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This paper demonstrates the use of a novel, autonomous hyperspectral
surface reflectance data collected at Wytham Woods, United Kingdom
(WWUK) as part of the LANDHYPERNET network for the validation of
multispectral data from Sentinel-2, Landsat 8 and Landsat 9. The
deployment of the HYPSTAR instrument at the site and the corresponding
quality control of the data products is described. In addition, a methodology
based upon metrological principles is outlined showing the propagation of
uncertainties from the LANDHYPERNET and satellite data products to enable
conformity testing of the satellite products using the satellite mission
requirements. A total of 9 matchups are found for satellite validation at the
site, where there is a cloud-free satellite scene and a corresponding
LANDHYPERNET sequence, which has passed all quality checks, within two
hours of the overpass. An analysis of the impact of the spatial variability of the
site is presented and can account for up to 40% of the uncertainty associated
with the in-situ surface reflectance data. There is no systematic bias in the
Bottom-Of-Atmosphere reflectance data obtained from the LANDHYPERNET
data in comparison to the satellite data. In the best case, differences of less
than 2% are found for certain spectral bands. However, in the worst cases,
relatively large differences are found which exceed 100%, this is affected by
the relatively low reflectance values found in the visible bands. These
differences could be caused by the spatial and temporal mismatch
between the in-situ and satellite measurement, or due to shadowing
caused by the flux tower. Further data quality control and assurance is
needed to best choose data sets suitable for satellite validation.
Incorporating a Bidirectional Reflectance Distribution Function model into
the processing chain for the forest canopy is recommended. Overall, although
there are areas to further characterise, the site provides a useful benchmark
for which to develop techniques for validation of satellite surface reflectance
products over a challenging environment.
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1 Introduction

Data from Earth Observation (EO) satellites are increasingly
being used for commercial and scientific purposes. Long-term time
series of this data are being utilised to develop records of
environmental change (Fensholt et al., 2009; Yang et al., 2013).
Users are combining data sets from multiple satellites to either
increase the data coverage or extend the time series beyond the
operational range of a single satellite (Li and Roy, 2017; Claverie
et al., 2018). Although pre-launch calibration of the instruments is
performed for many satellite missions, ongoing validation on their
products performance is needed against independent sources to
provide users with the confidence in the quality of the data products
to ensure performance and remove satellite degradation effects,
which change characteristics after launch and are not captured
by the pre-flight calibration efforts (Justice et al., 2000). The
main satellite-derived products which are used as inputs for
terrestrial monitoring are the Bottom-Of-Atmosphere (BOA)
products, also referred to as Surface Reflectance (SR) products.
BOA products are generated by applying Atmospheric Correction
(AC) algorithms from the Top-Of-Atmosphere (TOA) products,
removing the influence of the atmosphere to the TOA signal (Liang
et al., 2012). AC algorithms introduce more uncertainties into the SR
products, which in the visible and near infra-red (VNIR) and short
wave infra-red (SWIR) can be mainly attributed to the uncertainties
associated with the aerosol and water vapour optical properties (Li
et al., 2018). Currently European Space Agency (ESA) SR products
do not have per-pixel uncertainty estimates, which can be
considered a key limitation in subsequently derived bio-
geophysical retrieval algorithms (Niro et al., 2021). Presently,
there are no global networks systematically collecting ground-
data for the validation of surface reflectance products over land.

There is a long history of using ad hoc campaigns, ground and
airborne measurements for the validation of EO products (Badawi
et al., 2019). However, there are limitations to ad hoc campaign
validation approaches including inclement weather conditions, time
and cost constraints and personal availability which minimises the
number of validation matchups. Moreover, attempts to validate
multiple sensors with different overpass times and dates can be
difficult to achieve using campaign validationmodels (Malthus et al.,
2019). Recent advances in automated techniques have been
developed to overcome some of these challenges, whilst
maintaining similar results to those obtained from traditional
validation campaigns. One such system which has been
extensively used for the vicarious calibration to TOA products is
the Radiometric Calibration Network (RadCalNet) (Banks et al.,
2017; Bouvet et al., 2019; Jing et al., 2019), which was developed by
the RadCalNet working group under the Committee on Earth
Observation Satellites (CEOS) Working Group on Calibration
and Validation (WGCV) and the Infrared Visible Optical Sensors
(IVOS). However, there are still significant challenges and gaps
which affect our ability to assess the radiometric quality of BOA
products such as the limited geographical coverage of existing
validation datasets and temporal and spatial mismatches between
the reference datasets and the satellite data products (Niro
et al., 2021).

Alternatively, indirect validation of SR products can be
performed, such as the joint ESA-NASA Atmospheric Correction

Inter-Comparison Exercise (ACIX) (Doxani et al., 2018) utilising the
AERONET stations (Holben et al., 1998), to obtain a globally
representative set of surface and climatological conditions.

The Horizon 2020 LANDHYPERNET project aimed to fill the
gap in the validation of SR products by developing a network of land
and water sites with automated, hyperspectral platforms which can
make continuous measurements over a variety of surface types
(Goyens et al., 2021). As part of this project, 9 test sites were
deployed and formed a LANDHYPERNET network. The sites
are: DEMMIN, Germany (DEGE), Wytham Woods,
United Kingdom (WWUK), Princess Elisabeth, Antarctica
(PEAN), ATB, Germany (ATGE), Gobabeb, Namibia (GHNA),
IFEVA, Argentina (IFAR), Järvselja, Estonia (JAES), Tõrravere,
Estonia (TOES) and Barrax, Spain (BASP). They include various
land cover types such as deciduous broadleaf forest, cropland, bare
soil, snow and ice, desert, grassland and needleleaf forest. All sites
are equipped with the Hyperspectral Pointable System for
Terrestrial and Aquatic Radiometry, (HYPSTAR®) instrument
deployed as part of the LANDHYPERNET project. This paper
describes the deployment of the HYPSTAR® instrument at the
Wytham Woods, United Kingdom site. An overview of the
LANDHYPERNET and satellite-derived SR products are
presented. Then, the spatial variability of the site and validation
results for two different high-resolution satellite missions: Sentinel-2
(S2), Landsat-8 and Landsat-9 (Landsat) are presented. Finally, the
suitability of the site for use as a calibration and validation site for
surface reflectance products and future steps are discussed.

2 Materials and methods

2.1 WWUK

The WythamWoods United Kingdom (WWUK) site is a site of
special scientific interest (SSSI) and has a long history of scientific
research, including for the validation of satellite products (Brown
et al., 2021), understanding the dynamics of canopy bio-physical
properties (Brown et al., 2020) and carbon sequestration (Calders
et al., 2022). Being a SSSI, it is a protected area in the
United Kingdom and is representative of its natural fauna and
flora. The site is managed by the University of Oxford and the area
surrounding the flux tower is primarily ancient seminatural
woodlands with the main species being ash (Fraxinus excelsior),
beech (Fagus sylvatica), hazel (Corylus avellana), oak (Quercus
robur) and sycamore (Acer pseudoplatanus) (Figure 1 left). The
HYPSTAR® extended range (-XR)1 instrument was deployed at the
top of a flux tower (N 51.77503°, W1.33906°) in November 2021, at a
height of 28 m above the ground, on an extended 6 m horizontal
boom to minimise the impact of the tower on the field of view
(Figure 1 right). Data is collected every 30 min between 9 a.m. and
6 p.m. local time (UTC+0 in winter months and UTC+1 in British
Summer Time) between viewing zenith angles of 0–30° and viewing
azimuth angles of 83, 98, 113, 263, 278 and 293° corresponding to the
typical viewing geometry of satellites on sun-synchronous orbits.

1 https://hypstar.eu/
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The deployment of the instrument was not optimal, being on the
North facing side of the flux tower due to local topography and the
presence of other instruments on the flux tower.

The site is highly variable due to the annual phenological cycle of
the vegetation changing the surface reflectance values and the
structure of the canopy over the growing season. Moreover,
diurnal variability in the surface reflectance is caused by variable
shadowing affecting the site in different illumination conditions.
Shadowing, caused by both the flux tower and the trunks of the tree,
particularly impacted the sequences obtained in leaf-off conditions
between mid-October and mid-April.

2.2 LANDHYPERNET data

The HYPSTAR® XR instrument has been deployed as part of
the LANDHYPERNET network. The instrument contains two
modules; the first collecting visible and near-infrared spectra
(VNIR, 380–1,000 nm) and the second collecting shortwave-
infrared spectra (SWIR) up to 1700 nm with a 5° FOV for
radiance measurements and 180° for irradiance measurements.
The spectral sampling is 0.5 nm in the VNIR and 3 nm in the
SWIR, with a spectral resolution of 3 nm and 10 nm respectively.
All sequences have been processed using the HYPERNET_PROCESSOR

(Goyens et al., 2021) (De Vis et al., in prep) which automatically
generates data products at different levels from raw counts (L0),
up to surface reflectance (L2A) values for each angle by
combining the radiance and irradiance measurements from
each sequence. The surface reflectance product is defined as
the Hemispherical-directional Reflectance Factor (HDRF)
(Schaepman-Strub et al., 2006), which can be used as a proxy
to measured Hemispherical-conical Reflectance Factor (HCRF),
under the assumption that the relatively small instrument FOV
(5°) and the small physical size of the fore optic allows us to make
this approximation. Each data product comes with random and
systematic uncertainties propagated using the CoMet toolkit
(www.comet-toolkit.org) which applies a rigorous metrological
approach (GUM, 2008).

A detailed description of the processing steps and the
uncertainty propagation performed in the HYPERNET_PROCESSOR

can be found in De Vis et al. (in prep) or in the HYPERNET_

PROCESSOR documentation2. In total 5,572 sequences have been
collected since the instrument has been deployed up to the
31 August 2023, of which 4,254 sequences have been processed
to surface reflectance products (L2A) without any issues.

In addition to the standard checks in the HYPERNET_PROCESSOR

two additional screening procedures are developed to remove
outliers and only supply the best quality data suitable for satellite
validation. These two additional checks are firstly that the spectrum
matches a typical vegetation spectrum and the sigma-clipping
approach, both are described in detail below. Only data between
April and October, corresponding to the leaf on period, are
considered to be checked against a nominal vegetation spectrum.
Spectra need to pass three tests: that there is a peak in the green
portion of the visible wavebands (560 nm), that a red edge is
detected and that their Normalized Difference Vegetation Index
(NDVI) exceeds 0.42. The threshold of NDVI >0.42 was selected as
it allowed for consistency between spectrum from the HYPSTAR
instrument corresponding to vegetation and pixels classified as
vegetation in the scene classification layer of S2 SR products
(Main-Knorn et al., 2017).

After the vegetation quality flags are applied and spectra that
failed any of the three tests have been removed, a sigma-clipping
method is used to remove remaining outliers. First reflectances are
extracted in separate 2 hour windows throughout the day (to
account for BRDF differences due to different solar position) for
4 different wavelengths (500, 900, 1,100 and 1,600 nm). Outliers in
these reflectances are then identified by iteratively calculating the
mean reflectance trend with time (by binning the data per maximum
30 data points), calculating the standard deviation from this trend,
and masking any data that is more than 3 standard deviations away
from the trend. This process is repeated on the unmasked data until

FIGURE 1
Wytham Woods United Kingdom (WWUK) site location (A) and mast (B). Contains modified Copernicus Sentinel data (2022) obtained from
Copernicus Data Space Ecosystem.

2 https://LANDHYPERNET-processor.readthedocs.io/en/latest/
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the standard deviation does not vary by more than 5% between two
iterations. The masks for the 4 different wavelengths are then
combined (keeping only measurements for which none of the
4 wavelengths is an outlier). The reflectances and associated
uncertainties for any masked series (i.e., a geometry that is
masked either by the sigma-clipping procedure or from the
masks of the HYPERNETS_processor) are replaced by NaNs.
Any sequence that has more than half of its series masked is
removed entirely. After this second screening procedure is
applied 396 sequences remain. This data is open access and the
first version available (Morris et al., 2023)3 which contains data from
April 2022–April 2023. Additional data files from May–August
2023 have been used in this study which are not currently
included in the zenodo dataset but will be included in the
next release.

2.3 Satellite data

2.3.1 Sentinel-2
The Sentinel-2 (S2) Copernicus mission is a high spatial

resolution (10 m–60 m), multi-spectral optical imaging mission.
Two sun-synchronous satellites, S2A and S2B, launched in June
2015 and March 2017 respectively, are phased at 180° to each other,
providing a revisit time of 5 days (Drusch et al., 2012). Onboard
these satellites is a multispectral instrument (MSI), which has
13 spectral bands covering the visible, infrared and short wave
infrared. Surface reflectance data, which corresponds to the
directional hemispherical reflectance at a surface (Schaepman-
Strub et al., 2006), is provided to users in the Level-2A products
which have been generated using the atmospheric correction
processor Sen2Cor (Main-Knorn et al., 2017).

There have been a limited number of studies which have
attempted to evaluate the performance of S2 Level-2A products
(Origo et al., 2020; Pancorbo et al., 2021). Systematic evaluation of
the performance of S2 SR products is conducted by the S2 Mission
Performance Cluster (S2MPC) (S2MPC, 2023). Total uncertainty of
SR retrieval with Sen2Cor was estimated as 7% (k = 1) over bright
RadCalNet sites and 17% over bare soil and meadow sites in
Germany (Pflug et al., 2022). Utilising the data collected by Pflug
et al., the S2MPC found that 79% of retrieved SR values are within
the mission uncertainty requirement goals of S2, (0.05 * reflectance
value +0.005). The conventional S2 Level-2A product does not come
with any associated uncertainty values. However, a recently released
tool, the S2L2 Radiometric Uncertainty Tool (RUT) which utilises a
multivariate MonteCarlo Model (MCM) to derive uncertainty and
spectral correlation information for a S2 region of interest, has been
used in this study to obtain uncertainties, using the standard
parameters provided (Gorroño et al., 2023).

All available S2 L2A surface reflectance products and their
corresponding top of atmosphere L1C products, from April
2022 to August 2023, which have been processed using Sen2cor
version 4.0.0 (Main-Knorn et al., 2017), were downloaded from the
Copernicus Open Access Hub (https://scihub.copernicus.eu/).

2.3.2 Landsat 8/9
Landsat 8 (L8) and Landsat 9 (L9) are the most recently

launched missions (February 2013 and September
2021 respectively) of the NASA/USGS Landsat program, which
has been operational since the 1970s (Wulder et al., 2019). Both
satellites have two instruments onboard: the Operational Land
Imager (OLI) and the Thermal Infrared Sensor (TIRS). OLI
provides 15–30 m imagery in 9 multispectral bands covering the
visible, near infrared and shortwave infrared. TIRS measures land
surface temperature in two infrared bands. Both satellites orbit in a
sun-synchronous, near-polar orbit (98.2° inclination) with a 16-day
repeat cycle (Markham et al., 2015; Masek et al., 2020). Validation of
L8 and L9 L2 products has found differences of 3.3%–10% in
comparison to in-situ datasets over a number of land cover types
(Wulder et al., 2019; Teixeira Pinto et al., 2020; Eon et al., 2023). The
current radiometric calibration accuracy and stability mission
requirement targets are within 5% (k = 1) absolute spectral
radiance; within 3% top-of-atmosphere reflectance and within 2%
thermal infrared spectral radiance.

The Landsat 8/9 data was extracted using the cloud based
platform of Google Earth Engine (Gorelick et al., 2017). For both
satellites the corresponding Collection 2 Level-2 Tier 1 surface
reflectance products were used (L84, L95). The surface reflectance
products are generated using the Land Surface Reflectance Code
(LaSRC), version 1.5.0 (Vermote et al., 2016).

2.3.3 Understanding the spatial heterogeneity of
the site

One of the areas of interest in this study has been to assess the
representativeness of the region of interest (ROI) measured by the
HYPSTAR®XR instrument in comparison to the pixel extraction
from the satellite. As previously mentioned, variability in the forest
canopy can be caused by a variety of factors including different tree
species, an undulating surface at the top of canopy, hot spots
and shadowing.

The uncertainty associated with the spatial variability of the site
at the HYPSTAR ROI scale was quantified using hyperspectral
airborne data captured over the site on the 17 July 2021. This
data was captured by the University of Zurich (UZH) Airborne
Research Facility for Earth System (ARES) using the Airborne
Visible/Infrared Imaging Spectrometer Next-Generation
(AVIRIS-NG) instrument developed by the National Aeronautics
and Space Administration (NASA) Jet Propulsion Laboratory (JPL).
The data covered the spectral range of 380–2,510 nm with a 5 nm
full width half maximum per band and a spatial resolution of 3 m.
This data was radiometrically, atmospherically and geometrically
corrected in house by JPL (Thompson et al., 2018; Chapman
et al., 2019).

For each of the corresponding extracted ROIs from the satellite
data the uncertainty associated with the spatial variability of the site
at the HYPSTARmeasurement size is determined from the standard

3 https://doi.org/10.5281/zenodo.7962557

4 https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_

LC08_C02_T1_L2

5 https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_

LC09_C02_T1_L2
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deviation in the spread of the reflectance values per band. The spatial
uncertainty is first interpolated to 1 nm bands then band integrated
using the spectral response function of the HYPSTAR bands, before
being propagated into the final uncertainty budget for the
HYPSTAR measurements.

2.3.4 Identifying matchups between WWUK
LANDHYPERNETS and satellite data

Once the satellite data has been downloaded, a python script
identifies matchups to the nearest LANDHYPERNET sequence. A
match-up is only considered, if there is a corresponding sequence
within 2 hours of a cloud-free satellite overpass. In the case of
multiple sequences, the sequences with the smallest difference in
time is selected. As each sequence contains multiple reflectance
scans taken at different viewing geometries, a matching procedure
was used based upon the VAA of the satellite matchup and using the
maximum VZA (30°), to maximise the top of canopy area sampled
by the HYPSTAR instrument.

The hyperspectral data from the HYPSTAR instrument was
integrated into the multispectral bands of each satellite using the
specific relative spectral response (RSR) function of the sensor. This
was obtained for both S2A and S2B6 as well as for OLI L8 (Barsi et al.,
2014) and OLI L9 (Barsi et al., 2019).

Frtom each S2 scene, a 5 × 5 pixel extraction centered on the flux
tower was acquired, corresponding to a 100m × 100m ROI. For Landsat
scenes, a 3 × 3 pixel extraction was acquired corresponding to a 90m ×
90m ROI. Pixels were flagged in each product using the corresponding
qualityflags providedwith the products to removepixels affected by cloud,
cirrus cloud, no-data, saturated, degraded or otherwise contaminated
pixels. For Landsat matchups, the mean and the standard deviation of all
valid pixels per band was taken as the mean and spatial uncertainty
associated with the extraction. For Sentinel-2 matchups, the average value
was calculated as the mean of all valid pixels, whereas the uncertainty was
calculated using the S2L2 RUT using its default parameters and running
for 250 iterations of the MonteCarlo Model.

There were 32 S2 scenes available over the site during this study.
Of these, 13 were affected by cloud cover and an additional 15 had
no corresponding sequence that had passed all quality checks. There
are 4 good quality S2 matchups found for the site over the two
growing seasons. For Landsat 8 and 9 there are 62 potential
matchups for this study. 45 of these are removed due to cloud
cover and an additional 13 have no corresponding sequence. This
leaves 5 good quality Landsat matchups for the site. Therefore in
total there are 9 matchups between LANDHYPERNET and satellites
used in this study. Matchups from the summer of 2022 were affected
by periods of downtime, as the instrument is a prototype and needed
maintenance, additionally, the summer of 2023 has been
unseasonably cloudy affecting the majority of the matchups.
Although, the current number of matchups is lower than
expected for the site, in the future we hope to be able to provide
greater statistics from this site. Details of all of the matchups can be
found in Table 1, including time of observations, viewing and solar

geometries. Plots for every matchup are given in the Supplementary
Appendix S1.

bias � ρsat
ρband,LANDHYPERNET

− 1 (1)

For each match-up the reflectances from the LANDHYPERNET
sequence can be compared directly to the satellite observations.
The bias is calculated using Eq. 1 as the uncertainties are
represented as relative in this study. Where ρband,LANDHYPERNET
are the relevant satellites band-integrated BOA reflectances and ρsat
are the observed BOA satellite reflectances. In the visible parts of the
spectrum, reflectance values are very low over the dark vegetated site
and therefore representing bias as a ratio leads to a lack of precision.
Therefore, for these bands the results are compared in absolute
reflectances in addition to relative signals. Each bias measurement
comes with an associated uncertainty calculated using Eq. 2

utotal �
�����������������������
u2
sat + u2

LANDHYPERNET + u2
comp

√
(2)

where usat is the uncertainty associated with the satellite observation,
uLANDHYPERNET is the measurement uncertainty associated with the
LANDHYPERNETS data and ucomp is the comparison uncertainty
accounting for differences in the measurements between the satellite
and the HYPSTAR. The spatial variability of the site derived from the
airborne data is used as the lower limit estimator of ucomp in this study.
This is likely to be an underestimation of ucomp as it does not take into
account other factors such as the BRDF of the canopy, shadowing and a
mixture of the above and below canopy reflectance, pointing errors in
the HYPSTAR and changes in both the viewing and solar geometries
within the match-up window (Widlowski et al., 2015; Nevalainen et al.,
2017). As the data from the LANDHYPERNET instrument and the
satellite data has an associated uncertainty, conformity testing of the
satellite SR products is performed using the mission requirements to
define the upper and lower limits of the tolerance intervals. For each
matchup the absolute difference between the WWUK data and the
satellite data is used for evaluation. This difference also has an associated
uncertainty derived using Eq. 2, accounting for the uncertainty
associated with the satellite and LANDHYPERNET data and the
comparison uncertainty. A measurement is conforming if the
difference combined with the total uncertainty (utotal), is within the
mission requirements. Shown in Eq. 3 for Sentinel-2 at k = 1. A
measurement can also be inconclusive or nonconforming if one or both
of the requirements are not met (ISO, 2003).

ρsat − ρband,LANDHYPERNETS

∣∣∣∣
∣∣∣∣ + utotal ≤ 0.05 ρband,LANDHYPERNETS + 0.05

and

ρsat − ρband,LANDHYPERNETS

∣∣∣∣
∣∣∣∣ − utotal ≥−0.05 ρband,LANDHYPERNETS − 0.05 3( )

3 Results

3.1 Spatial variability

The heterogeneity of the site within a satellite ROI extraction can
be seen in Figure 2, which shows the average airborne reflectance
spectra (red data series) and the variability of the spectra within a

6 https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi

/document-library/-/asset_publisher/Wk0TKajiISaR/content/sentinel-2a-

spectral-responses
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100 m × 100 m area around the flux tower (red shaded area) and the
reflectance spectra from the exact pixel of the deployment of the
HYPSTAR instrument from the airborne data (black data series).
The spatial variability is expressed as k = 1 uncertainty and derived
as the standard deviation of all pixels in ROI of airborne data. There
is a slight underestimation in the HYPSTAR pixel in the NIR and
SWIR bands in comparison to the average for the ROI. For all bands,
this difference is less than the variability of the spectra within the
ROI. The absolute difference between the two spectra in the visible
range is less than 0.01, increasing to between 0.01 and 0.04 in
800–1,400 nm (Figure 2).

The Spectral Relative Absolute Error (RAE) was used to evaluate
the representativeness of the airborne spectral reflectance profile of
the pixel where the HYPSTAR instrument is deployed in
comparison to the ROI average spectral reflectance profile (Xu
et al., 2016). A smaller RAE value means the location of the
HYPSTAR instrument is representative of the ROI at the spatial
scale of the airborne data (Hakuba et al., 2013). In Figure 2 it can be

seen that the location of the HYPSTAR instrument is representative
of the overall 100 m × 100 m ROI. In the visible and NIR bands a
near perfect relationship is seen with an RAE less than 20% at
400 nm and decreasing to less than 10% from 500 nm onwards.
There are a few increases in the RAE values corresponding to bands
affected by aerosols and water vapour bands in the atmosphere
which would affect the airborne data.

The relative uncertainty associated with the airborne spectra at
different spatial resolutions was calculated as the standard deviation
of the airborne spectra divided by the mean airborne spectra for the
ROI size. The relative variability was highest in the blue bands
reaching 40% variability and averaging 20% variability for all
wavelengths between 500–1,300 nm at k = 1 coverage factor
(Figure 3). With an increase within the red-edge portion of tree
species present at the site. The relative uncertainty increased as the
size of the region of interest increased up to the decametric scale of
the satellite data as shown in Figure 3. At any scale greater than this
the uncertainties stabilised as the variability between the tree species

TABLE 1 Details of thematchups between the observations forWWUKwith Landsat and Sentinel satellites. The viewing and solar zenith and azimuth angles
are measured clockwise from North.

Satellite Date Satellite
observation
(UTC)

WWUK
observation
(UTC)

VZA
satellite,
HYP* (°)

VAA
satellite,
HYP* (°)

SZA
satellite,
HYP* (°)

SAA
satellite,
HYP* (°)

L8 14/05/2022 10:58:29 11:00:37 1.9, *30.0 131.6, *113.0 35.4, *35.0 153.5, *155.8

L8 12/08/2023 11:04:37 11:00:42 7.3, *30.0 280.6, *278.0 41.4, *39.2 155.9, *153.7

L9 22/05/2022 10:58:05 11:00:38 1.7, *30.0 133.5, *113.0 33.7, *33.3 152.3, *154.9

L9 26/08/2022 10:58:48 11:40:38 1.9, *30.0 129.8, *113.0 43.7, *44.7 155.3, *150.5

L9 20/08/2023 11:04:33 11:00:38 7.3, *30.0 280.6, *278.0 41.4, *41.5 155.9, *155.3

S2A 26/04/2022 11:06:31 11:32:43 3.6, *30.0 126.6, *113.0 39.3, *38.5 162.1, *169.8

S2A 16/10/2022 11:21:21 09:40:42 10.1, *30.0 295.3, *293.0 61.0, *66.57 173.2, *145.4

S2A 22/08/2023 11:21:21 11:00:37 10.1, *30.0 295.2, *293.0 41.0, *35.0 164.4, *156.8

S2B 14/05/2022 11:21:09 11:00:37 10.1, *30.0 294.6, *293.0 33.8, *34.9 165.0, *156.4

FIGURE 2
(A) Reflectance profiles for the central pixel and the ROI averagewith the standard deviation (k= 1) of the ROI plotted. (B) The absolute difference per
wavelength between the ROI average and the central pixel, with the standard deviation (k = 1) of the ROI plotted. (C) The spectral relative absolute error
(RAE) between the central and ROI spectra.
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and gaps in the canopy become less predominant. This pattern was
found for all wavelengths across the visible, NIR and SWIR bands.

3.2 S2 comparison

Observations of the BOA reflectance from S2 and from the
corresponding LANDHYPERNET sequences show a similar spatial
pattern for all of the matchups, whereby the WWUK data has a
similar spectral profile to the S2 files, falling within the
LANDHYPERNET uncertainties. In the visible wavelengths, both
SR products have very low reflectances varying between 0.02–0.1. In
the NIR and SWIR range, both products increase to the region of
0.35–0.5 (Figure 4).

For the WWUK data products, two uncertainties are included
accounting for the measurement uncertainty and also the spatial
representativeness uncertainty, corresponding to the grey and
orange shaded areas respectively. For each of the S2 bands the
bias between the band-integratedWWUK data and the S2 bands has
been calculated and plotted in the figures as a percentage. In the
matchup from the 26 April 2022 shown in Figure 4, B01 has the
greatest relative bias, at 27%. In absolute terms, this difference is
0.0071 which slightly exceeds the mission requirements of 0.0066 for
the low reflectance. For the bands in the visible region, the relative
bias ranges between −17.6% and 27.2%. The best agreement is found
in bands B06, B07, B08 and B8A, with differences of less than 2%
relative bias between the two datasets. Overall, these bands have the
lowest relative biases across all of the S2 matchups. For all of the
matchups the absolute biases between the LANDHYPERNETS data
and the S2 extractions are less than the total combined uncertainty.

Additionally, an assessment into the temporal variability of the
matchups between S2 and WWUK are presented. The percentage
difference (bias) for all matchups are shown in Table 2, for all
bands, there is a marked increase in the bias between the WWUK
and S2 products from 2022 to 2023. This increasing bias between
the two data sets could be caused by a number of factors such as a
change in the vegetation conditions or degradation of the
HYPSTAR via a build up of dust or dirt on the fore optics.
However, to truly characterise this phenomenon, more
matchups with satellite SR products over the next growing
season are needed.

The uncertainties in the S2 BOA reflectance products derived
from the S2L2RUT tool are presented in Table 3. The tool gives the
uncertainties at coverage k = 1. The lowest relative uncertainty (in
the range of 3%–5%) occurs in the bands in the NIR and SWIR. The
visible bands have higher uncertainties, ranging from 25% to 60%,
for all S2 scenes. This is due to the relatively low reflectance values in
these bands. These are represented in Figure 4 as error bars on
the S2 values.

FIGURE 3
The relative spatial variability in the airborne data with k =
1 uncertainty for different spatial scales around the flux tower.

FIGURE 4
(A) The full resolution and band-integrated LANDHYPERNET data compare to Sentinel-2 data for the WWUK matchup on 26 April 2022. The two
shaded areas represent the uncertainty (k = 1) of the LANDHYPERNET data only considering the instrument uncertainty (grey) or the instrument and the
spatial representativeness uncertainty of the measurement (orange). The uncertainty bars on the S2 data are derived using the S2L2RUT tool. (B) The
percentage difference (bias) between the band-integrated LANDHYPERNET data and the S2 data. A few points are off the graph due to the absolute
values in reflectance being very small.
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The performance of the matchups against the mission
requirements for S2 are shown in Figure 6 left. Overall, there is
good agreement with the mission requirements for all bands, with an
overall bias of - 0.01 in the S2 data. However, for all bands except
Band 5 (704.1 nm), which has two non-conforming measurements,
all measurements are inconclusive when assessing their conformity
in comparison to the S2 mission requirements. As the absolute
difference falls within the mission requirements and agrees within
the combined uncertainties, there is no evidence that the S2 mission
requirements are not being met. However, further work on reducing
the comparison contributions towards the combined uncertainty
would improve the conformity results from the analysis.

Overall, the results are similar to other validation results which
found an absolute bias of 0.005 ± 0.02 for validation sites over much
brighter and homogeneous surfaces (Pflug et al., 2022).

3.3 Landsat comparison

A comparison of Landsat SR and the corresponding
LANDHYPERNET sequence from the 20 August 2023 is shown
in Figure 5. In this example, there is relatively good agreement
between the BOA reflectance from the two products with an
underestimation (where Landsat reflectance is less than the
LANDHYPERNETS) of less than 10% for B03 and B04. For all
Landsat matchups there was an overestimation in B01 and B02,
however these are reasonably small in absolute terms. Moreover, the
agreement between the LANDHYPERNET data and Landsat was
consistently worse than for S2, with significant differences in the
NIR bands. This may suggest that the matchup approach adopted in
this study, selecting the corresponding scan from a VZA of 30°, may
need a BRDF correction implemented to minimise the different in
VZA between the two datasets.

Finally, the overall performance of the matchups against the
mission requirements are presented in Figure 6 right. For all of the
bands, none of the measurements from the matchups are

conforming to the mission requirements. However, this is
partially due to the dominance of the comparison uncertainties
in the total uncertainty budget. Overall, the performance is worse for
Landsat than S2 with a higher bias of 0.04 from the HYPERNETS
data in comparison to the Landsat data. In addition, there is a larger
spread in the results, which can be seen in Band 5 (865.0 nm), with
matchups both over and underestimating the reflectance in
comparison to the satellite data. These results are similar, to
those of Eon et al. (2023) which found a difference of 2% in the
VNIR and 5%–8% in the SWIR region between UAV and Landsat
SR products when performing SR validation over desert sites.

4 Discussions

The results presented in the previous section indicate that in its
current set up, the WWUK site is suitable for use as a validation site
for surface reflectance. However, as the site is operational for longer
it will develop the understanding of the spatial variability at the site.
There is no systematic bias between the WWUK data and the
satellite data. As discussed in Section 2.1 the instrument
deployment was compromised due to the presence of other
instruments at the ideal location upon the flux tower.
Additionally, as the instrument is deployed facing North, it is
quite likely that the shadow from the structure of the flux tower
is influencing the upwelling radiance measurements taken from the
measurement area of the instrument, an example of which can be
seen in Figure 7 as the shadow moves across the measurement area
across the day. There is a large variability in the surface reflectance
measurements obtained by the instrument for a particular VAA
depending on the VZA as demonstrated in Figure 8. As the VZA
increases the area of the top of canopy being measured will increase,
with a lower gap fraction obtained at higher VZA, minimising the
area of the understory being measured.

As shown in Figure 8 measurements at 30° VZA do have the
highest reflectance values. However, for measurements approaching

TABLE 2 The relative bias (%) per S2 band for all matchups used in this study.

Date B01 (%) B02 (%) B03 (%) B04 (%) B05 (%) B06 (%) B07 (%) B08 (%) B8A (%) B11 (%)

26/04/2022 27.2 −0.7 2.7 −17.6 −0.3 1.9 0.5 −1.5 −11.3 −3.4

14/05/2022 93.5 114.0 47.6 87.0 49.8 17.5 12.1 10.8 20.8 8.7

16/10/2022 −32.5 12.3 60.0 70.2 84.8 0.3 −9.0 −8.6 6.0 −8.5

22/08/2023 93.2 92.1 44.9 39.5 24.6 1.4 −1.7 15.9 −18.2 −7.4

TABLE 3 The uncertainty (k = 1) (%) associated per band for the S2 data derived from the S2L2RUT tool.

Date B01 (%) B02 (%) B03 (%) B04 (%) B05 (%) B06 (%) B07 (%) B08 (%) B8A (%) B11 (%)

26/04/2022 39.1 27.5 11.8 16 4.7 3.6 3.4 3.2 3.7 3.5

14/05/2022 54.8 29.2 10.7 18.9 4.8 3.5 3.3 3.3 3.8 3.4

16/10/2022 163.3 69.5 31.3 36.5 10.2 4.2 3.7 3.3 4.1 3.9

22/08/2023 44.8 26.55 16.7 19.6 8.1 3.8 3.75 3.7 3.9 3.9
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nadir, there is no consistent pattern between the days, suggesting
individual measurements could be affected by shadowing. To fully
understand this further, additional measurements taken at more
VZA and VAA angles would give us a better understanding of the
variability in the reflectance due to the structure of the canopy.
Therefore, in this study, the maximum VZA was used for
comparisons. The uncertainty of using a different VZA in

comparison to the satellite data was assessed through simulations
based upon MODIS BRDF albedo products (MCD43A1) (Strahler
et al., 1999) by generating reflectance for the same VZAmeasured by
HYPSTAR (0°, 5°, 10°, 20°, 30°). Overall, a maximum difference in
reflectance values of 25% in wavelengths 841 nm–876 nm was found
comparing VZA of 0° and 30° within the solar principle plane,
suggesting that a full BRDF model for the forest canopy would help

FIGURE 5
(A) The full resolution and band-integrated LANDHYPERNET data compare to Landsat data for the WWUK matchup on 20 August 2023. The two
shaded areas represent the uncertainty (k = 1) of the LANDHYPERNET data only considering the instrument uncertainty (grey) or the instrument and the
spatial representativeness uncertainty of themeasurement (orange). The uncertainty bars on the Landsat data correspond to the standard deviation of the
reflectances within the ROI. (B) The percentage difference (bias) between the band-integrated LANDHYPERNET data and the Landsat data. The error
bars on the differences are derived using Eq. 2.

FIGURE 6
Evaluation of (A) S2 and (B) Landsat SR products against LANDHYPERNET products. The black dashed line represents a 1:1 relationship, the grey
dashed lines represent the corresponding satellite mission requirements and the black solid line is the line of best fit between the WWUK data and the
satellite matchups. The error bars on the plots correspond to the (k = 1) uncertainty associated with the LANDHYPERNET and satellite data.
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to correct for this variability. However, due to the overpass time of
the satellite observations used in this study, measurements are taken
with a relative azimuth angle of 5°–15°which would reduce the
BRDF effect.

To minimise the impact of changes in local environmental and
illumination conditions the closest, valid, HYPSTAR sequence
within a 2 hour window was selected for the comparison. For the
majority of the comparisons a matchup was available within 30 min,
leading to a change in SZA of <1°(viewing geometries for matchups
are presented in Table 1). However, for the match up on the
16 October 2022, the closest available sequence was at 09:40
from the HYPSTAR instrument in comparison to an S2 overpass
of 11:21. As such there was a change in the SZA from 66.57° to 61°

between the matchups. The change in SZA for this matchup, may
have been a significant factor in the differences for the disagreement
between the SR as we are not yet able to correct for the forest
BRDF effect.

Another issue which could be affecting the measurements is the
height above the canopy that the HYPSTAR instrument is deployed
at and the corresponding small FOV of the in-situ measurements.
For nadir measurements the maximum canopy footprint of the
HYPSTAR instrument is 4.69 m2 assuming the instrument is
pointing at a gap in the canopy and measuring the ground
surface. However, it is likely to be a lot smaller than this due to
the height of the surrounding trees, which average 24 m in the
surrounding area (Calders et al., 2022). Therefore the measurements
from different viewing angles and different days are susceptible to a

number of unknown assumptions such as the BRDF of the foliage
elements, the BRDF of the background, the spatial variability of the
background BRDF and the temporal dynamics of these
characteristics. These assumptions were identified in the RAMI-
IV exercise as all having an influence on the retrieved reflectance
(Widlowski et al., 2015). Additionally, the illumination conditions of
the understory and overstory vegetation could be different, both of
which could be measured within the FOV of a HYPERNETS scan
whereas in summer, when the canopy is at maximum coverage, the
satellite signal is dominated by the overstory vegetation (Nevalainen
et al., 2017). For future studies, this could be estimated at the site by
measuring the distance to the canopy and the understory at various
viewing angles from the location of the sensor by using a laser range
finding instrument. This information could then be utilised in a 3D-
model of the site to be incorporated for satellite matchups at
different viewing geometries.

Ideally to assess the accuracy of the surface reflectance obtained
by the HYPSTAR instrument and fully validate its measurements
uncertainty estimates a comparison against an independent
instrument would be performed at the site (Kuester et al., 2001).
A comparison of the HYPSTAR against a RadCalNet instrument has
been performed at the Gobabeb site for BOA data from both
instruments. Comparisons over a six-month period displays
initial difference to within 5% in the visible and near infrared
(VNIR), as well as 1%–2.5% agreement in the short-wave
infrared (SWIR) (Sinclair et al., 2023). However, there are
currently no independent, point, multiangular hyperspectral

FIGURE 7
Webcam images of the HYPSTAR instrument from the 26th of August 2022. (A) image from 11:41, (B) image from 12:21 and (C) image from 13:01.

FIGURE 8
Examples of the different surface reflectances from the 98° VAA for some of the WWUK sequences. (A) 11:32 26 April 2022. (B) 11:40 30 April 2022.
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measurements taken at WWUK over where the instrument is
positioned. Future work involving UAV mounted sensors could
provide an independent method for assessing the accuracy of the
HYPSTAR system.

Additionally, further work is needed to expand the uncertainties
associated with the HYPSTARmeasurements. In the current version of
the data used in this paper, uncertainties associated with the stray light
correction and the spectral positioning of the LANDHYPERNET bands
are not included in the full uncertainty budget.

Accounting for the spatial heterogeneity of the site was one of
the key considerations applied in the validation methodology in this
study. The spatial variability of the site at the satellite was included as
the comparison uncertainty (ucomp) in the overall uncertainty
calculation to account for this variability. However, the spatial
uncertainty becomes the dominant component in the combined
uncertainty over a heterogeneous target. The issue of spatial
mismatch between in-situ and satellite SR is frequently discussed
in the literature (Gamon et al., 2006; Hill et al., 2006; Román et al.,
2009; Song et al., 2019). Consequently, validation of SR products
tends to be conducted over homogeneous targets (Wulder et al.,
2019; Origo et al., 2020; Teixeira Pinto et al., 2020; Pflug et al., 2022;
Eon et al., 2023). Nevertheless, it is important to assess the
performance of these products over multiple landcover types,
especially forests, which biophysical products such as leaf area
index are derived from satellite SR products. Additionally, as far
as we are aware this is the first validation of high spatial resolution
satellite data using a multi-angular hyperspectral imaging system
and therefore the results presented here give us a baseline for
expected performance, which will be improved as the
understanding of spatial variability increases.

Finally, although the use of the airborne data helped to quantify
the spatial variability of the site at the satellite scale, there are
improvements that could be made in this analysis. The collection
of hyperspectral data over the site using sensors mounted on
Unmanned Aerial Vehicles would address two limitations of the
current technique. Firstly, the spatial resolution of such data is on
the order of tens of time smaller than that of the currently used
airborne data, allowing more precise information about the spatial
representativeness for different viewing angles to be understood
(Fawcett et al., 2020). Secondly, in comparison to airborne
campaigns, UAV campaigns are relatively low cost to perform
which could allow for a more frequent sampling interval across
the growing season to see how the spatial variability varies across the
year which would improve the uncertainty assessment associated
with the spatial variability (Arroyo-Mora et al., 2019).

5 Conclusions

This paper demonstrates the use of a novel, autonomous
hyperspectral surface reflectance data collected at Wytham
Woods, United Kingdom (WWUK) as part of the
LANDHYPERNET network for the validation of multispectral
data from Sentinel-2 and Landsat 8 and Landsat 9. The
deployment of the HYPSTAR instrument at the site, the
corresponding quality control of the data products is described.
In this paper the first satellite validation activity of Sentinel-2 and
Landsat 8 and 9 has been performed using the BOA products

produced by the HYPERNET_PROCESSOR at the WWUK site. This is
the first study using autonomous, hyperspectral in-situ
measurements for the validation of surface reflectance land
products over forests using a point measurement and therefore
provides an understanding of the minimum performance expected
using such a system. In addition, a methodology based upon
metrological principles has been outlined showing the
propagation of uncertainties from the LANDHYPERNET and
satellite data products to enable conformity testing of the satellite
products using the satellite mission requirements. Overall for the
WWUK site, the initial findings from this comparison indicate good
agreeement between the reflectance products produced by the
HYPSTAR instrument and the satellite product. The strongest
agreement is with bands in the red and NIR. Additionally, in
absolute terms, the differences in the visible bands are within the
mission requirements for Sentinel-2 but are inconclusive due to the
large uncertainties associated with the in-situ data.

These differences could be reduced by mounting the HYPSTAR
instrument on a higher tower above the surrounding forest canopy,
increasing the FOV of the instrument and minimising the impact of
local shadowing on the instrument. A longer time series from the site
will improve the analysis by leading to more satellite matchups,
additionally incorporating a BRDF model of the local vegetation
could improve the matchups between the in-situ and satellite
products. Furthermore, expanding the analysis to include leaf-off
conditions will allow for a more comprehensive understanding of
the temporal dynamics of the satellite products. Finally, this analysis
focused on multispectral satellite products, further analysis could be
conducted on hyperspectral missions such as CHIME, ENMAP,
PRISMA and GLIMR further exploiting the relatively fine spectral
resolution of the LANDHYPERNET data products.
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