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A cost-effective solution with less human involvement must be developed for
medical waste (MW) transportation. A learning-based coordinated unmanned
aerial vehicle–unmanned ground vehicle (UAV–UGV) (CUU) framework,
currently unavoidable use, with a transfer learning algorithm is suggested. A
transfer learning algorithm is implemented for collision-free optimal path
planning. In the framework, mobile ground robots collect medical waste from
waste disposal centers through the pick-and-place technique. Then, networked
drones lift the collected medical waste and fly through a predefined optimal
trajectory. The framework considers the dynamic behavior of the environment
and explores the actions for picking, placing, and droppingmedical waste. A deep
reinforcement learningmechanism has been incorporated for each successful or
unsuccessful action by the framework to provide the rewards. With optimal
policies, the coordinated UAV and UGV change their actions in dynamic
conditions. An optimal cost of transportation of medical waste by the
proposed framework is created by considering the weight of MW packets as
the payload capacity of a CUU framework, the cost of steering the UAV and UGV,
and the time required to transport the MW. The effectiveness of the CUU
framework for MW transportation has been tested using MATLAB. The MW
transportation data have been encrypted using an encryption key for security
and authenticity.
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1 Introduction

In recent years, the amount of medical waste has increased due to increased
numbers of unmanned aerial vehicle healthcare centers. These centers produce a
large amount of medical waste. The congestion in cities creates problems in the
transportation of medical waste. Much medical waste is disposed of using ordinary and
contemporary methods, including incineration, steam sterilization, microwave, and
landfill disposal (Mishra et al., 2020). The medical wastes include hypodermic needles,
hypodermic needles with attached syringes, and needles with attached tubing, blades,
broken glass, acupuncture needles, and pipettes, some contaminated with
biohazardous or pharmaceutical material. These are generated from most patient
care and clinical support areas. The healthcare industry is increasing rapidly, so an
effective solution must be developed for the transportation of medical waste to the
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disposal centers with less human contact. Improved education
and standards must be defined for adequate medical waste
management (Windfeld and Brooks, 2015). Much planning
and logistics work must be done to manage medical waste
efficiently in hospital systems.

A peer-to-peer scheme could be created for hazardous medical
waste treatment to avoid illegal usage in medical waste treatment.
Inadequate management of medical waste in healthcare centers creates
health issues for employers of these centers and draws global attention.
Due to storage capacity limitations atmedical centers, collection services
should occur at regular intervals. A periodic and minimum route
scheme must be developed to collect medical waste from dispersed
hospitals. The major process of medical waste management is
segregation, labeling, and separation (Shareefdeen et al., 2022).

Medical waste management comprises the process of separation,
short-term storage, safe disposal, and transfer of medical waste.
Standards for medical waste management must be defined. The cost
that may be incurred in medical waste transportation should be
defined, and new schemes must be developed to minimize this cost
(Koçak et al., 2016).

A hybrid decision-making approach comprising interval 2-tuple
induced distance operators with similarity to the ideal solution
(TOPSIS) has been suggested to tackle the healthcare treatment.
A trash system equipped with a camera and quick response (QR)
code was created for medical waste management to address the
uncertainty and diversity noted in the assessment report (Lu et al.,
2016). In that study, artificial intelligence techniques were
implemented in the classification of medical wastes that have
different features. The molecular structure of the wastes was to
be analyzed with a spectrum analyzer.

Major problems associated with hazardous medical waste
management are inadequate and unstandardized supervision.
Current methods of detecting hidden dangers in hazardous waste
disposal are inefficient. Implementing fifth-generation (5G) wireless
communication technology and big data in the medical waste
treatment process is challenging. A platform comprising 5G
broadband wireless communication technology and a big data
approach is developed for an effective point-to-point (P2P) goods
information system (Wang and Nai, 2021).

Radio frequency identification (RFID) technology has been
implemented in medical waste management for item collection and
transmission without manual intervention. The RFID technology can
perform object recognition, multi-object recognition, and object
tracking [8]. Existing healthcare waste treatment methods are steam
sterilization, microwave, plasma pyrolysis, chemical disinfection, and
incineration (Liu et al., 2019). RFID can be used to detect lost medical
waste items and prevent illegal recycling and poor supervision. The
RFID technology can be used to establish a tracking and processing
system, incineration center subsystems, and effective supervision of
medical waste (Sun et al., 2019;Wang et al., 2021). The interaction rules
are designed for medical waste management. Blockchain-based
methods are suggested for medical waste disposal to create trust
among different stakeholders (Ahmad et al., 2021). Multi-criteria
decision-making methodology has been implemented. The
associated uncertainty present in multi-criterion decision-making is
tackled by the Pythagorean fuzzy sets.

The process of medical waste management comprises medical
waste generation from hospitals and testing centers, waste collection

at waste store rooms, waste transportation, waste segregation and
sorting, waste treatment, and waste disposal and recycling (Ahmad
et al., 2021). A blockchain-based process is implemented to trace the
medical equipment and corresponding medical waste. The main
stockholders in medical waste management are doctors, medical test
operators, patients, health workers, and waste collection,
transportation, and disposal companies.

A literature review revealed the limited use of drones in the transfer
of medical waste. A collection problem could be considered to obtain an
optimal trajectory. Manual collection of waste from collection points
may cause health problems for employees. A coordinated multi-drone
mobile robot framework could collect medical waste and transfer it to
disposal centers with minimum human intervention.

1.1 Research gap

Identifying research gaps is crucial for advancing knowledge in
any field. In the context of medical waste transportation, the
following potential research gaps could be explored:

• Efficiency and optimization: Explore methods to optimize
medical waste transportation routes to minimize costs and
reduce environmental impact. Consider factors such as fuel
efficiency, vehicle capacity utilization, and scheduling.

• Technological innovations: Investigate the integration of
emerging technologies (such as IoT, RFID, or GPS
tracking) to enhance the efficiency and tracking capabilities
of medical waste transportation. Evaluate how these
technologies can improve real-time monitoring, route
planning, and overall logistics.

The article is organized as follows: Section 1 provides the
introduction. Section 2 discusses the occupational and
transportation risks in medical waste transportation. Section 3
overviews a coordinated unmanned aerial vehicle (UAV) and
unmanned ground vehicle (UGV) framework, and Section 4
discusses the application of a UAV and UGV framework in
medical waste transportation. Section 5 discusses secure medical
waste data. Section 6 includes problem formulation with a proposed
currently unavoidable use (CUU) framework for medical waste
transportation. Section 7 suggests a transfer learning mechanism
for MW transportation. Section 8 includes the reinforcement
learning mechanism for the framework. Simulation and
discussions are covered in Section 9. Section 10 provided the
conclusion.

2 Occupational and transportation risks
in medical waste

In the context of medical waste management, occupational risk
and transportation risk take on specific considerations due to the
unique nature of medical waste. Medical waste includes materials
generated in healthcare facilities that may threaten human health
and the environment if not handled properly. The following sections
discuss how occupational and transportation risks relate to
medical waste.
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2.1 Occupational risks in medical waste
management

2.1.1 Exposure to infectious agents
Exposure to infectious agents: Healthcare workers involved in

the collection, handling, and disposal of medical waste are at risk of
exposure to infectious agents, such as bacteria, viruses, and
other pathogens.

2.1.2 Needlestick injuries
Improper disposal of sharps, such as needles and syringes, can

lead to needlestick injuries, posing a risk of infection and other
health issues.

2.1.3 Chemical exposure
Some medical waste may contain hazardous chemicals or

pharmaceuticals, exposing workers to potential health hazards if
not managed properly.

2.1.4 Heavy lifting and ergonomic hazards
Workers involved in lifting and moving heavy containers of

medical waste may face ergonomic risks, leading to musculoskeletal
issues. Occupational safety measures in medical waste management
include the use of personal protective equipment (PPE), proper
training, safe handling protocols, and the implementation of
engineering controls to minimize exposure.

2.2 Transportation risks in medical waste
management

2.2.1 Accidental spills and leaks
During transportation, medical waste containers may be at risk

of spills or leaks, especially if not securely sealed. This can lead to
contamination and exposure risks for transport personnel and the
general public.

2.2.2 Inadequate packaging
Improperly packaging medical waste during transportation can

lead to breakage, spillage, or damage to containers, increasing the
risk of exposure to infectious agents.

2.2.3 Traffic accidents
Transportation accidents can result in the release of medical

waste into the environment, creating potential hazards for first
responders and others involved in the cleanup.

2.2.4 Regulatory compliance
Failure to comply with transportation regulations for medical

waste can lead to legal consequences and increased risks.
Transportation safety measures involve proper packaging,
labeling, and securing of medical waste during transit.
Compliance with transportation regulations, including those
related to hazardous materials, is crucial to mitigating risks.

2.2.5 Integrated approach
Medical facilities and waste management companies must adopt

an integrated approach to occupational safety and transportation

risk management. Comprehensive training programs for healthcare
workers and transport personnel are essential to ensure awareness of
risks and proper handling procedures. Regular inspections,

FIGURE 1
Challenges associated with the transportation of medical waste.

FIGURE 2
Risks minimization with the CUU framework.
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maintenance of transport vehicles, and adherence to relevant
regulations contribute to minimizing risks associated with the
transportation of medical waste. By addressing both occupational
and transportation risks in medical waste management,
organizations can promote the safety of their workers, protect
public health, and prevent environmental contamination.

3 Coordinated UAV and UGV
framework: an overview

Coordination between unmanned aerial vehicles (UAVs) and
unmanned ground vehicles (UGVs) is essential for the successful
implementation of various applications, ranging from surveillance
and reconnaissance to disaster response and agriculture. Key aspects
of UAV–UGV coordination are discussed in the sections that follow.

3.1 Inter vehicle communication

UAVs and UGVs must be equipped with communication
systems to exchange real-time information. This can include data
on the environment, mission status, and obstacles.

3.2 Command and control

A robust command and control (C2) system enables seamless
communication between the UAV operator, the UGV operator, and
the vehicles themselves. This facilitates coordination in mission
planning and execution.

3.3 Collaborative mission planning

3.3.1 Shared objectives
UAVs and UGVs must have shared mission objectives.

Collaborative planning involves defining roles, tasks, and
responsibilities for each vehicle based on its capabilities.

3.3.2 Adaptive planning
Adapting the mission plan in response to changing

conditions or unexpected events is crucial. Both vehicles
should be capable of receiving and executing updated
mission parameters.

3.4 Sensing and perception

3.4.1 Sensor fusion
Combining data from various sensors on both UAVs and UGVs

enhances the overall perception of the environment. This can
include visual cameras, lidar, radar, and other sensors.

3.4.2 Obstacle avoidance
Vehicles should be equipped with obstacle detection and

avoidance systems to navigate through complex environments
without collisions.

3.5 Localization and mapping

3.5.1 Shared maps
UAVs and UGVs should share a common map of the

environment. This allows each vehicle to understand the other’s
position, helping in collaborative decision-making.

3.5.2 Simultaneous localization and mapping
Advanced localization techniques, such as simultaneous

localization and mapping (SLAM), enable the vehicles to map
their surroundings in real time and localize themselves within
the shared map.

3.5.3 Swarm intelligence
Coordination can benefit from principles of swarm intelligence,

where multiple vehicles work together in a decentralized manner.
This enables flexibility, scalability, and resilience in dynamic
environments.

3.5.4 Dynamic formation control
UAVs and UGVs can coordinate their movements to maintain a

specific formation, adapting to changes in the environment or
mission requirements.

3.6 Data fusion and sharing

3.6.1 Data integration
Combining data collected by both UAVs and UGVs enhances

overall situational awareness. Integrated data can be valuable for
decision-making.

3.6.2 Real-time data sharing
Establishing a reliable data sharing mechanism ensures that

information collected by one vehicle is quickly transmitted to others,
facilitating coordinated response.

FIGURE 3
CUU framework for medical waste transportation.
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3.6.3 Redundancy and fault tolerance
3.6.3.1 Redundant systems

To enhance reliability, both UAVs and UGVs should have
redundant systems. In case of a failure in one vehicle, the others
can compensate and continue the mission.

3.6.4 Fault tolerance
The coordination system should be designed to handle faults

gracefully, allowing the vehicles to adapt and continue
functioning even in the presence of failures. Effective
UAV–UGV coordination enhances the capabilities of
autonomous systems, making them more versatile and
adaptable to a variety of applications. This coordination is
particularly valuable in scenarios where a combination of
aerial and ground-based perspectives is required for
comprehensive information gathering and mission execution.

4 UAV and UGV in medical waste
transportation

Within a healthcare facility, regulated storing and transporting of
medical waste strategies must be created. Safe transport and storage
facilities ensure health and environmental safety. The medical waste
disposal containers are classified based on color: red for biohazardous or
sharp waste, yellow for chemotherapy waste and soiled and
contaminated linen, black for Resource Conservation and Recovery
Act (RCRA)-regulated waste, and blue for non-RCRA-regulated waste.
Challenges accompany the handling of medical waste because it has
impacts on the environment and risks to public health. Figure 1 shows
some of these challenges and impacts.

Drones are revolutionizing medical waste transportation. A
coordinated robot drone framework minimizes the transportation
and occupational risks concerning the temporary storage of
hazardous wastes at the medical centers, as shown in Figure 2. The
framework minimizes the risks associated with the transportation of
potentially dangerous microorganisms. The framework collects and
transports infectious waste from scattered collection points to
disposal centers.

The flying operating time of drones is restricted by payloadweight
and battery capacity. Turbulence is also a hindrance. The latency-
guaranteed multi-hop wireless communication system is considered
for the flight of a dronemoving from the line of sight (LOS) to beyond
the line of sight (BLOS) with an obstacle avoidance facility. The
obstacles may be trees, buildings, small hills, etc. The drone control
mechanism comprises a multi-hop link or direct link to obtain the
adaptive flying route (Kagawa et al., 2017).

5 Secure medical waste data

Efficient MW management must be developed to avoid
dangerous microorganisms that affect public health and the
environment. During the treatment and disposal of medical
waste, pathogens, and toxins are released. It is mandatory to
develop an optimal logistical solution for medical waste
transportation to minimize contact with operators and health
workers. Relevant data include optimal and secure MW
transportation solution suggests the MW data structure as weight
of the waste, the time of waste pickup, sensor state data, and
order status.

Rqmw: Medical waste shipment request.
Tp: Waste pickup time.
Td: Waste disposal time.
Wmw: Weight of the waste.
Idmw: ID of medical waste (created with Secure Hash Algorithm

(SHA)-256).
Aumw: Medical waste authorization.
Omw: Location of medical waste.
Qk = { Rqk,mw, Tk,p, Tk,d, Wk,mw, Idk,mw, Auk,mw, Ok,mw}.

5.1 Hash key with SHA-256

In the context of hash functions, a “hash key” usually refers to
the input (or key) provided to a hash function to generate a hash

FIGURE 4
Predicted nodes of the drone’s route from the transit point to the
disposal center.

FIGURE 5
Predicted velocity (km/hr) of the mobile robot.
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value. A hash function takes an input (or key) and produces a fixed-
size string of characters, which is typically a hash code. SHA-256-bit
is a cryptographic hash function that belongs to the SHA-2 family of
hash functions. It produces a fixed-size output of 256 bits (32 bytes)
and is commonly used for various security applications
and protocols.

5.2 Proposed MW shipment process

A medical waste shipment process with the following steps has
been suggested:

Input: Medical waste data
Create: Medical waste shipment request
Set: Rqmw = 1

Load: Pick up MW packet by CUU framework
Time: Generate the timestamp of MW pickup
Carry: Ship the MW packet to a disposal center
Time: Generate the timestamp of MW disposal
Set: Aumw = 1 after authorization
Encrypt: Do encrypt Qk with a secure key
Output: Encrypted Qk.

6 Proposed CUU framework for
medical waste transportation

After it is collected from health centers, medical waste must be
transported to the transit points. From transit points, the CUU
framework comprising UGVs and multiple UAVs collects the
medical wastes and transports them to the disposal centers
Figure 3. The whole “seek” area is divided into subareas. Each
subarea is assigned to a different drone. The flight time of each drone
is estimated according to the charging of the battery. The control
center acquires the drones’ real-time data, such as battery
information, coordinates, and sensor data. The seek area is
divided into the n unit cube parts with 1-m dimension. The
WiFi communication zone comprises (n2 + 1) parts that are
within the control range (Celtek et al., 2018).

6.1 Problem formulation

An appropriate framework must be designed for the robot drone
MW transportation system. One such framework is shown in
Figure 3. Generally, drones have limited hovering time because of
the battery capacity. The costs associated with the total distances are
minimized. In this framework, a MW robot drone accomplishes the
assigned tasks of MW transportation. The coordinated UGV–UAV
MW transport problem is formulated as shown below:

minZf � amrTmr + adrTdr( ) + CdrW
dr
mw + CmrW

mr
mw( )

+ aLLugv + aHHuav( ), (1)

where Tmr and Tdr are the time of transportation of medical waste
taken by a mobile robot and a drone, respectively. Cmr and Cdr are
the cost per unit weight incurred in transportation of medical waste
by a mobile robot and a drone, respectively. amr, adr, aL, and aH are
the scaling factors. The Wmr

mw andWdr
mw are weights of the medical

waste that are being carried by a mobile robot and a drone,
respectively. The maximum waste transportation capacities of a
mobile ground robot and an independent drone are
Wmr,max

mw Wtr,max
mw and Wdr,max

mw , respectively. Lugv and Huav are the
costs of UGV steering and UAV steering, respectively, and these are
defined in the subsequent section.

Let dcmw = {O1,mw, O2,mw, , Om,mw } represent the set of all
medical waste disposal centers and all the nodes in the network,
where Ok,mw � xp

k , y
p
k , z

p
k{ }, and xp

k , y
p
k , z

p
k are the distances of

medical waste disposal centers k from the transit point p. ltr =
{ ltr.1,. . . ltr. p } be the set of transit points (TPs) that are to be visited
by a truck for medical waste collection and disposal. Let Wmr

mw �
{ Wmr

mw,1 Wmr
mw,2, . . . . Wmr

mw,m } be the weight of MW packets,
where Wmr

mw,1 represents the weight of the first MW packet to be

FIGURE 6
Predicted velocity (km/hr) of the drone.

FIGURE 7
Rewards of the proposed coordinated framework of the robot
and drone.
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carried by a drone. The speed of the mobile robot and the
independent drone are denoted as vmr and vdr, respectively
(Celtek et al., 2018).

According to battery capacity (state of charge, SoC) and payload
capacityW) of the independent drone, the predicted route of UAV is
denoted as Rdr(SoC,Wmw), and the predicted route of UGV is
denoted as Rmr(SoC,Wmw).

The predicted routes of the mobile robot and the drone comprise
the set of nodes and are defined as shown below:

Rdr � ∑n
i�1

da
i+1 − da

i

∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣, i � ∈ Rn, (2)

Rmr � ∑n
i�1

dg
i+1 − dg

i

∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣, i � ∈ Rn, (3)

where Rn is the set of the cube in the travel space of the CUU
framework; di+1 and di are the centers of the cube i + 1 and cube i
in the ground space and the flying airspace of the CUU
framework, respectively. Thus, the total route length of the
MW transportation is Rmw = {Rmr + Rdr}. The times taken by

the mobile robot (Tmr) and drone (Tdr) in medical waste
transportation are shown below:

Tdr � Rdr

vdr
, (4)

Tmr � Rmr

vmr
, (5)

where vdr is the average velocity of drone and vmr is the average
velocity of a mobile robot (Wang et al., 2019).

6.2 Proposed learning-based coordinated
UAV and UGV framework

Drone path planning considers the zones at different altitudes
with a total n number of waypoints dai � (da1 , da2 , dan), and dgi �
(dg1 , dg2 , dgn ) is the set of nodes to be traveled by UGV. Each waypoint
and node is defined by the 3D coordinates di = (xi, yi, zi), i = 1 . . . , n.
An objective is to decide route lengths Rmr Rdr comprising a starting
point, different nodes/waypoints, and a termination point. The

TABLE 1 Comparative study on UAV–UGV coordination algorithms.

Sr. no. Algorithm Limitation

1 Memetic algorithm (Ding et al., 2022) 1. Parameter sensitivity 2.Computational complexity

3. Convergence to local optima

4. Empirical tuning required

5. Limited scalability to high-dimensional problems

2 A two-stage traveling salesman (Wang et al., 2020) 1. Increased computational requirements

2. Increased computational requirements

3. Dependence on the division into stages

3 Backstepping control (Ha and Lee, 2013) 1. Complexity in stabilizing the system

2. Sensitivity to model uncertainties

3. Lack of robustness

4 Event-triggered mechanism (Wang, 2021) Only considers the supervision and intervention behavior of the UAV to the UGV

5 Symbiotic aerial vehicle-ground vehicle team (Arbanas and Antun, 2018) UGV is unable to provide an optimal route for the UAV

6 Unmanned aerial and ground vehicle teams (Waslander et al., 2013) Unable to obtain optimal operating ranges and payload capabilities

7 Taxonomy for UAV and UGV coordination (Chen et al., 2016) No specific application-oriented UAV–UGV framework design

TABLE 2 Features of learning-based UGV–UAV coordination algorithm.

Sr. no. Algorithm Advantage

1 Learning-based UGV–UAV coordination 1. Simple to implement in medical waste transportation

2. Implements a minimum spanning tree for the optimal route

3. Multi-logit regression with consideration of the state of charge of the UAV–UGV and medical waste weight

4. Rewards with reinforcement learning for optimal path planning

5. Tasks are encrypted
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following criteria are considered in path planning. Let another
variable hi be defined to represent both dai and dgi .

6.2.1 UGV steering
The cost of steering is defined according to the number of nodes

of the path, as the more nodes, the higher the cost of steering. The
cost of steering is defined as shown below:

Lugv � 1
hs, hT| | ∑

n

i�1
hi, hi+1| |, (6)

where hs and hT are starting and terminating waypoints.

6.2.2 UAV steering
The cost of UAV steering depends on the altitude of the path.

The cost will be higher if the altitude of the path is higher. At lower
altitudes, the drone may fly with improved efficiency. The cost of
UAV steering is defined as follows:

Huav � 1
zmax − zmin| | ∑

n

i�1
| zm hi, hi+1( ) − zmin( )|, (7)

where zm (hi, hi+1) is the mean flying height at segments (hi, hi+1).
zmax and zmin are maximum and minimum altitudes, respectively.
The following algorithm has been proposed for the coordinated
steering of UAV and UGV. The weight of an edge between two
waypoints is determined by Zf, as shown in Equation (6.1).

Coordinated UAV and UGV steering algorithm is
mentioned below.

Input: A weighted undirected graph G = (V, E, v)
create 3D coordinates h � h1, h2, _hn i � 1 . . . , n, in the
steer (hi+1, hi)
hi+1 ← steerUAVandUGV (hi+1, hi)
Sort the edges between two waypoints in E in decreasing order
by weight and check mapping (hi+1)
if path (hi+1, hi) is obstacle free
Check if Zf decreases and r(t) increases
Return True (hi+1)
Output: A minimum spanning tree for the UGV–UAV route
end

7 Proposed transfer learning
mechanism for MW transportation
with CUU

7.1 Bayes model

The Bayesian linear regression learning model implements the
adaptive approach to enhance the performance of the predictive
model with new data available along with available posterior data.
The Bayesian learning model is described as follows:

πi � eβixi

1 + e∑n

i�0βixi( ), (8)

where xi = [SoCi, Wmw,i].
The likelihood function of Y � (h1, h2,......., hn)T can

be obtained:

f Y | β( ) � ∏N
i�1

πi

� ∏N
i�1

e∑n

i�1βixi

1 + e∑n

i�1βixi( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

yi

1 − e∑n

i�1βixi

1 + e∑n

i�iβixi( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

yi⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (9)

As per the Bayesian theorem, the posterior distribution of the data
can be obtained with the following. The predictive model of
successful and unsuccessful delivery by drone incorporates the
Bayesian inference, which is updated to improve its accuracy.
The predictive model considers the new data Y1 and the previous
data set Y2. The posterior distribution on model parameter β

depending on data Y1 and data Y2 is formulated with the
Bayesian theorem and given below (Xing et al., 2021):

ln
πoptimal

πnonoptimal
( ) � β0 + β1SoC + β2Wmw. (10)

7.2 Multinomial logistic regression

The multinomial logistic regression represents the logistic
regression extension of the class of many systems. The
multinomial logistic regression model is developed based on the
available data, and this can be used for the predictions based on
previous data. The hyperparameter of the multinomial logistic
regression must be tuned. The multinomial logit model is defined
in terms of original probability πi. The multinomial logit model
algorithm for the probabilistic optimal cost of MW transportation is
defined below:

Multinomial logit model algorithm:
Initialization: medical waste data
Generate data of transportation costs CT = {Cmr, Cdr}, and route
of transportation RT = { Rmr: Rdr} and
Given multi-logit (Yk|β) obtained for a past class of MW
Let (Ŷ) for the new class of MW
Define prior (β̂ ) for a new class of Ŷ
Procedure PARTITION (Zf, Y) → partition of the data set into
training and testing
Update the model using the training data set
Compute Zf
Compute the maximum likelihood of Y as f(Y|β̂ ) for Zf
Obtain posterior distribution as f(β̂ |Y) � f(Y|β̂)
Randomly generate n samples from f(β̂ |Y)
Update β̂ with the mean of n samples
Procedure EVALUATION Evaluating performance using the
testing data set
Make a prediction Ŷ � Multi Logit(Y|β̂ )

8 Reinforcement learning process of
the framework

Let S and A represent a discrete set of environment states and a
set of actions, respectively. In every state s ∈ S, a framework of multi-
drone mobile robots takes feasible actions a ∈ A over the finite
learning horizon. The framework transits to the next state s1 ∈ S, and
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the framework receives an immediate reward for performing the
desired action. However, the framework is penalized for each
undesired action leading to a collision. The goal of the
framework is to maximize its total reward. It does this by
learning which action is optimal for each state. With available
information of < s, a, s′, rt > , the Q-learning process is updated
according to the following equation:

Q st, at( ) ← Q st, at( )

+ αt st, at( ) × rt+1 + γmax
at+1

Q st+1, at+1( ) − Q st, at( )[ ], (11)

where αt(st, at) (0< α≤ 1) is the learning rate and Rt+1 is the
reward observed after performing at in st. The learning rate may
be the same for all pairs, and the discount factor γ is such that 0 ≤ γ <
1. The Bellman equation that describes the optimal action-value
function Q*(s, a) is given below:

Q* s, a( ) � E
s′~P

r s, a( ) + γmax
a′

Q* s′, a′( )[ ] , (12)

where s′ ~ P represents the next state, which is sampled from a
distribution P (.|s, a). This Bellman function starts the learning
approach of approximately Q*(s, a). The set (s, a, r, s′, d) ∈ D
represents the transitions, and d tells about the terminal of s′. To
keep QΦ(s, a)

close to the Bellman equation, a mean square Bellman error
(MSBE) is defined below:

L Φ, D( ) � E
s,a,r,s′,d( )~D QΦ s, a( ) − r + γ 1 − d( )max

a′
QΦ s′, a′( )( )2[ ],

(13)
where d equals 1 if s′ is terminal; else, it is 0. In the target networks,
the target term is defined below:

r + γ 1 − d( )max
a′

QΦ s′, a′( ). (14)

By minimizing the MSBE loss, it is possible to track this target by
QΦ(s, a). An optimal action a* can be obtained by solving the
following equation:

a* � argmax
a

Q* s, a( ) , (15)

where a � [vmr, vdr]T. The reward function for the optimal
trajectory of the drone is as follows:

rdr t( ) � ηd ×
Rp
dr t( ) − Rdr t( )���� ����

Rp
dr t( )���� ���� , (16)

where Rp
dr(t), Rdr(t) is the predicted optimal and actual route length

of the drone, and ηP is the binary scaling factor.

rmr t( ) � ηm ×
Rp
mr t( ) − Rmr t( )���� ����

Rp
mr t( )���� ���� , (17)

where Rp
mr(t), Rmr(t) is the predicted optimal and actual route length

of the mobile robot, and ηm is the binary scaling factor.The total
reward function is defined below:

r t( ) � rmr t( ) + rdr t( ). (18)

Collecting medical waste manually may cause health problems for
the employees of the medical centers. A coordinated multi-drone
mobile robot framework can collect medical waste and transfer it to
disposal centers with minimum human intervention.

9 Simulations and case study

A hospital located in Bareilly, India, is considered for a medical
waste transportation study. Currently, medical waste is transported
in trucks. This system could expose the people involved in MW
transportation to risks. In some situations, unauthorized
transportation may occur. The drone possesses a camera and an
inertial measurement unit (IMU) to create reference elevation
movement, and the robot generates a probabilistic network of
paths. The ground robot and aerial drone work collectively to
create the multi-level platform. The real-time appearance-based
mapping technique is used to localize the robot and map the
environment. The IMU estimates the attitude using multinomial
logistic regression. Both visual and inertial data are combined to
produce odometry estimates. The ground robot with four mecanum
wheels is a custom-designed platform. The UAV creates a 3D map
with a ground path and altitude information using the IMU and a
camera. The ground robot follows the tracks within the 3D map of
the environment generated by the UAV. Synergistically, the robot
drone platform is equipped with sensors such as a PIR sensor,
infrared camera, and Intel RealSense D435 with IMU. The ground
robot moves on predefined paths to slow, stop, or reroute its path for
collection of medical waste. The UAV is controlled in tandem to
collect the packet of medical waste and then steer away for
transportation of the packet to the MW disposal centers.

The types of medical waste are classified and represented by
colors (red, yellow, blue, and black). The considered medical wastes
comprises 110 gauze (~ 0.02kg), 120 gloves(~ 0.002 − 0.007 kg),
140 infusion bags (~ 0.5 − 1 kg), 135 infusion bottles (~ 3 − 5 kg),
132 infusion apparatus(~ 0.001 − 0.004 kg), 125 syringe needles
(~ 0.02 − 0.004 kg), 132 tweezers (~ 0.015 − 0.020 kg), and
128 syringe (~0.002–0.004 kg). The mobile robot helps to form
the MW packets with weightsWmr

mw ≤Wmr, max
mw andWtr

mw ≤Wtr,max
mw .

Python programming has been used to encrypt medical waste
packets. Hash keys for these packets have been obtained and are
mentioned below.

Medical waste packet 1

Color: Red

Rq1,mw = Available

Id1,mw = hash key

acd6ae0c2dc3db2b0692

3cb1567c567add1a0d9d7ae4cabf2427b35ac0d5b4ff

T1,mw = timestamp (2023-02-03 15:45:35.490013)

W1,mw = 2 kg

Au1,mw = Authorized

O1,mw = medical disposal center 1 2, 0, 0{ }km
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In a similar fashion, the next subsequent encrypted MW packet
data are obtained. Let maximums of Tmr and Tdr be taken as 10 min
and 25 min. The maximum velocities of the robot and drone are
chosen as 5 km/h and 80 km/h, respectively. The various maximum
values of transportation costs are taken as Cmr = 5 Rs/kg, Cdr = 50 Rs/
kg, and Cdr = 40 Rs/kg. One hundred (100) samples of MW data are
generated. After taking the mean velocities of the robot and drone at
different time instants, the average velocities of the robot and drone

are obtained as 2.48 km/h and 47.8 km/h, respectively. Next, the
prediction error is calculated as 0.4%.

The posterior density was obtained with the transfer learning
algorithm, and a predicted route for the mobile robots and drones is
generated in a 3D environment Figure 4. Using the data related to
the SoC of the battery and the MW weight, the proportional logit
model is obtained:

ln
πoptimal

πnonotimal
( ) � 1.47 + 2.54SoC + 1.24Wmw. (19)

The SoC of the battery of the drone and the weight of the
medical waste packet are considered for the prediction of the
optimal route length of the framework (18). The SoC of batteries
varies from 0.2 to 0.8, and the weight of MW varies from 1 kg to
2 kg. The optimal predicted velocity of the robot and drone are
shown in Figures 5 and 6, respectively (14)–(15). The rewards of
actions done by robots and drones are obtained with a Q-learning
mechanism using (16). The accumulative rewards are estimated as
per (17) and shown in Figure 7. The coordinated framework has
been rewarded for the optimal and successful delivery of medical
waste from the collection point to the disposal center through
transit points. At various iterations, the rewards vary from 0.7 to
0.9. The limitations of the various UAV–UGV coordination
algorithms are mentioned in Table 1. None of these algorithms
is applied in medical waste transportation. The effectiveness of the
proposed learning-based UAV–UGV coordinated algorithm is
shown by obtaining the results, and the features of this
algorithm are mentioned in Table 2.

10 Conclusion

In this paper, a coordinated UAV–UGV framework is
proposed for medical waste transportation to minimize human
involvement. For optimal medical waste transportation, a
learning-based mechanism has been implemented to predict
the route length followed by the robots and the drone. The
time-stamped medical waste packets are encrypted with hash
keys. The predicted route length from the transit point to the
disposal center has been obtained. The reinforcement learning
algorithm has been considered for optimal successful and
unsuccessful transportation of medical waste from collection
points to disposal centers.

11 Future research direction

As the field of medical waste transportation continues to
evolve, several potential future research directions can be
explored to address emerging challenges and promote
sustainable practices. Here are some areas that researchers
might consider:

• Green technologies and sustainable practices: Examine and
create eco-friendly technology for the transportation of
medical waste. To lessen the influence of transportation on
the environment, this could involve using hybrid or electric

Medical waste packet 2

Color: yellow

Rq2,mw = Available

Id2,mw = hash key

4c014d35f0d9ad4b18c

6b86cc1f9c346f28389fd03e50a97362a406f74ceb6f0

T2,mw = timestamp (2023-02-03 15:45:35.490011)

W2,mw = 1.5 kg

Au2,mw = Authorized

O2,mw = medical disposal center 2 4, 0, 0{ }km

Medical waste packet 3

Color: Black

Rq3,mw = Available

Id3,mw = hash key

93518f43effceab801431f3610b5

5f8598a27bee68b282797a3e7a64856c8afe

T3,mw = timestamp (2023-02-03 15:45:35.491009)

W3,mw = 1.2 kg

Au3,mw = Authorized

O3,mw = medical disposal center 3 2.5, 0, 0{ }km

Medical waste packet 4

Color: Blue

Rq4,mw = Available

Id4,mw = hash key

ee5f80befdb1ca0111c

9b8bb8115bd51844eb8c9dc54532941075197ce145044

T4,mw = timestamp (2023-02-03 15:45:35.492016)

W4,mw = 1.8 kg

Au4,mw = Authorized

O3,mw = medical disposal center 3 2.5, 0, 0{ }km
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cars, renewable energy sources, and other environmentally
friendly methods.

• Circular economy approaches: Examine medical waste
management circular economy models, emphasizing
transportation. To reduce total waste generation, investigate
how waste materials and by-products can be recycled,
repurposed, or reused in a closed-loop system.

• Integration of artificial intelligence (AI) and machine learning
(ML): Analyze the possibilities for applying AI and ML to
forecast transportation requirements, optimize medical waste
transit routes, and enhance overall logistics effectiveness. Real-
time tracking, predictive analytics, and data-driven decision-
making may all be considered.

• Blockchain technology for traceability: Examine how
blockchain technology can improve the transparency and
traceability of the transfer of medical waste. Create safe,
decentralized systems to monitor the flow of medical waste,
guaranteeing adherence to rules and lowering the possibility of
unauthorized disposal.
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