategy is proposed. High spatial resolution imagery was
used to evaluate the spatial variability (homogeneity) and the
closeness to land at different length scales in order to select the
location of a reference pixel as a function of sensor spatial resolution.
Matchup statistics improved when extracting satellite information
using the reference pixel location compared to the exact location of
the radiometer (Supplementary Figure S13)

4.2 Water reflectance standard product
performance

For the eight band SuperDoves satellites, 54 matchups from
44 unique satellites have been obtained showing high consistency for
all 44 different satellites. Match-up results obtained in this study

FIGURE 7
Comparison of ρw spectra of satellite-derived (blue) and in situ HYPSTAR

®
data (red). Bold lines are the mean and the thin lines are the +/-1 standard

deviation respect to the average of all available spectra: PS/SD, L89/OLI, S2/MSI, S3/OLCI, Aqua/MODIS, PRISMA, and JS/VIIRS using SWIR12, SWIR13, and
SWIR23 configurations.
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were similar to the ones obtained for the turbid waters of the Belgian
Coastal Zone (Vanhellemont, 2023), i.e., low relative errors between
566 and 707 nm (APD = 8.4–12%) and larger relative differences
(APD = 25–134%) in the blue (444 nm) and NIR (866 nm) bands,
but reaching lower and higher values than in the BCZ, with APD =

15–20% and APD = 30–99.4%, respectively. The general
overestimation found in this study could be related, as suggested
in Vanhellemont (2023), to the use of ancillary (not from image)
aerosol optical thickness that could be biased low, especially for the
blue band, and due to not corrected sun glint.

FIGURE 8
Scatter plots of in situHYPSTAR versus satellite-derived water reflectance (ρw) for PS/SD, L89/OLI, S2/MSI, S3/OLCI, Aqua/MODIS, SJ/VIIRS. Statistics
are presented as the best-fitted SMA linear regression and associated determination coefficient, the RMSD, RPD, APD and the number of data (N) and
processed images (in brackets). For L89/OLI and S2/MSI, grey symbols correspond to discarded match-ups due to sun glinted images.

FIGURE 9
RMSD spectra for S2/MSI (left) and L89/OLI (right) for ρs matchups using all coincident images (grey) and masking sun glinted images (GM) (red).
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Even though L89/OLI and S2/MSI standard L2 products use
land remote sensing algorithms for the atmospheric correction,
they showed better results compared to the other systems and

considering all bands together (Figure 9). Similar results have
been found in other turbid waters. Kuhn et al. (2019) found that
L8 standard land surface reflectance product had the best
performance in the highly scattering (turbid) waters of the
Lower Amazon river, with median APD of 4%–17% and
RMSD 0.003–0.0157 across the spectrum and varying on the
tidal condition (high or low water) of the river. Li et al. (2023)
also showed good results for S2 images over turbid waters using
Sen2Cor. For turbid waters, aerosol reflectance contributes
relatively less to the top of atmosphere signal. A crude
aerosol correction can therefore be sufficient and is more
robust than typical extrapolative algorithms for aerosol
correction.

It is common that nadir-viewing sensors, like L89/OLI, S2/MSI
and PS/SD, are frequently affected by sun glint on the air water

TABLE 4 Validation statistics for OLI and MSI matchups considering all
possible matchups and only non-glinted images (GM: Glint Masked).

Statistics L89 L89-GM S2 S2-GM

R2 0.81 0.94 0.65 0.95

APD 24.11 14.67 37.14 12.20

RPD 7.40 −3.52 29.74 2.45

RMSD 0.0170 0.0124 0.0227 0.0091

N 80 65 225 171

FIGURE 10
In situ HYPSTAR ρw (black) and PRISMA standard Level-2 ρs (red) spectra.

FIGURE 11
Spectra of RMSD (left), RPD (centre) and APD (right) for the different satellite-sensors evaluated: PS/SD (grey), L89/OLI (red), S2/MSI (orange), S3/
OLCI (blue), Aqua/MODIS (green), JS/VIIRS (violet), and PRISMA (light blue).

Frontiers in Remote Sensing frontiersin.org12

Dogliotti et al. 10.3389/frsen.2024.1354662

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2024.1354662


interface (Vanhellemont, 2019; Lavigne et al., 2023). Given that
standard land approaches do not correct for this additional
contribution of scattered light to the satellite observed signal, in
this study a simple mask using a threshold on water reflectance in
the SWIR was applied for L89/OLI and S2/MSI imagery. Even if it is
not a correction, a simple masking greatly improved the statistics,
evidencing the importance of either correcting or avoiding sun glint
contaminated images. The same masking could not be performed to
PS/SD imagery because they lack SWIR bands. Glint removal
methods have been developed in alternative aquatic atmospheric
correction approaches (Harmel et al., 2018; Vanhellemont, 2019)
showing improved S2 and L8 retrievals (Vanhellemont, 2020; Maciel
et al., 2022), but solutions for sun glint correction of sensors without
SWIR bands are still needed (Lavigne et al., 2023).

Matchup results obtained here for MODIS and VIIRS sensors
are in agreement with previous comparisons made in the turbid
waters of Río de la Plata for both MODIS and VIIRS instruments
using the WG94-SWIR atmospheric correction (Dogliotti et al.,
2014; Gossn et al., 2021). Namely, retrievals tend to underestimate
water reflectance at all wavelengths with increasing differences and
scatter from the near infrared to the shortest blue bands, frequently
retrieving negative water reflectance, evidencing an overcorrection
of the reflectance in visible bands probably due to overestimation of
the aerosol component.

The spectral shape of PRISMA water reflectance resembled that
of the HYPSTAR® in situ measurements, but a general
underestimation was found for the whole spectra except at one
date. It has already been found that the PRISMA L2 standard
product has better performance in more turbid and productive
waters (like the Trasimeno Lake) compared to more clear waters
and slightly influenced by suspended particles, like the Venice
lagoon at Aqua Alta Oceanographic Tower (Braga et al., 2022).
Even though Trasimeno Lake and Río de la Plata have different
optical characteristics, similar statistics have been found considering
all bands together with high correlation (R2 = 0.82) and
scatter (APD~32%).

The current protocol used to process HYPSTAR data is based on
the standard protocol generally used to process above-water
measurements, i.e., it uses measurements of the upwelling
radiance from the water (Lu) and downwelling sky radiance
(Lsky) and an external source for wind speed data to estimate the
estimate the air-water interface reflectance factor using Cox–Munk
wave-slope statistics (Mobley, 1999). In the case of HYPERNETS,
wind is obtained either from NCEP/GDAS or fixed to 2 m/s, if the
former is not available (De Vis et al. submitted this same Frontiers
Research Topic). Even if a fixed wind speed might be more
appropriate to use at LPAR because waves will be fetch-limited,
using either modelled or fixed wind speed can lead to errors if they

FIGURE 12
Example of matchups between eight sensors (circles) and HYPSTAR in situ (open circles) reflectance data at ~555 nm on 2022-09-05 (centre). RGB
images from: S3A/OLCI at 12:59 UTC, PS/SD at 13:23UTC, L9/OLI 13:30 UTC, S2A/MSI 13:47 UTC, PRISMA 13:53 UTC, JPSS1/VIIRS 17:00 UTC, Aqua/
MODIS 17:40 UTC, SNPP/VIIRS 17:48 UTC. The coloured coded circles on the RGB composites show the reference location use for the matchup.
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defer from the actual wind speed at themoment of themeasurement. In
a recent revision of the AERONET-OC Lw uncertainties, Cazzaniga and
Zibordi (2023) found that the largest contribution to uncertainties was
the sea surface reflectance factor ρF which was mainly explained by the
uncertainties in wind speed estimation. Analyzing data from six
AERONET-OC sites they found median relative uncertainties
ranging from 3.2% to 4.3%. In turn, using HYPSTAR data from
Blankaart reservoir, Goyens and Ruddick (2023) calculated that
errors on ρw in the blue and NIR can reach up to 75% and 50%,
respectively, when wind speed is overestimated by 2 m/s in clear waters,
but reaching lowers errors in more turbid waters (up to 25%). This is
because the error on water reflectance due to errors in wind speed is an
absolute error, i.e., independent of water reflectance, and thus the
percentage error is inversely proportional to water reflectance. This is
encouraging considering that sediment-rich turbid waters are usually
found at LPAR site. However, further analysis on the error introduced
by using a fixed or modelled wind speed value is needed and will be
assessed when in situ wind speed will be available, a meteorological
station is planned to be deployed at LPAR site this year.

5 Conclusion

In this study, the first fixed automated hyperspectral system
deployed in South America is described and the natural spatial
variability of water reflectance around the site is characterized using
high spatial resolution imagery. A methodology is proposed to
objectively select a sensor-specific location of a reference pixel for
satellite validation.

The water reflectance data collected during the first six operating
months after deployment are used to evaluate the performance of
operational level-2 products of many optical VSWIR satellite
missions with different band sets and widths, from the
multispectral metre scale 8-band SuperDoves, the medium S3/
OLCI and low spatial resolution VIIRS and MODIS sensors, to
the hyperspectral PRISMA sensor. It is shown that in these highly
turbid waters, standard level-2 that uses land-based atmospheric
correction approaches work reasonable well provided that sun glint
contamination is avoided. The S2/MSI and L89/OLI high spatial
resolution sensors showed the best results with low absolute
percentage difference (APD~10%) and slight understimation in
the bands with the highest water reflectance, i.e., bands between
490 and 704 nm. PS/SD also showed low errors in this spectral
region (RPD <10%), but increased overestimation and absolute
relative difference in the shorter (blue) and longer (NIR) bands
(APD>100%). In general performance decreased for the shorter
wavebands for all systems, evidencing the need to improve the
atmospheric correction in these challenging turbid waters for these
approaches that relay on the extrapolation of the atmospheric path
reflectance from the longer to the shorter bands. Finally, the mid-to
low-spatial resolution VIIRS and MODIS imagery using the
assumption of black pixel in the SWIR, showed the worst
performance with a general underestimation of the reflectance
across the whole spectra, increasing the difference from the
longer (RPD ~ −20%) to the shorter wavelengths (RPD ~ −100%).

This work shows the power and the great potential of the
HYPERNETS hyperspectral automated system to provide, on a
routine basis, high quality and quantity of data for validation of

satellite data at all wavelengths in a multi-mission perspective,
fundamental in a context of massive and constantly growing Earth
observingmissions. As an example, in just 1 day level-2 products from
eight missions could be evaluated at the LPAR site (Figure 12). These
range from the typical “ocean colour” missions, like Aqua/MODIS
and S3/OLCI, to “land” missions, like S2/MSI and L89/OLI that are
used for coastal and inland waters applications, to the existing and
planned hyperspectral missions, like PRISMA, ENMAP and future
PACE, as well as geostationary GOCI and future GLIMR missions
that provide information at high temporal resolution. Moreover,
LPAR as well as other HYPERNETS sites are part the
WATERHYPERNET international network (Ruddick et al., 2022;
2024 submitted this same Frontiers Research Topic), which are
currently collecting data in very different optical water types in
different regions of the world thus generating invaluable
standardized radiometric data for satellite validation.
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