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The global decline of coral reefs is a major contributor to the global
biodiversity crisis and requires improved monitoring at these critically
important habitats. Non-invasive passive acoustic assessments may
address this need, leveraging the rich variety and spatiotemporal variability
of biological sounds present in coral reef environments and offering near-
continuous temporal coverage. Despite this, acoustic metrics that reliably
represent coral reef health are still debated, and ground-truthing of methods
is limited. Here we investigated how the prevalence of low frequency biotic
sounds (without species information) relates to coral reef health, providing a
foundation from which one can compare assessment methods. We first
quantified call rates of these low frequency sounds for three reefs
exhibiting different community assemblages around St. John, U.S. Virgin
Islands, by manually annotating presumed fish noises for 1 min every
30 min across 8 days for each site. Annotated days were selected at key
points across lunar cycles. These call rates were then compared with
traditional visual surveys, and several acoustic methods and indices
commonly used in underwater soundscape research. We found that,
overall, manually detected fish call rates successfully differentiated
between the three reefs, capturing variation in crepuscular activity
levels–a pattern consistent with previous work that highlights the
importance of diel choruses. Moreover, fish vocal rates were predictors of
hard coral cover, fish abundance, and fish species richness, while most
acoustic indices failed to parse out fine distinctions among the three sites.
Some, such as the Acoustic Complexity Index, failed to reveal any expected
differences between sites or times of day, while the Bioacoustic Index could
only identify the most acoustically active reef, otherwise having weak
correlations to visual metrics. Of the indices tested, root-mean-squared
sound pressure level and Acoustic Entropy, both calculated in the low
frequency fish band (50–1,200 Hz), showed the strongest association with
visual health measures. These findings present an important step toward
using soundscape cues for reef health assessments. The limited
generalizability of acoustic indices across different locations emphasizes
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the need for caution in their application. Therefore, it is crucial to improve
methods utilizing fish sounds, such as automatic fish call detectors that are able
to generalize well to new soundscapes.
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fish calls, soundscapes, acoustic indices, unknown sounds, biodiversity

1 Introduction

As one of Earth’s most biodiverse ecosystems, coral reefs are
hotspots of biological activity (Reaka-Kudla, 1997). They provide
valuable resources to humans, including vital fisheries (Newton
et al., 2007), tourism (Spalding et al., 2017), and coastal
protection (van Zanten et al., 2014), making them a source of
livelihood for many lower-latitude nations (Birkeland, 1997;
Cinner, 2014). However, in recent decades, reef-building corals
and associated biodiversity have experienced a dramatic and
unprecedented decline, reducing their contributions to these
communities by half (Eddy et al., 2021). The need to study and
monitor reef health using non-invasive and scalable tools has led to
the development of diverse monitoring techniques (Apprill et al.,
2023), such as eDNA (West et al., 2020), remote-sensing (Mumby
et al., 2004; Liu et al., 2005), visual imaging and surveys (Mallet and
Pelletier, 2014), and passive acoustics (Kaplan et al., 2015; Mooney
et al., 2020; Lamont et al., 2022a).

Traditional methods of diver surveys are still the most widely
accepted and standardized method for reef monitoring (i.e., AGRRA
surveys), but come with limitations. Visual transect surveys can be
time- and resource-consuming, provide only intermittent snapshots
of reef state, and potentially introduce bias through observer
limitations and fish deterrence (Brock, 1982; Sale and Sharp,
1983). However, the great diversity and concentration of
soniferous species on reefs, as well as those that make ancillary
sounds, contribute to an active, bustling soundscape that makes
coral reefs excellent candidates for passive acoustic monitoring
(PAM; Mooney et al., 2020; Kaplan et al., 2018). Changes to the
community assemblages, such as that which exists between
neighboring locations (Radford et al., 2014) or after severe
habitat degradation (Gordon et al., 2018) can be detected in the
soundscape. The potential for non-invasive continuous monitoring
in these critical ecosystems, paired with the relative accessibility and
low cost of PAM, makes further investigation into meaningful
acoustic metrics for coral reef health imperative.

Sound is a dynamic component of coral reef communities. The
two persistent sources of biological sounds on coral reefs are marine
invertebrates, particularly snapping shrimp, which occupy the mid-
to high-frequencies (~2–20 kHz) (Au and Banks, 1998), and lower
frequency fish sounds, typically below 2 kHz (Tricas and Boyle,
2014; Ferguson et al., 2022). Soundscape signatures can vary on daily
(Staaterman et al., 2014; Kaplan et al., 2015), celestial, (Staaterman
et al., 2014; Parsons et al., 2016; McWilliam et al., 2017), and
seasonal scales (Kaplan et al., 2018), and are biologically
important for coral reef animals. Sounds are produced for
communicative purposes, such as for courtship and reproduction
(Myrberg et al., 1986; Parmentier et al., 2010; Tricas and Boyle,
2014), aggression (Parmentier et al., 2010; Tricas and Boyle, 2014),
and territory defense (Winn et al., 1964; Myrberg, 1997), as well as

incidentally, by feeding (Sartori and Bright, 1973). These cues can
then be perceived and utilized by reef animals. Indeed, evidence
suggests juvenile and larval fish use sound to relocate and orient
themselves to reefs (Montgomery et al., 2006; Simpson et al., 2008;
Radford et al., 2011; Suca et al., 2020) and coral larvae use sound as a
settlement cue for suitable habitat (Lillis et al., 2016; Lillis et al., 2018;
Aoki et al., 2024). While increasingly applied to soundscape metrics,
how these various soundscape components can be used to assess
habitat and community attributes is still being understood.

Snapping shrimp band average sound pressure level (SPL) and snap
counts have been shown to be indicative of structural complexity, but
not necessarily fish community, live coral cover, or overall reef health
(Kaplan et al., 2015; Nedelec et al., 2015; Lyon et al., 2019; Williams
et al., 2022). Low frequency SPL is among the most common analyses
for fish sounds, but its effectiveness in predicting reef health has yielded
mixed results. In some studies, higher sound levels below 2 kHz, along
with increased sound levels around dawn and dusk, were correlated
with higher coral cover and fish abundance (Piercy et al., 2014; Kaplan
et al., 2015; Peck et al., 2021). Yet in other studies, low frequency SPL
alone had little relationship with reef composition (Lamont et al., 2022b;
Williams et al., 2022) or had partial or mixed success (Bertucci et al.,
2016; Dimoff et al., 2021). Additionally, while fish call rates have
revealed similar trends to low frequency SPL at a single site,
Ferguson et al. (2022) showed that the direct relationship between
these two variables was not significant. Fewer studies have examined the
daily fluctuations in SPL, despite documented increases in fish sound
production around dawn and dusk (Winn et al., 1964; Parmentier
et al., 2010).

Other processing techniques often derived from terrestrial
applications have been proposed to address marine biodiversity
questions (Sueur et al., 2008a), yet they too have borne challenges. A
major appeal to exploring these indices is their potential application
to uncalibrated sound recordings, which, if successful, opens the
door to low-cost recording alternatives (Lamont et al., 2022a).
Unfortunately, the success of these indices in determining coral
reef health has been wildly variable between locations and
applications. The Acoustic Complexity Index (ACI; Pieretti et al.,
2011) is the most popular index in marine environments (Pieretti
and Danovaro, 2020; Minello et al., 2021) and has shown promise in
the lower frequency fish band in some studies. In certain cases, ACI
demonstrated robustness to wind and boat noise (Harris et al., 2016)
and outperformed alternative metrics in its ability to predict
environment or reef state (Staaterman et al., 2014; Lamont et al.,
2022b; Mahale et al., 2023). Yet in similar studies, it was not a
significant predictor of reef quality (Kaplan et al., 2015; Lyon et al.,
2019) or species diversity (Staaterman et al., 2017). Specific
parameters play a role in the effectiveness of ACI and other
indices but are not standardized and optimized specifications
likely vary by location (Harris et al., 2016; Bolgan et al., 2018;
Dimoff et al., 2021). Further, in many of these applications, we still
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lack ground-truthing of these metrics to specific call types, rates, and
at times, even local observations of fish and reef communities, thus
metric applications were often correlative.

This study evaluated whether the number of low frequency
biotic sounds could function as a proxy for fish abundance and coral
cover at different sites with varying communities, leveraging the
known positive correlation between these two variables (Komyakova
et al., 2013). We sought to test the hypothesis that between-site
variations in total acoustic energy in the low frequency band are a
result of differential fish activity and abundance (e.g., Kaplan et al.,
2015). To do so, acoustic recordings from three long-term studied
coral reefs of varying community assemblages in the U.S. Virgin
Islands were manually audited for presumed fish sounds. The
strength of crepuscular activity spikes and average call rates were
examined and compared for each site. Hard coral coverage and fish
abundance for each reef were collected from parallel and ongoing
efforts and used to ground-truth acoustic outputs [Dinh et al., 2018;
Formel et al. (in preparation)]. Further, this study compared fish call
rates to a variety of acoustic metrics and indices typically used in the
bioacoustic literature, including SPL, ACI, acoustic entropy (H), the
bioacoustic index (BIO), acoustic diversity (ADI), and acoustic

evenness (AEI), to evaluate their effectiveness in predicting reef
community assemblages.

2 Methods and materials

2.1 Data collection

Three sites with long-term acoustic and visual monitoring were
selected in the U.S. Virgin Islands National Park on St. John, USVI,
based on their varying coral cover and fish abundance (Figure 1A).
These fringing coastal reefs are part of a long-term project aiming to
understand the relationship between soundscapes and the reef
community (Kaplan et al., 2015; Mooney et al., 2017).
Summaries of the reef community assessments are briefly
described below but can be found in more detail in earlier work
(Kaplan et al., 2015; Dinh et al., 2018; Formel et al. [in preparation]).
Tektite Reef (18.30962 N, 64.72218 W) is considered an acoustically
rich reef, correlating with high fish diversity and coral cover (Kaplan
et al., 2015; Ferguson et al., 2022; Table 1). Yawzi Point (18.31458 N,
64.72609 W) was selected as an intermediate quality reef and is

FIGURE 1
(A) Map of the three study reefs on the south side of St. John, US Virgin Islands, located within the Virgin Islands National Park. (B) ST-300 single
channel recorder located on Tektite reef. The same set-upwas used for Yawzi sound recordings as well. (C) ST-4300 four channel recorder on Cocoloba.
Only the first channel was used for analysis.

TABLE 1 Bottom composition of the three sites based on point intercept transect surveys averaged across 2016–2017 (Tektite n = 12, Yawzi n = 13, Cocoloba
n = 12). Values are percentages of total recorded bottom cover. Methods adapted from Atlantic and Gulf Rapid Reef Assessment (AGRRA) surveys, following
Formel et al. (in preparation, 2023).

Hard
coral (%)

Algae
(%)

Crustose coralline
algae (%)

Cyanobacteria
(%)

Soft
coral (%)

Sponge
(%)

Other
biotic (%)

Abiotic
(%)

Tektite 25.58 43.75 3.50 6.17 1.42 7.92 0.33 17.41

Yawzi 14.06 33.52 2.42 0.99 6.94 5.36 1.94 34.44

Cocoloba 4.92 47.00 1.00 0.33 4.50 0.58 0.42 41.67
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characterized by slightly lower fish abundances and diversity
(Friedlander and Beets, 2008) and generally lower hard coral
cover (Edmunds, 2013; Table 1). Finally, Cocoloba Reef
(18.31528 N, 64.76065 W) was a degraded reef habitat
increasingly dominated by macroalgae and bare space (Table 1),
with historically low fish diversity (Friedlander and Beets, 2008).

Video transect surveys were conducted to assess fish abundance
and diversity at each site in June 2016 and July 2017 (methods
following Dinh et al., 2018). Each 30 m transect was recorded and
analyzed in the lab to quantify the number of species and number of
total fish in each video (Dinh et al., 2018). While the visual surveys
did not precisely co-occur with our acoustic surveys, the goal was to
determine how the sites generally differed in community
composition, rather than document subtle fluctuations in fish
populations during the study period. Further, while some fish
movements are to be expected, many reef fish are known for
their high site fidelity and dramatic relocations are unlikely
within a year (Marnane, 2000; Pittman et al., 2014; Griffin et al.,
2023). The resulting species numbers and counts for 9 transects per
site were averaged, and site means were used to compare with
acoustic metrics. Distribution of both species and total fish were
normal, so an ANOVA, followed by a Tukey HSD post hoc test, was
used for statistical comparison between sites. Parallel to fish, the
benthic composition of each site was characterized using manual
surveys following Atlantic and Gulf Rapid Reef Assessment
(AGRRA) methods (following Formel et al. [in preparation]).
Diver transects at Tektite (n = 12), Cocoloba (n = 12), and
Yawzi (n = 13) were averaged across 2016 and 2017 to quantify
the benthic coverage percentage of hard coral, macroalgae, crustose
coralline algae, cyanobacteria, soft coral, sponge, other biotic, and
abiotic for each site (Table 1). The hard coral coverage difference
between sites was statistically assessed with an ANOVA, followed by
a Tukey HSD post hoc test.

Sound data from Tektite and Yawzi were collected on single-
channel SoundTraps (ST-300; Ocean Instruments,
sensitivity = −172.6 and −171.2 dB re 1 μPa/V, respectively
Figure 1B). Cocoloba data were collected with a 4-channel
ST-4300 recorder (Ocean Instruments, sensitivity = −161.2 dB re
1 μPa/V Figure 1C); only one channel was used for fish call audits
and batch analyses. Instruments were secured 0.5 m above the
seafloor on rebar stakes anchored in sandy patches within the
reef (Figure 1). SoundTraps were deployed from March 2017 to
July 2017, recording on a duty cycle of 3 s of self-calibration followed
by 60 s of recording every 10 min at 48 kHz.

2.2 Fish call auditing

Due to the labor-intensive nature of selecting fish calls by hand,
8 days of the 2017 spring and early summer deployment were chosen
for analysis and 1 minute every 30 min wasmanually audited for fish
vocalizations. To account for the possible effect of the moon phase
on fish call rates (Parsons et al., 2016; McWilliam et al., 2017), days
of interest were selected at various points in the lunar cycle: full
moon (11 April, 10 May), third quarter (19 April, 18 May), new
moon (26 April, 25 May), and first-quarter (2 May, 1 June).

The resulting 24 days (8 days for 3 sites) of subsampled sound
data was manually analyzed by 3 independent, trained analysts

(S.D.J., N.F., S.R.F.) using a customized interactive interface created
in MATLAB R2020A (Mathworks, Natick, MA). First, sound files
were low-pass filtered and decimated to 4 kHz to focus on the lower
frequency range typical of fish calls. Nearly all reef fish sounds are
below 2000 Hz, particularly between 50 and 1,200 Hz (Tricas and
Boyle, 2014; Ferguson et al., 2022; Rice et al., 2022), which was the
focus of this study. Spectrograms were then created (128 pt, 32 ms
Hamming window, 75% overlap, 1,024 pt FFT size) and visualized in
10-s increments to distinguish characteristically short-duration fish
calls (Tricas and Boyle, 2014). Analysts boxed fish calls by time and
frequency and defined them as “pulse” or “tonal”, or “chorus” – in
the case of overlapping, indistinguishable vocal events. The “chorus”
label was used sparingly when individual calls were impossible to
isolate and were thus factored into the final counts as only a single
call, inevitably underrepresenting high activity periods to some
extent. Final checks over all the annotations were done for
consistency by S.D.J.

Any high-amplitude abiotic noise, such as weather or vessels,
that had the potential to interfere with fish call detection was also
boxed and labeled. Later, periods of disrupting noise were removed
from the analysis, subtracting the entire period from both the call
counts and the time available.

2.3 Analysis

Data preparation, statistical analysis, and graphing were
done in MATLAB R2020b and R (www.r-project.org). Call
rates were first calculated for each 1-min segment by dividing
the total number of calls by the number of seconds available,
after any vessel or disruptive noise was removed. If less than 10 s
of useable data remained, the whole segment was removed from
all analyses.

All site-specific total averages, such as for visual measures, fish
call rates, or received SPL, are reported as mean ± 1.96*standard
error (SE), which represent the upper and lower bounds of 95%
confidence intervals of the mean. To visually compare trends
between sites on a daily scale, hourly call rates were first
calculated and then all 8 days were averaged together at each
hour of the day. To examine the effect of time of day further,
each day was divided into 4 time periods based on their respective
local daily light periods, downloaded from timeanddate.com. Time-
of-day groupings were delineated as follows: dusk: from sunset to
astronomical twilight (defined as when the center of the Sun is
eighteen degrees below the horizon, Forsythe et al., 1995), night:
time between the two astronomical twilights, dawn:from
astronomical twilight to sunrise, and day: from sunrise to sunset.
The average call rate, in calls per minute, was calculated for each
time period first for each moon phase and then combined, by
averaging call rates from all files within each time-of-day period.
A ratio of change was measured to evaluate the strength of
crepuscular peaks by site, by dividing the average call rate in the
crepuscular time periods by their adjacent daily period. Thus, values
of 1 indicate no change between successive light periods, with higher
ratios denoting larger shifts in acoustic activity.

Within-site comparisons of time-of-day on call rate required
transformations to achieve normality, and then were evaluated with
a one-way ANOVA. If significant differences were found, Tukey’s
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HSD post hoc test, with no multiple comparisons correction, was
performed to identify where these differences lay. Tektite and Yawzi
both used a square root transformation, but Cocoloba only met the

assumptions after a simple logarithmic transformation (there were
no zero data points at any site). Transformations remained
consistent within their respective site between each moon phase

TABLE 2 Results of Kruskal–Wallis non-parametric analysis of variance on call rates (calls/min) between sites at different times of day. Each significant light
period was followed up with Dunn’s test for multiple comparisons, with no adjustment. Z-statistics and p-values are listed for each combination of sites.
Significant p-values are indicated with stars (*p < 0.05; **p < 0.01; ***p < 0.001).

Kruskal–Wallis test (between-site
differences in call rates for each

daily period)

Dunn’s test (pairwise site comparison)

X2 DF p-value Tektite-Yawzi Tektite-Cocoloba Yawzi-Cocoloba

Night 176 2 <0.001*** z = 10.2 z = −12.5 z = −2.07

p < 0.001*** p < 0.001*** p < 0.05*

Dawn 29.2 2 <0.001*** z = 4.00 z = −5.18 z = −1.15

p < 0.001*** p < 0.001*** p = 0.13

Day 131 2 <0.001*** z = 5.94 z = −11.4 z = −5.33

p < 0.001*** p < 0.001*** p < 0.001***

Dusk 15.1 2 <0.001*** z = 1.75 z = −3.89 z = −2.09

p < 0.05* p < 0.001*** p < 0.05*

Total 330 2 <0.001*** z = 11.8 z = −17.9 z = −5.74

p < 0.001*** p < 0.001*** p < 0.001***

TABLE 3 Results from one-way ANOVA tests comparing within-site daily call rate changes, across different lunar cycles. If significance (p < 0.05) was found,
post hoc Tukey HSD tests were performed. Otherwise, no difference was reported. Difference ratios (% diff) were calculated for overall sites when
significance was reported from the Tukey HSD test by dividing the average call rate from the higher period (listed first) by the lower period.

ANOVA Tukey HSD results

F-value DF p-value Dusk-night Dawn-night Day-night Dawn-day Dusk-day Dawn-
dusk

Tektite 7.17 3,336 <0.001*** p = 0.23 p = 0.098 p = 0.065 p < 0.005**
% diff = 1.36

p < 0.05*
% diff = 1.36

p = 0.98

Full 1.33 3.78 0.335

Third-Q 0.319 3.82 0.812

New 6.54 3.82 <0.001*** p = 0.95 p = 0.14 p < 0.05* p < 0.005** p = 0.17 p = 0.77

First-Q 8.08 3.78 <0.001*** p = 0.26 p = 0.23 p < 0.05* p < 0.01** p < 0.001** p = 0.99

Yawzi 13.1 3,330 <0.001*** p < 0.001***
% diff = 1.38

p < 0.01**
% diff = 1.69

p < 0.001***
% diff = 1.21

p = 0.42 p < 0.005**
% diff = 1.14

p = 0.30

Full 2.16 3.79 0.099

Third-Q 7.13 3.78 <0.001*** p < 0.01** p < 0.01** p < 0.05* p = 0.17 p = 0.14 p = 0.99

New 2.43 3.79 0.071

First-Q 6.06 3.82 <0.001*** p < 0.005** p = 0.80 p < 0.05* p = 0.98 p = 0.10 p = 0.22

Cocoloba 4.89 3,363 <0.005** p < 0.05*
% diff = 1.29

p < 0.05*
% diff = 1.36

p = 0.26 p = 0.13 p = 0.22 p = 0.99

Full 0.756 3.85 0.52

Third-Q 1.97 3.88 0.12

New 1.73 3.87 0.17

First-Q 3.06 3.90 <0.05* p < 0.05* p = 0.62 p = 0.43 p = 0.97 p = 0.13 p = 0.52
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tested. Between-site comparisons for both cumulative and for each
daily light period were assessed with a Kruskal–Wallis test (KW) on
untransformed data, followed by Dunn’s test of multiple
comparisons, with no adjustment. Results from both the
ANOVA and KW, along with associated post hoc tests, are
summarized in Tables 2, 3 for ease of understanding.

Received SPL in the fish band was calculated from each
audited sound file, with vessel noise durations removed, by
bandpass filtering from 50 to 1,200 Hz. The 60 s signal was
divided into blocks of 1 s with 50% overlap, root-mean-
squared SPL was calculated and averaged across all blocks in
that sound file, and finally converted to decibels (dB). Statistical
average SPL was then calculated hourly and for each daily light
period in order to examine crepuscular trends for each site.
Statistical means and standard errors reported here do not
operate on the linear units and thus do not represent the total
noise energy, however, they more appropriately describe the
underlying statistical distribution of noise levels. Comparison
between the two methods revealed less than a dB of difference for
overall site means. For analogous arithmetic calculations using
linear units of SPL, see the Supplementary Material.

Several acoustic indices were also calculated from audited
files to compare directly to fish call counts, using Seewave (Sueur
et al., 2008a) and Soundecology (Villanueva-Rivera and
Pijanowski, 2018) packages in R (methods following Williams
et al., 2022). Given the clear characterization of fish call rates, we
sought to test and evaluate the effectiveness of several acoustic
indices that have been suggested to help quantify aquatic
biodiversity. The indices tested were the Acoustic Complexity
Index (ACI), which quantifies the variability of intensities in each
frequency bin (window length = 512, overlap = 0, window =
Hamming, frequency range = 50 Hz–1,200 Hz; Pieretti et al.,
2011); Acoustic Entropy (H), the product of temporal and
spectral dissimilarities (window length = 512, envelope
transform = Hilbert; Sueur et al., 2008b); the Bioacoustic
Index (BIO), a calculation of both the sound amplitude and
number of frequency bands occupied (freq range =
50 Hz–1,200 Hz, dB threshold = −50, freq step = 100; Boelman
et al., 2007); the Acoustic Diversity Index, in which the Shannon
index is applied to frequency bins over a specified threshold
(ADI, Max freq = 1,200, dB threshold = −50, freq step = 100,
Villanueva-Rivera et al., 2011); and the Acoustic Evenness Index,
a measure of the proportion of frequency bins over a specified
threshold (AEI, Max freq = 1,200 Hz; freq step = 200;
threshold = −50 dB, Villanueva-Rivera et al., 2011).

Distributions of SPL and acoustic indices were strongly non-
normal, so a Kruskal–Wallis followed by Dunn’s test with a
Bonferroni correction was applied to compare between sites.
Linear regressions were utilized to evaluate the relationship
between call rate and acoustic indices for each sound file, as well
as relationships between SPL and other indices. Kendall’s tau (τ)
coefficient was chosen as a non-parametric alternative to calculate
the correlation between acoustic metrics and visual metrics. A
complete correlation matrix between all acoustic and visual
relationships can be found in the Supplementary Material.
Overall site averages across 2016–2017 transects were used to
represent fish abundance, fish species richness, and hard coral
cover percentage for the correlation analysis.

3 Results

3.1 Reef biometrics

The three reefs varied by hard coral coverage (Table 1, One-way
ANOVA: F2,34 = 35.12, p < 0.0001), fish abundance (Figure 2, One-
way ANOVA: F2,24 = 19.0, p < 0.0001), and fish species richness
(Figure 2, One-way ANOVA: F2,24 = 12.3, p < 0.0005). Tektite had
the highest coral coverage (25.58% ± 2.78%, mean ± 1.96*SE),
highest average number of total fish (175.5 ± 15.4), and most fish
species (22.8 ± 1.0) per transect. As determined by a Tukey’s post hoc
test, this was significantly higher than the degraded site, Cocoloba,
which had the lowest coral cover (4.92% ± 3.10%, p < 0.0001), total
fish (43.8 ± 4.5, p < 0.001), and species per transect (13.6 ± 0.4, p <
0.0001). Yawzi had the second highest coral cover (14.06% ± 2.40%),
fish abundance (141.8 ± 14.9), and richness (20.1 ± 0.4 species), also
significantly higher than Cocoloba (Tukey post hoc, coral: p < 0.005,
total fish: p < 0.005, species: p < 0.001). Despite the differences,
Yawzi was not significantly different from Tektite in fish abundance
and species counts but did significantly differ in hard coral coverage
(Tukey’s post hoc, p < 0.0005).

3.2 Call rates

A total of 1,041 manually audited 1-min sound files were
analyzed between the three sites after boat noise was removed
(Tektite: 340, Yawzi: 334, Cocoloba: 367). A KW test revealed
significant differences between total call rates at the three sites
(X2(2) = 330, p < 0.001). Tektite had the highest average call
rate, with 63.93 ± 0.16 calls per minute, significantly greater than
the next highest, Yawzi, at 39.16 ± 1.67 calls per minute, during all
photoperiods (Figure 3; Table 2) and Cocoloba, which had the
lowest average call rate at 31.67 ± 0.08 calls per minute (Figure 3;
Table 2). Yawzi recorded higher call rates than Cocoloba in all

FIGURE 2
Results of manual video transect analysis of fish species and total
counts at Tektite, Yawzi, and Cocoloba reefs from 2016 to 2017,
showing site differences in community assemblage. Each analyzed
30 m transect is represented by a point.
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photoperiods, with this relationship showing significance during
night, day, and dusk (Figure 3; Table 2).

Some degree of crepuscular activity spikes was observed at all
sites (Figure 4), although the strength of this trend varied with site
and moon phase. Fish call rates at Yawzi were most influenced by

time of day, particularly in the third-quarter and first-quarter moon
phases (One-way ANOVA: F3,330 = 13.1, p < 0.001, Figure 5A;
Table 3). Cocoloba also had significant differences in activity
between night and dawn (Tukey’s post hoc: p < 0.05), and night
and dusk (p < 0.05, Figure 5B and Table 3). For Tektite, day
appeared to be the outlying period, significantly lower than
dawn, dusk, and night call rates (Figure 5C; Table 3).
Interestingly, full moon was the only lunar phase in which time
of day had no significant effect on activity at any site.

A single unknown call type was opportunistically identified and
documented at all three reefs and plotted to compare daily call
density trends between sites (Figure 6). The call was a downswept
tonal hum, ranging between 2 Hz (average lower bound = 82 Hz)
and 1,255 Hz (average upper bound = 729 Hz) and lasting 0.2–0.6 s
(average length = 0.35 s, Figure 6B). Site-specific crepuscular peaks
were observed, with dawn activity dominating at Tektite, and dusk
activity dominating at Yawzi (Figure 6A). A total of 398 of these
stereotyped calls were detected, representing approximately 0.9% of
the total calls identified. Similar to overall calls, the most were found
at Tektite (385 calls) and the least was detected at
Cocoloba (97 calls).

3.3 Biodiversity indices comparison

The average received SPL of the audited sound files varied
significantly between all sites (KW test: X2(2) = 649, p < 0.0001,
Figure 7A), with Tektite as the site with the highest sound levels at
96.33 ± 0.27 dB re 1 µPa (mean ±1.96*SE). Despite showing

FIGURE 3
Comparison of call rate by reef during four daily photoperiods, demonstrating variation in crepuscular activity between sites. Points represent
averaged call rate for each daily period bymoon phase, with 95% confidence interval bars (±1.96*SE), colored by site. Mean call rate for each photoperiod
and site is visualized by a horizontal dashed line. Significant difference in call rates between pairs of sites is shown with stars (*p < 0.05; **p < 0.01; ***p <
0.001, Dunn’s test for multiple comparisons, no adjustment).

FIGURE 4
Averaged daily trends in fish call rate between three reefs. Each
point is an hourlymean (2 min of audited data, 30 min apart), averaged
across 8 days at the same time. Mean night for study days is strongly
shaded, with light shading indicating mean dusk and
dawn periods.
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statistical significance, Yawzi and Cocoloba sound levels varied by
less than a decibel, with Yawzi at 89.73 ± 0.22 dB re 1 µPa and
Cocoloba slightly lower, at 89.09 ± 0.15 dB re 1 µPa (Dunn’s test, p <
0.005). Tektite also had the strongest crepuscular peaks in SPL
(dawn-night: 5.1 dB change, dawn-day: 1.7 dB change, dusk-day:
0.8 dB change, dusk-night: 4.2 dB change), although Yawzi also saw
increases during dusk and dawn versus night (dusk-night: 2.8 dB
change, dawn-night: 2.0 dB change), although day time had the
highest sound levels at this site. Cocoloba had the weakest
crepuscular peaks with an average 1.2 dB increase from night to
dawn and a 1.8 dB difference between dusk and night (Figure 7B).

In addition to SPL, several acoustic indices were tested on the
same files and frequency range and compared to fish call rates. The
AEI and ADI had no significant linear relationship with call rate
(AEI: Multiple R2 = 1.543e-3, p > 0.05; ADI: Multiple R2 = 5.297e-4,
p > 0.05) and no visible trends or differences between sites, and are
thus not included in the rest of the analysis. The ACI explained less
than 2% of the variation in call rates and, although weak, the linear
regression was significant due to the large sample size of files
(Figure 8A, Multiple R2 = 0.016, p < 0.0001). The BIO was able
to identify Tektite as the “healthiest” site, and even identified some
crepuscular trends within Tektite (Figure 7B), but was otherwise
weakly related to call rate (Multiple R2 = 0.175) and visual metrics
(τ = 0.26). H, the product of spectral and temporal entropy, reported
a negative correlation with fish calls (Figure 8A, Multiple R2 = 0.262,
p < 0.0001), portraying very similar, though inverted, patterns as
SPL on these datasets (Figure 7B). In addition to a strong direct
relationship between SPL and H (Figure 8B, Multiple R2 = −0.758),
the pair had similarly strong statistical relationships with call rate
(Figure 8A) and visual metrics (Figure 9).

Overall, visual metrics had the strongest positive correlation
with SPL (τ = 0.64, p < 0.0001) and call rate (τ = 0.44, p < 0.0001),
and a fairly strong negative correlation with H (Figure 9, τ = −0.52,
p < 0.0001). BIO and ACI had the weakest relationships with fish
abundance, fish species, and hard coral cover at these sites (BIO: τ =
0.26, ACI: τ = 0.05).

FIGURE 5
Effect of photoperiod andmoon cycle on call rate for three reefs (A) Yawzi, (B) Cocoloba, (C) Tektite. Points and bars represent mean call rate (calls/
min) and 95% confidence intervals (±1.96*SE) during the respective daily period, colored by lunar phase (2 days of data for each phase). Significance in call
rate variation between daily light periods is shown with stars (*p < 0.05; **p < 0.01; ***p < 0.001, Tukey HSD with no correction), with colored stars
showing post hoc results in respective moon phase, and black representing combined significance between photoperiods.

FIGURE 6
Call rates at three sites for a single, stereotypedcall type. (A)Averaged
hourly call rate of downswept tonal hum across 8 days, colored by site.
Mean night period is strongly shaded, with mean dusk and dawn lightly
shaded. Note the differences in daily patterns: a large dawn peak at
Tektite, and smaller one a Yawzi, then a large dusk peak at Yawzi and
smaller dusk peaks at Cocoloba. Cocoloba, the most degraded, showed
the least daily variation. (B) Spectrogram of the tonal call (128 pt, 32 ms
Hamming window, 75% overlap, 1,024 pt FFT).
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4 Discussion

With the rapid global decline of biodiversity on coral reefs, it is
imperative that cost-effective methods of managing these habitats
continue to be developed. Passive acoustic monitoring (PAM) has
been increasingly applied to coral reef research, although how best to
assess acoustic signals of biodiversity and reef state is still debated.
The three sites examined in this study demonstrated clear,
incremental variation in bottom substrate (e.g., coral cover), fish
abundance, and fish species richness, making them ideal for
exploring acoustic metrics indicative of reef community
composition and quality. Manually annotated fish sounds were
found to be a measure predictive of visual reef health indicators,
successfully differentiating between three reefs based on fish
abundance and coral cover and exposing varying levels of
crepuscular spikes in activity at all the sites. Thus, this work
provides a key ground-truthing foundation to support using fish
calls as a means to assess coral reef health. Further, this is the first
study to demonstrate that the observed differences in crepuscular
activity strength in the low frequency acoustic band between reefs
are the direct result of individual fish calls.

Tektite, the healthiest of the three reefs, with high coral cover
and fish abundance, had the highest average call rate during every
photoperiod and also demonstrated significant crepuscular spikes in
activity, with especially low call rates during the day. Received SPL,
BIO, and H were also able to distinguish Tektite as the most
biologically active reef and even highlight daily trends within it,
but had less success differentiating between the two less active reefs.
Yawzi, the intermediate reef, had the second-highest call rates on
average but the strongest variation between light periods,
particularly due to low call rates at night. The degraded, algae-
dominated site, Cocoloba, had the lowest call rates of the three, with
weak crepuscular peaks. Similar trends can be seen with a single call
type, a downswept tonal hum recorded at all three sites. The rate of
this call had little daily variation at Cocoloba compared to the other

healthier sites, which saw strong spikes in occurrence at either dawn
(Tektite) or dusk (Yawzi). This time-of-day difference between
Yawzi and Tektite is itself interesting, given that these reefs are
only ca. 500 m apart and one might assume calls would follow the
same general pattern. Similar differences between nearby sites have
also been noted for snapping shrimp (Lillis and Mooney, 2018).
While this was one of the more common and stereotyped call types,
it averaged less than 1 call/min at each site, a tiny fraction of the
30–64 average calls/min recorded at the same sites. Statistically, this
call type represented less than 1% of the total calls detected.
Characterizing the number of unique call types at each site was
beyond the scope of this study, but this single “common” call type
certainly speaks to the diversity of low frequency sounds at
these reefs.

Three out of the six computational methods evaluated showed
some similar patterns to fish call rates (SPL, BIO, and H; Figure 7).
Averaged received SPL (dB re 1 µPa) in the low frequency band, a
commonly used metric for soundscapes, aligned with fish calls quite
well, with Tektite having the highest levels and strongest crepuscular
peaks. Dawn and dusk peaks in SPL were less apparent in the two
quieter reefs, Cocoloba and Yawzi. Yawzi sound levels were
significantly higher than those on Cocoloba, reflecting the reef
health noted by traditional visual observations of fish and coral
cover. However, the SPL differences between the two reefs were less
than a decibel of difference on average and likely due to the increased
daytime levels at Yawzi. This discrepancy in Yawzi’s heightened SPL
versus fish call rate during the day may have been caused by
increased abiotic ambient noise during the day, a known
pitfall of SPL.

Similarly, H identified Tektite apart from the other reefs, but
differentiation between Yawzi and Cocoloba was less obvious
(Figure 7). At these sites, H had a negative relationship with all
other variables and its daily trends were inverted from call rate,
BIO, or SPL. Entropy is calculated from 0 to 1, with 0 being a
single pure tone and 1 reflecting completely random noise (Seuer

FIGURE 7
Averaged daily trends and distributions of acoustic indicators between reefs. (A) Recieved sound pressure level (SPL, dB re 1 µPa), acoustic
complexity (ACI), bioacoustic index (BIO), and entropy (H) in the low frequency band for each audited file by site. Mean and standard deviation for each
site are overlayed in black. Statistical differences in distribution between sites are represented by stars (*p < 0.05; **p < 0.01; ***p < 0.001, Dunn’s test of
multiple comparisons, Bonferroni adjustment). (B) Daily hourly mean values of 4 acoustic indicators averaged across 8 days, colored by site.
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FIGURE 8
(A) Linear regression of call rate and acoustic indicator, colored by site. Output from each audited file is plotted, and then best fit line is overlayed in
black with corresponding multiple R2 value. All regressions showed significance, with the strongest relationship with fish call rate being sound pressure
level, top plot, and theweakest being the acoustic complexity index, bottom right plot. (B) Linear regression of SPLwith other acoustic indicators. Top plot
again shows regression between call rate and SPL, with the axes flipped. However, in this figure we can see that SPL actually has stronger
relationships with both the Bioacoustic Index, bottom middle plot, and Entropy, bottom left. Similar to call rate, ACI has a negligible relationship to SPL.
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et al., 2008a). In terrestrial environments, for which this index
was designed, it has been shown to positively correlate with the
number of species (Seuer et al., 2008b). However, in acoustically
active marine environments, dense fish choruses can drive the
index down (Staaterman et al., 2017), which is likely what
occurred here. Other aquatic studies have also observed this
inverted relationship between entropy and fish activity
(Bohnenstiehl et al., 2018) or phonic richness, a measure of
the number of types of fish calls, although this relationship
tends to be relatively weak (Williams et al., 2022).

BIO, which measures cumulative intensity across frequency
bands (Boelman et al., 2007), yielded slightly weaker correlations
with visual metrics and call rate at these sites. Among the few
aquatic studies using BIO, one investigation revealed a significant
relationship with reef state and the higher frequency shrimp
patterns (Williams et al., 2022). Another found strong, positive
correlations with planktivores and non-encrusting coral (Elise
et al., 2019), although this was only demonstrated in one 2-h
recording. Given these limited but equivocal results, BIO’s utility
(or lack thereof) could perhaps be explored further.

This study found that the ACI had almost no relationship with
call rate or other acoustic indices and demonstrated no meaningful
site or time-of-day differentiation. It was included in the analysis
because of its recent proliferation in underwater soundscape
literature and weak but significant correlation to call rate.
However, ACI effectively gave no information about these
particular reefs. This further contributes to the uncertainty
around the application of ACI and acoustic indices in general to
coral reef soundscapes, as they can be very case-specific and sensitive
to spectral resolution and specified parameters (Bohnenstiehl et al.,

2018; Dimoff et al., 2021). The contradictory literature around
acoustic indices begs caution when applying them to new
soundscapes without validation (Mooney et al., 2020). Further,
the variable success of indices can lead to a pick-and-choose
mentality to support the expected outcomes.

Manual annotation of fish calls does not come without
challenges. Manual detection is time- and effort-intensive,
making it unsuitable for long time-series, near-real-time
monitoring, or large-scale projects. Like reefs themselves, fish
sounds are highly diverse, variable, and abundant, with fish calls
being largely unknown, making it challenging even for experienced
acousticians. Dense, near-constant chorusing at healthy reefs almost
certainly leads to missed calls during peak times, although our
results suggest that counts are still representative, even with this
limitation. These challenges to generalized fish call detection have
also contributed to the lag in producing accurate machine-learning
models to automate the process. As a terrestrial parallel, bird
vocalization recognition in acoustically dense environments has
advanced significantly in recent years with the rise of deep
learning models, which now surpass other methods (Xie et al.,
2023). More focused work on bringing generalized reef fish
detectors up to this standard would allow fish calls to be a
practical method of coral reef monitoring and could potentially
avoid many of the pitfalls of acoustic proxies. This method would
theoretically be applicable to low-cost, uncalibrated acoustic
recorders, unlike SPL or sound exposure level (SEL), which
would break down a remaining barrier of underwater PAM and
allow the field to expand rapidly.

Addressing the question of biodiversity is a priority for aquatic
researchers, especially at a time when it is quickly disappearing

FIGURE 9
Correlation matrix between acoustic indicators derived from this study and average number of fish, fish species, and hard coral percent cover from
visual surveys over 2016 and 2017 using Kendall rank correlation. Sites are delineated with colors: Cocoloba (CL) in light blue, Yawzi (YA) in red, and Tektite
(TK) in purple. Kendall’s tau (τ) coefficient is printed for each relationship; all correlations were statistically significant and shown in red. Strong positive
correlations are apparent between visual metrics and call rate and SPL, as well as a strong negative correlation with H. BIO and ACI were both weakly
related to fish abundance, fish species, and hard coral cover.
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(Eddy et al., 2021). Phonic richness by manually classified call types
has shown promise as a metric of reef fish diversity in other studies,
but this method is also limited by time and effort allocation (Lamont
et al., 2022b). Unsupervised clustering of fish detections, even of
unknown origin, would be a critical follow-up step to tackle the
question of biodiversity, but current models are limited to 3-4 larger
clusters of reef sounds, rather than parsing out the extreme diversity
and variability of coral reef fish calls (Lin et al., 2017; Ozanich et al.,
2021; Mahale et al., 2023). As machine learning continues to
advance, opportunities to fine-tune these methods to use total
fish call variation to predict biodiversity, and particularly
biodiversity changes, should be explored.

In conclusion, this study demonstrated the utility of individual fish
calls, even of unknown identification, in characterizing reef
quality–namely, fish abundance and fish diversity, which are both
known to strongly correlate with hard coral cover (Komyakova
et al., 2013). Fish call rate analysis across 8 days differentially
partitioned our three sites more accurately than any of the
commonly used acoustic metrics tested, revealing spikes in
crepuscular fish activity in our intermediate site that the indices
missed. Our results suggest that fish calls and acoustic activity are
indicators of healthy reef communities and can be applied to monitor
coral reef health. Our results further add to the inconsistency and
uncertainty surrounding acoustic indices in the low frequency for reef
composition predictions. Manually auditing fish calls is not a proposed
method for coral reef health monitoring in its current state, but rather
this study was a baseline to validate it as a useful metric and encourage
the development of thorough, generalized reef fish call detectors to
analyze passive acoustic datasets in a meaningful time frame.
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