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Woody vegetation restoration projects are an important feature of landscape
function in Indonesian karst savannas. Understanding the relationship between
available moisture and vegetation condition can assist with the planning and
implementation of revegetation efforts. Working at vegetation restoration sites in
East Nusa Tenggara, Indonesia, we applied a windowed cross-correlation
method to mean values of NDVI to examine the lag between moisture input
and NDVI response for both rainfall and soil moisture between 1999 and 2018. To
test for increasing or decreasing trends in NDVI and rainfall time series, we
undertook Mann–Kendall trend analyses. We identified increasing trends in
Landsat 7 NDVI at two of four restoration sites, with annual increases in NDVI
of 2.7 and 3.74 × 10−4 respectively. We found that rainfall dependent sites had
significant Pearson’s correlations with NDVI ranging from0.52 to 0.71, while NDVI
was not correlated with rainfall at shallow groundwater sites. There was a clear
negative effect of the very dry period on all sites, and this was less pronounced at
shallow groundwater sites. Wet years resulted in a positive response to NDVI
across all sites, while the response was lower in very wet years with annual rainfall
above 1,200 mm. We found that between 2 and 4 months of antecedent rainfall
gave the highest correlation with NDVI, while for soil moisture the closest
relationship was found with no lag and 1 month lag. Through this study, we
demonstrated the applicability of using NDVI, rainfall, and soil moisture trend
analyses to identify groundwater-dependent vegetation patches andmonitor the
effectiveness of vegetation restoration.

KEYWORDS

NDVI, groundwater dependence, karst savanna, woody restoration, Indonesia

1 Introduction

Karst aquifers in savanna environments provide essential water supplies to support
human populations in Asia, Africa, Australia, and Central America (Klaas, 2008;
Schwinning, 2008; Ward et al., 2013; Rossatto et al., 2014; Goldscheider et al., 2020).
These environments are potentially under threat from a combination of water stress and
landcover change (Sankaran, 2019). In these highly seasonal landscapes, the spatial and
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temporal patterns of tree water uptake remain poorly understood,
yet enhanced knowledge of their dynamics is important to
sustainably manage the groundwater systems (Asbjornsen et al.,
2011; Banks et al., 2011; Acharya et al., 2018). In karst savannas,
vegetation water use is often dependent on the moisture available in
the epikarst (i.e., the zone of weathered bedrock beneath the soil
layer) (Schwinning, 2010; Nie et al., 2012; Jones, 2013; Rossatto et al.,
2014). Relative to a non-karst environment where infiltration to the
tree root zone occurs gradually after soil saturation, groundwater
recharge in karst ecosystems occurs rapidly following intense rainfall
events due to the presence of large fissures or conduits (Wilcox et al.,
2006; Schwinning, 2008; Sarrazin et al., 2018). The epikarst is also a
key subsurface zone for groundwater recharge (Schwinning, 2008).

The presence, type, and density of vegetation in recharge zones
may affect fluxes of soil moisture, epikarst storage, and, ultimately,
groundwater availability (Cardella Dammeyer et al., 2016). In
tropical savannas, the dominant savanna tree and shrub species
have evolved to transpire perennially (Eaasmi et al., 2009),
potentially influencing deep soil water and groundwater stores,
particularly during the dry season when shallow moisture sources
are depleted. By exploring the dynamics between vegetation
productivity and moisture availability, we can better predict the
resilience of tropical karst savanna ecosystems, including moisture
stores, to changes in future environmental conditions. Relevant
changes include the likely prolonged dry seasons, changes in the
frequency and intensity of recharge events, continued influence of
the El Niño Southern Oscillation (ENSO) (Brown et al., 2013), and
changes in groundwater abstraction rates. Here, we investigate these
dynamics using satellite image-derived normalised difference
vegetation index (NDVI) surfaces and moisture trend analyses to
provide preliminary insights into the response of tropical karst
savanna vegetation to available moisture.

NDVI is a proxy for productivity (Aguilar et al., 2012), as it
indicates photosynthetic activity by measuring chlorophyll
reflectance (Glenn et al., 2010). The seasonal and interannual
response of vegetation conditions to moisture availability is
commonly studied using NDVI trend analyses. By determining
the relationship between vegetation productivity and moisture
availability, we can predict how vegetation conditions may be
affected by changing moisture regimes under future climate
conditions (Chamaillé-Jammes and Fritz, 2009). Previous studies
have established that NDVI responds to antecedent rainfall with a
range of lag times in the order of 1 week (Shinoda, 1995; Kong et al.,
2020) and 1 month to 2 months (e.g., Chamaille-Jammes et al., 2006;
Fu and Burgher, 2015; Souza et al., 2016). The variations in lag times
are attributed to site-specific factors such as topography, soil types
(Chamaille-Jammes et al., 2006), infiltration rates, and density of
vegetation (Kong et al., 2020). Previous trend analyses have shown
that rainfall anomalies (i.e., departures from long-term means) may
have a more significant influence on NDVI than seasonal variability
(Chen et al., 2020) and that the degree of influence varies with
vegetation structure (Anchang et al., 2019; Brandt et al., 2019).

The degree to which vegetation productivity is influenced by
moisture relative to other environmental drivers varies spatially and
temporally (Lehmann et al., 2014; Beringer et al., 2015), and
vegetation communities have degrees of dependence on
groundwater, subject to phenological and location characteristics
(e.g., Cook and O’Grady, 2006; Lamontagne et al., 2005). Tropical

savanna vegetation communities are dominated by C4 grasses,
interspersed with predominantly C3 evergreen trees (Monk, 1997;
Myers et al., 1997; Murphy and Bowman, 2012; Rossatto et al.,
2014). During the dry season, trees and shrubs use deep soil
moisture or groundwater to varying degrees as a function of
plant root density and the water use strategies of individual
species (Cook and O’Grady, 2006; Lamontagne et al., 2005;
Monk, 1997; Murphy and Bowman, 2012; Rossatto et al., 2014;
Schwinning, 2008; Ward et al., 2013). The degree of vegetation
groundwater dependence is indicated by how closely NDVI is
coupled with rainfall (i.e., where NDVI is poorly correlated to
rainfall, vegetation is considered to be groundwater dependent)
(Páscoa et al., 2020).

Soil moisture provides a better representation of plant-available
water than rainfall, and this parameter co-varies with NDVI at a
range of lag times (Ahmed et al., 2017; Tian et al., 2019). Microwave
remote sensing provides the capability for direct observation of
surface soil moisture condition by analysing the microwave
radiation emitted or reflected by the soil, and several microwave
satellite missions have been deployed to provide continuous global
scale soil moisture estimation (Ford et al., 2014; Tian et al., 2021).
Root-zone soil moisture, which is an important indicator of plant
water availability, is widely obtained through the use of model
simulations. In addition, modelled estimates of root-zone soil
moisture from satellite retrievals have proved to have generally
good agreement with ground data (Ford et al., 2014; Tian et al.,
2019) and are, therefore, a valid indicator of plant-available water.

There is a demand for knowledge of plant-available water and
the associated vegetation productivity response in karst savanna
landscapes of Indonesia. This demand stems from concerns of land
managers about the links between soil and water resources, reduced
tree cover, and biodiversity and livelihoods (Pellokila et al., 2014).
Government and non-government programs have sought to
improve landscape function in priority areas through regreening
and reforestation. This work has focussed on sites that are
particularly prone to erosion (Monk, 1997; Scott et al., 2005;
Wallace et al., 2005; BPDAS, 2011; Mulyoutami et al., 2016); it
has been done without data about plant water use. Climate
predictions indicate that the southernmost islands of Indonesia
(e.g., East Nusa Tenggara province) will be subjected to increased
durations of periods without rainfall and higher rainfall during the
early wet season (Brown et al., 2013). ENSO will continue to be the
main driver of interannual variability in rainfall across the region,
with potentially greater rainfall extremes in a future warmer climate
(Brown et al., 2013). Against this background, we selected a site in
the karst landscapes of Sumba (East Nusa Tenggara), which was a
focal area for land restoration programs from 2009 to 2018. It is
important to understand both the potential for success of these
programs in the context of moisture availability, as well as any
potential influences of increased tree cover on hydrology, including
water availability in springs for human use. Therefore, the aim of this
research was to provide insights into the response of vegetation to
available moisture through analyses of NDVI, rainfall, and soil
moisture trends.

Our analysis aimed to characterise the interannual (1999–2018)
NDVI trends at 10 patches of karst savanna vegetation and
determine the influence of available moisture on these trends to
inform land restoration projects. The 10 patches of savanna
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vegetation include three sites with shallow groundwater access and
seven sites with deep (>20 m) groundwater. The seven sites with
deep groundwater access are classified as: 1) sites with no
intervention (n = 3) and; 2) sites with restoration intervention
(n = 4). We hypothesised that: 1) at the landscape scale, NDVI is
correlated with soil moisture and rainfall; 2) NDVI at the three sites
where groundwater is readily available is less sensitive to rainfall; 3)
interannual variability of rainfall and rainfall anomalies are
important drivers of NDVI; and 4) positive trends in interannual
NDVI can be detected at the four restoration sites irrespective of
moisture trends.

2 Materials and methods

2.1 Study period

The NDVI response of vegetation was observed through analysis
of satellite imagery between 1999 and 2018, while rainfall records from
1974 to 2018were used to determine long-term rainfall characteristics.

2.2 Study area

The study site is in the Haharu district, East Sumba, East Nusa
Tenggara, Indonesia. It is an area of 796 km2 within the tropical
savanna climate zone of East Indonesia (centred around 9°28′S,
119°58′E). This study area is underlain by the Kaliangga formation,
an area of uplifted quaternary reef limestone with some karst
formation (Effendi and Apandi, 1981).

Mean annual rainfall is 862 mm (coefficient of variation 28%)
(Badan Meterologi Klimatologi dan Geofisika BMKG, 2020), most
of which falls over the wet season between November and May
Figure 1). Mean annual temperatures are 17.4°C (minimum) to
28.5°C (maximum) (Badan Meterologi Klimatologi dan Geofisika
BMKG, 2020). The main weather systems influencing the study area
are the northwest monsoon from November to May and the dry
southeast monsoon from June to September (Aldrian and Dwi
Susanto, 2003). ENSO and the Indian Ocean Dipole are known

to contribute to interannual rainfall anomalies in the study area,
with the strongest influence of both climate drivers occurring during
the dry season (Supari et al., 2018; Kurniadi et al., 2021). Sumba
island is among the driest islands in Indonesia (As-syakur et al.,
2013), and an understanding of inter-seasonal moisture dynamics is
a focus for this reason.

The proportion of tree cover has fluctuated in Sumba during the
past 25,000 years in response to water stress, with abrupt changes
particularly apparent during periods of dry season aridity (Dubois
et al., 2014). In addition, anthropogenic landscape influences during
recent times, including the use of fire and the clearing of trees for
domestic and agricultural needs, may have enhanced this landscape
change (Monk, 1997). In selected locations in Sumba, however, tree-
clearing trends have been reversed in the last two decades as a result
of restoration efforts (Pellokila et al., 2014).

Soils in the Haharu district are shallow, stony, and calcareous,
with relatively low to moderate clay content and associated low
water holding capacity. Some areas of heavier clay soils retain
moisture for longer periods and can become waterlogged in
particularly wet periods (Monk, 1997). The soil texture at each of
the 10 selected vegetation patches was sandy clay.

2.3 Vegetation and vegetation
patch selection

Savanna grasslands are a dominant vegetation type in the study
area, having been subject to minimal development for a mix of land
uses, including household-scale agroforestry, vegetable gardening,
and livestock grazing (Mulyoutami et al., 2016; Seran Mau et al.,
2017). Generally, the vegetation in the study area comprises a dense
understory of perennial grasses: alang-alang (Imperata cylindrica),
kangaroo grass (Themeda triandra), and black speargrass
(Heteropogon contortus) interspersed with both evergreen and
deciduous trees (Monk, 1997). Shallow groundwater sites support
evergreen trees, including local mango (Buchanania arborescens),
mahogany (Swietenia macrophylla), teak (Tectona grandis),
tamarind (Tamarindus indica) and figs (Ficus species), and the
semi-deciduous lac tree (Schleichera oleosa). Away from shallow

FIGURE 1
Long-termmonthly rainfall in Waingapu, East Sumba, from 1974 to 2018. Source: Badan Meterologi Klimatologi dan Geofisika (BMKG), (2020). Error
bars indicate one standard deviation.
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groundwater, scattered tree species include the evergreen Chinese
apple (Ziziphus mauritiana), cassia (Senna siamea), and deciduous
gmelina (Gmelina arborea). At deep groundwater sites with
restoration interventions, species that have been cultivated
include teak, injuwatu (Pleiogynium timoriense), mahogany,
cashew (Anacardium occidentale), and gmelina (Monk, 1997;
Pellokila et al., 2014).

The ten 1 ha vegetation patches were selected within the district
according to their depth to groundwater and land management
status. Three sites are located next to groundwater discharge points,
which support evergreen vegetation that has been actively
conserved, maintained, or restored, while the seven other sites
are in areas where groundwater is unlikely to be available to trees
(i.e., water table between 21 m and 47 m below ground level). The
seven sites with deep groundwater were further classified as deep
groundwater sites with no intervention (n = 3) and deep
groundwater sites with managed vegetation restoration activities
(n = 4) (Figure 2; Table 1).

To determine the proportion of woody and non-woody vegetation
in the study area and in 1-ha vegetation patches, we completed a
supervised classification using field-verified training points of
15 landcover classes on a composite image. The composite image
was created from median pixel values of cloud-free multispectral
Sentinel images between 01/01/2018 and 01/07/2018 at 10 m
resolution in Google Earth Engine (GEE) (Coleman et al., 2020).
These dates were selected to correspond with a period of field
verification of landcover. We then reclassified the 15 land cover

classes to a binary woody and non-woody grid, where woody
pixels were defined as those dominated by C3 tree and shrub
species, and non-woody pixels were dominated by C4 grasses,
surface water, or bare ground (Supplementary Table S1). Woody
cover fraction for each 1 ha vegetation patch polygon was determined
using the Grid Statistics for Polygons module in Saga GIS 7.2.0
(Conrad et al., 2015), and the performance of this classification
was checked against a manual delineation of woody canopy cover.
Canopy cover was delineated manually by outlining canopies and
summing canopy polygon areas in QGIS 3.10.6 (QGIS Development
Team, 2020) using high-resolution Google satellite imagery (Google
and Maxar Technologies, 2018), and samples of canopy areas were
ground-truthed at each site.

2.4 Rainfall data

Rainfall time series data from the proximal Bureau of
Meteorology, 2021 (BMKG) rainfall station in Waingapu (51 km
away in a straight line from the field site) were used to establish long-
term regional rainfall trends. The time period for this long-term
rainfall data baseline was from January 1974 to December 2014.
Rainfall data from the Climate Hazards Group Infrared Rainfall with
Station (CHIRPS) daily 0.05° × 0.05° gridded time series product
were accessed through GEE for comparison with daily local manual
gauge data collected between July 2015 and December 2017 and
proximal BMKG gauge data (Figure 3). With the daily local gauge

FIGURE 2
(A) Location of the study area in the East Sumba regency of East Nusa Tenggara, Indonesia; (B) detailed study area indicating the location of
vegetation patches, with site type code by colour; the potentiometric surface (5 m depth contours); woody and non-woody vegetation cover; (C)
delineation of woody canopy cover at each site on Google satellite imagery (Map data ©2015 Google).
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data as a reference dataset, Spearman’s rank-based correlations were
calculated for the CHIRPS and BMKG data to determine the most
accurate dataset to represent rainfall in the study area
(Supplementary Table S2).

We defined the wet season as commencing on 1 November and
concluding on 30 May, and rainfall events outside of the wet season

were classified as dry season rain. Commencement of the wet season is
based on the definition by Peel et al. (2007) that a wet season month
receives >60 mm on average. Water years were defined as the periods
from 1 November of a given year to 30 October of the following year
and were then classified as very dry to very wet to assess the influence
of interannual rainfall anomalies on NDVI (Table 2).

TABLE 1 Description of vegetation sites.

Site
name

Woody
cover
fraction

Woody
canopy
cover (%)

Patch description Depth to
groundwater

(m)

Year of tree
planting
activities

Distance to
drainage
line (m)

Upstream
drainage
area (km2)

Shallow groundwater sites

1. Napu
spring

0.73 79 Spring discharge area
inhabited by mature trees,
including Ficus spp. Mangifera
spp. Swietenia macrophylla
planted for conservation
activities

0 2013 0 0.076

2. Laikaterik 0.26 30 Small discharge point at the
base of a mature Ficus sp tree.
Moderate-sized trees along the
drainage line and plantings of
Tectona grandis and Sweitenia
macrophylla above discharge
point

0–2 2011 0 0.044

3. Karaha 0.08 21 Large diffuse discharge line
(likely a perched water table)
supporting Swietenia
macrophylla and the evergreen
Mangifera minor

0 2011 0 0.129

Deep groundwater sites—no management intervention

4. NapuWell 0.27 37 Hand-dug well surrounded by
grassland and an unknown
mature evergreen tree

26 N/A 400 0.032

5. Wunga
Well

0.40 19 Disused hand-dug well,
surrounded by intermediate
orchard trees, including
Anacardium occidentale

21 N/A 38 0.077

6. Wunga
Well

0.20 14 Disused hand-dug well,
surrounded by intermediate
orchard trees, including
Anacardium occidentale

47a N/A 30 0.018

Deep groundwater sites—with restoration interventions

7. Mahogany
Plantation

0.62 59 Sweitenia macrophylla
plantation

29a 2011 190 0.012

8. Cashew
orchard

0.07 7 Mature Anacardium
occidentale orchard with
Imperata cylindrica grass
understory

20a <2003 250 0.122

9. Regen 1 0.16 11 Mixed seasonal vegetable crops
and farmer-managed natural
regeneration, household scale

56a 2013 290 0.019

10. Regen 2 0.52 46 Farmer-managed natural
regeneration, sub-village scale,
mixture of Tectona grandis,
Gmelina arborea, Senna
siamea, Swietenia macrophylla,
and Pleiogynium timoriense

19a 2013 340 0.017

aIndicates an interpolated depth to groundwater.
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Historical Troup Southern Oscillation Index (SOI) data were
obtained from the Bureau of Meteorology, Australia (Bureau of
Meteorology (BOM), 2021), to examine the influence of ENSO on
rainfall anomalies and moisture availability. While the classification
of El Niño and La Niña events varies according to meteorological
institution (Van Oldenborgh et al., 2021), for simplicity, we defined
El Niño (La Niña) years as those with annual mean SOI below −7
(above +7) (Supplementary Figure S1).

2.5 Soil moisture and groundwater estimate

The recent Soil Moisture Active Passive (SMAP) (Entekhabi
et al., 2010) product has demonstrated superior quality in measuring
surface soil moisture condition compared with other operational

products (Chen et al., 2014b; Cui et al., 2018; Kumar et al., 2018).
However, soil moisture retrieved from SMAP only represents the
soil moisture content in up to the top 5 cm of the soil, and it is
incomplete in space and time. Data assimilation, which is the
process of optimally combining model simulations with
independent observations to improve the accuracy of model
estimation (Entekhabi et al., 2010), is the most widely used
approach to obtain soil moisture estimates. In this study, we
derived values for surface soil moisture and root zone soil
moisture from the gridded 0.1° × 0.1° soil moisture time from the
Satellite-Guided Root-zone moisture Analysis and Forecasting
System (S-GRAFS) (Tian et al., 2023).

To characterise seasonal access to moisture for each patch, we
estimated the depth to groundwater and distance to drainage lines.
For depth to groundwater, the potentiometric surface across the
study area was generated in Saga GIS 7.2.0 (Conrad et al., 2015).
Groundwater elevation contours were interpolated on a 30m × 30 m
digital elevation surface from known mean depth to groundwater at
six points (community-managed wells and springs) within a 5 km ×
5 km area using multilevel B- Spline Interpolation
(Supplementary Figure S2).

2.6 NDVI data

Most published analyses of vegetation responses to rainfall in
savanna landscapes, such as MODIS NDVI, Global Inventory
Modelling and Mapping Studies (GIMMS) NDVI and MODIS
leaf area index (LAI) time series data, are applied at a coarse
spatial resolution (>250 m), which has the advantage of long

FIGURE 3
Location of rain gauges relative to the study area. The local daily manual gauge is indicated close to the vegetation patches. The BMKG rain gauge is
shown just outside the Haharu district boundary.

TABLE 2 Wet season classification criteria. Water years are classified
according to deviation from the mean. R = annual rainfall, μ = long-term
mean annual rainfall, and σ = standard deviation. Rainfall amounts are
shown in mm.

Condition Classification

R > μ + 2σ [>1,262 ] Very wet

μ + 2 σ > R > μ + σ [1,038:1,262] Wet

μ +σ > R > μ [840:1,038] Moderately wet

μ > R > μ—σ [590:840] Moderately dry

μ—σ > R > μ—2σ [367:590] Dry

R < μ—2σ [<366] Very dry
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historical records and high frequency. However, analyses at this
coarse scale do not have the ability to detect small, localised fluxes in
vegetation productivity driven by fine-scale hydrological or
landcover changes. In addition, measurements of NDVI at lower
resolution tend to underestimate the proportion of
photosynthetically active vegetation due to aggregation with
surrounding less vegetated patches (Munyati and Mboweni,
2013). Thus, in this study, we extracted data from MODIS
imagery for district-scale analyses and from Landsat 7 imagery
for patch-scale analyses. We also trialled Sentinel 2 data, but as
the data are only available from 2015 onwards, we found that the
dataset was insufficient for time series analysis.

NDVI data were derived from the 30 m Landsat (LANDSAT/
LE07/C01/T1_SR, n = 360) and 500 m MODIS (MOD13A1.061,
n = 434) image collections in GEE for the period 1999 to 2018.
For Landsat data, the cloud and cloud shadow QA bands were
used to eliminate pixels containing cloud and red band
saturation. Landsat 7 images post 31/05/2003 had some
missing data due to failure of the scan line corrector,
amounting to 22% data loss per scene (Loveland and Dwyer,
2012). However, this does not greatly impact NDVI time series
analysis (Zhu, 2017). It is also preferable to derive NDVI
consistently from Landsat 7 rather than gap-fill with data
derived from Landsat 5 retrievals, as the red reflectance values
differ between the two sensors (Teillet et al., 2001; Sulla-Menashe
et al., 2016), and a change in orbit resulted in inconsistencies in
values (Roy et al., 2016). For MODIS, the MOD13A1.061 image
collection available in GEE is atmospherically corrected and
masked for water, clouds, and cloud shadow. The study period
was set as 1999 to 2018 to provide sufficient observations for
trend analyses and to coincide with water and soil sampling for
related studies between 2014 and 2018.

2.7 Statistical analyses

Statistical tests were conducted with R version 4.0.3 (R Core
Team, 2020) using the “Kendall” (v2.21; McLeod, 2022),
“modifiedmk” (v1.6; Patakamuri, 2021), and “zyp” packages
(Brounaugh et al., 2013). A link to the full reproducible code is
provided in the data availability statement. To investigate the
temporal correlation between monthly NDVI and moisture
parameters (rainfall and soil moisture), a windowed cross-
correlation (WCC) was applied. In the WCC method, a temporal
window is selected to examine the changes in correlation between
two time series (Boker et al., 2002), and this enabled us to determine
the period that NDVI lags behind available moisture. The
correlations between 1-month to 12-month antecedent rainfall
and NDVI were calculated for each vegetation patch, while a
linear regression model was used between total annual rainfall
and mean annual NDVI to analyse the sensitivity of each
vegetation patch to changes in available moisture (adapted from
Liu et al., 2017; Aguilar et al., 2012; Chamaillé-Jammes and Fritz,
2009). For soil moisture, pixel-wise correlations with NDVI were
determined at the scale of the soil moisture grid (0.1° × 0.1°) for the
period 2015 to 2018. Results calculated on water years are referred to
hereafter as “annual” values. Because the NDVI and rainfall data
were not normally distributed, a Spearman rank-based correlation

test was used to identify sites where mean annual NDVI had the
strongest relationship with annual rainfall.

To test for increasing or decreasing trends in monthly NDVI
and rainfall time series, non-parametric Mann–Kendall (MK) trend
analyses were applied. MK was chosen because it is an appropriate
method for detecting trends in time series data irrespective of
outliers, and it is commonly used in hydrological studies (e.g.,
Hamed, 2008). The null and alternative hypotheses for the MK
were: H0: data are independent and randomly ordered; and Ha: there
is a monotonic trend. The MK test statistic (ZMK) was calculated
using the block bootstraped Mann–Kendall trend test (Hippel and
McLeod, 1994). The block bootstrapping method accounts for
autocorrelation in the time series (Önöz and Bayazit, 2012). We
present the MK test statistic results, along with the 2-sided p-values,
where α = 0.05, with 95% confidence intervals for the bootstrap
statistics. Where significant trends were identified, the overall
annual change (ΔNDVI y−1) in the time series was calculated as
m × 12, where m is the slope of the Theil Sen regression line for the
monthly NDVI time series (adapted from Sen, 1968; Venter
et al., 2020).

Minimum, maximum, mean, and amplitude NDVI values
were determined for the whole 1999:2018 Landsat time series
and for subsets of the time series based on classes of wet seasons
(from very dry to very wet; see Section 2.3). Mean minimum and
maximum NDVI values indicate the extremes of photosynthetic
activity for each vegetation patch, while seasonal amplitudes
provide insights into the split of vegetation patches between
evergreen woody vegetation and deciduous shrubs and grasses
(Forkel et al., 2013).

The Pearson’s correlations between NDVI and soil moisture
gridded time series at two depths (surface and root zone) were
calculated for all pixels in the Haharu district polygon for the period
between 2015 and 2018. Linear regression was undertaken to
determine the sensitivity of the soil moisture to the NDVI
correlation of the fraction of woody cover. All vegetation patches
are located within the same 0.1° × 0.1° soil moisture pixel, so an inter-
site comparison of soil moisture was not possible.

The process for selection and preparation of datasets and
methods of data analysis are summarised in Figure 4.

3 Results

3.1 Rainfall trends

Monthly rainfall data in the period between May 2015 and June
2018 from both the proximal BMKG gauge and the CHIRPS gridded
dataset were closely correlated with local rainfall measurements
(rho = 0.843, p-value <0.01 and rho = 0.838, p < 0.01, respectively,
Supplementary Table S2). We selected the BMKG gauge data for use
in further analyses due to the slightly higher correlation result. We
found that the five driest years between 1974 and 2018, with rainfall
anomalies ranging between −2.08 and −1.14, all coincided with El
Niño events, and conversely, the four wettest years, with rainfall
anomalies between +1.5 and +3.3, coincided with La Niña events
(Supplementary Figure S1). There were no statistically significant
trends in monthly rainfall using MK tests in the period between
1999 and 2018 (ZMK −0.03, p-value 0.43).
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3.2 NDVI patterns and trends at the
district scale

Woody landcover accounts for 32% of the district, while non-
woody accounts for 68%. Dense woody areas with an NDVI >0.5 are
largely confined to riparian corridors, steeper hillslopes, and
groundwater discharge areas. NDVI values range from −0.53 to
0.83, and the district mean value is 0.36. Woody cover has an NDVI
range of approximately 0.6–0.8, while grass dominated landcover
is <0.5 (Figure 5). Negative NDVI values correspond to ephemeral
water bodies in the district. As a general rule, NDVI was highest
between February and April (late wet season) and lowest between

September and November (late dry season). At the district scale
using theMK test, we did not find significant long-term trends in the
mean monthly MODIS (n = 434) or Landsat 7 (n = 356) time series
data from 1999 to 2018.

3.3 Response of monthly NDVI and soil
moisture to rainfall

Using the WCC method with windows of 1 month for the
period between 1999 and 2018, a lag time of 4 months between
rainfall and the Landsat 7 NDVI monthly time series gave the

FIGURE 4
Data preparation and analysis process.
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highest correlation (r = 0.71, p = <0.001), with similar yet lower
values for rainfall lags of 2 months, 3 months, 5 months, and
6 months (Figure 6A). To compare WCC results with soil
moisture data, which is only available for the period between
2015 and 2018, we also computed WCC for this subset of the
time series. In the subset of the time series, we found that a lag of
2 months gave the highest correlation, followed by 1 month
(Figure 6B). We attribute this difference to the three
consecutive moderately dry years from 2015 to 2017, where
response to rainfall would have been more rapid (Ahmed
et al., 2017).

The cross-correlation between NDVI and soil moisture differed
by soil depth. We found that the overall correlation between surface
soil moisture (0–5 cm depth) and NDVI for all valid pixels within
the district polygon was highest with a 1-month lag (0.40, p < 0.001)
followed by no lag (0.35, p < 0.001) (Figure 6D). For soil moisture in
the root zone (0–1 m depth), the highest correlation was found with
no lag (0.47, p < 0.001), followed by a 1-month lag (0.32, p < 0.001)
(Figure 6C). For pixels within the district where the fraction of
woody cover was >0.5, monthly NDVI was highly correlated with
root-zone soil moisture (between 0.82 and 0.85), while surface soil
moisture was not as well correlated (between 0.48 and 0.6). The
fraction of woody cover had a stronger influence on the NDVI soil
moisture relationship in the root zone than in the shallow soil
zone (Figure 6E).

3.4 NDVI trends at the patch scale

We did not find a consistent relationship between site type and
NDVI minimum, maximum, mean, or amplitude values, nor did we
find a consistent influence of the fraction of woody cover on these
results (Supplementary Table S3). A significant decreasing trend in
annual NDVI amplitudes was found at a deep groundwater site with
no intervention (site 4; ZMK −0.56, p-value 0.001) and an increasing
trend at a deep groundwater site with restoration intervention (site
8; ZMK 0.439, p-value 0.010). This suggests a potential change in the
woody and grasscover fractions or the effect of anomalous wet
periods on grass productivity at these two sites (Chamaille-Jammes
et al., 2006; Ma et al., 2013; Kahiu and Hanan, 2018). No trend in
NDVI amplitude was found at the remaining sites, suggesting no
significant change over the study period in the woody and grasscover
fractions at these sites. For mean monthly NDVI values, we found
significant positive trends at a shallow groundwater site (site 1; ZMK

0.318, p-value <0.001, Δ 3.74 × 10−4 y−1) and at a deep groundwater
site with restoration intervention (site 9; ZMK 0.238, p-value <0.001,
Δ 2.7 × 10−4 y−1). Two additional restoration sites (sites 7 and 8) had
positive trends; however, we could not conclude that these were
significant trends as p-values were ≥0.5 (Supplementary Table S4).

Using WCC, we established that a lag time of 2 months between
rainfall and the Landsat 7 NDVI monthly time series gave the
highest correlation for most sites, ranging between 0.49 (site 4) and

FIGURE 5
(A) Binary woody and non-woody classification derived from 15 land cover classes. (B)Median interannual NDVI in the Haharu district derived from
Landsat 7 imagery.
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0.76 (site 8) (Table 3). Whilst the NDVI at two of the shallow
groundwater sites had low correlations with rainfall at 0 month,
1 month, and 2 months, and groundwater sites with restoration
interventions were the most sensitive of all sites with lagged rainfall,
we found that the correlation could not be predicted by site type
alone, as site 2 (a shallow groundwater site) had higher correlations
with lagged rainfall than deep groundwater sites.

There was a significant relationship between mean annual NDVI
and total annual rainfall at four of the seven deep groundwater sites
(Spearman rank coefficients between 0.47 and 0.57) but no significant
relationship for any of the shallow groundwater sites (Spearman rank
coefficients between −0.17 and 0.16) (Table 4; Figure 7). These
relationships were not well represented by linear models, as the data
were not normally distributed (Supplementary Table S5).

3.5 Response of NDVI to anomalies of wet
season rainfall

Most years in the study period had moderate to wetter than
long-termmean rainfall. We found differences in the mean, median,
and interquartile ranges of NDVI by site type in response to annual
rainfall classes. Mean and median NDVI were highest for shallow
groundwater sites across the whole period and all wet season classes.

The range of NDVI values for shallow groundwater sites was
significantly higher than other site types in the moderately dry
and very dry periods. For the deep groundwater sites, both with and
without restoration intervention, there was a significant difference in
NDVI in the wet period relative to the whole study period, indicating
a positive influence of additional rainfall on NDVI at these sites. For
all site types, there was a statistically significant difference between
median values in the very dry period relative to the very wet period.
Mean and median values in the very wet period were lower than wet
for all site types (Figure 8A–C), which can be explained by a decrease
in NDVI in the late wet season in the very wet period (Figures
8D–F). We identified a threshold volume of annual rainfall in the
order of 1,200 mm (between one and two standard deviations above
mean rainfall), beyond which any additional rainfall had a neutral or
negative effect on NDVI.

4 Discussion

4.1 Response of NDVI reliably linked to
rainfall and soil moisture

Our results show that in tropical karst savanna areas subject to
high rainfall seasonality, the NDVI correlation to rainfall can

FIGURE 6
(A) Cross-correlation values for monthly rainfall vs monthly Landsat 7 derived NDVI between 1999 and 2018, (B) rainfall vs Landsat 7 derived NDVI
between 2015 and 2018, (C) root-zone soil moisture vs NDVI, (D) surface soil moisture vs NDVI, and (E) Pixel-wise correlation between annual soil
moisture and NDVI at the root zone and at the surface as a factor of woody cover fraction.
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reliably be linked to the presence of subsurface moisture.
Specifically, where subsurface moisture is depleted, the
correlation between NDVI and rainfall will be high and vice
versa. In line with our first hypothesis, we found that root-zone
soil moisture was correlated with NDVI in the corresponding (lag0)
and preceding month (lag1). Shallow soil moisture was also
correlated with NDVI, although not as strongly. These findings

agree with previous studies such as Ahmed et al. (2017), who used
the 0.5° global monthly soil moisture data and GIMMS NDVI3g to
identify correlations between NDVI and soil moisture in the Sahel
region of Africa. The study found that the highest correlation
between the two variables was between lag0 and lag1 and that
south of the study region, where mean rainfall is higher, longer lag
times gave the highest correlations. Ahmed et al. (2017) also
identified that during a wetter phase, the lag time that gave the
highest correlation was greater compared with a more normal phase
of rainfall. We were unable to test this, given the short soil moisture
time series, and we note this as a limitation. Our data showed that
the strength of the correlation between soil moisture and NDVI
increased in line with the woody cover fraction. The correlation
between woody cover, soil moisture, and NDVI has previously been
reported, for example, by Tian et al. (2019), who demonstrated an
NDVI–surface soil moisture correlation in grasslands and an
NDVI–deep soil moisture correlation in sites with higher woody
fractions (shrub and forest sites). Our finding of a rapid response of
NDVI to soil moisture corresponds with the results of cross-
correlation analyses of soil moisture and the 1-km GIMMS
NDVI3g in Australia from 1996 to 2005 (Chen et al., 2014b). It
is important to note that in our study, soil moisture had a reasonable
correlation with NDVI, particularly where woody fractions are
higher. However, soils on the study sites are shallow
(approximately 30 cm deep), mostly with limited water storage
capacity. Therefore, during the early to mid-dry season, the soil
moisture index may represent moisture in the epikarst, the zone
between soil and bedrock in karst environments (Querejeta et al.,
2007; Schwinning, 2008). This zone is rapidly recharged and more
resistant to evaporation than the soil zone (Swaffer et al., 2014).
Carbonate bedrock can provide accessible sources of water for plants
with sufficiently deep roots during dry periods. However, the
available water content is dependent on the characteristics of the
rock, such as its primary porosity (Estrada-Medina et al., 2013;
Nardini et al., 2021). The roots of some of the dominant tree species
in our study sites have been observed to grow into deep fractures in
the bedrock to access moisture (Meha, 2019; personal
communication, 4 February).

4.2 Groundwater access reduces sensitivity
to rainfall inputs

While soil moisture provides the most accurate representation of
plant-available moisture, antecedent rainfall also provides an
indication of moisture availability. At the patch scale in our
study, NDVI was most strongly correlated with 2 months to
6 months of antecedent rainfall (lag2 to lag6); however, there was
a clear decoupling between NDVI and antecedent rainfall at the
three sites with shallow groundwater access, in accordance with our
second hypothesis. We attribute this result to the fact that tree
growth at these sites was much less dependent on rainfall inputs (Ma
et al., 2013). Furthermore, we found that NDVI was consistently
higher at sites with shallow groundwater access, which is
comparable to findings by O’Grady et al. (2011) that LAI
increased with groundwater access (NDVI is a function of LAI;
Carlson and Ripley, 1997). This is explained by the concept of
ecological optimality, where ecosystems evolve to equilibrate with

TABLE 3 Pearson’s correlation (r) of monthly NDVI by lagged monthly
rainfall time series (0 month, 1 month, and 2 month lags).

Rainfall time series monthly lag
(months)

Site number 0 1 2

Shallow groundwater sites

1 0.36 0.45 0.50

2 0.51 0.60 0.68

3 0.46 0.56 0.64

Deep groundwater sites—no intervention

4 0.55 0.52 0.49

5 0.43 0.55 0.67

6 0.58 0.69 0.75

Deep groundwater sites—with restoration

7 0.46 0.58 0.70

8 0.56 0.65 0.76

9 0.47 0.66 0.62

10 0.49 0.57 0.63

TABLE 4 Spearman’s rank-based correlation of annual NDVI vs. annual
rainfall for each site.

Site Rho p-value

Shallow groundwater sites

site 1 −0.17 0.46

site 2 0.06 0.79

site 3 0.16 0.48

Deep groundwater sites with no intervention

site 4 0.57 0.01

site 5 0.23 0.30

site 6 0.50 0.02

Deep groundwater sites with restoration intervention

site 7 0.47 0.03

site 8 0.52 0.01

site 9 0.19 0.39

site 10 0.25 0.25
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available moisture (Schymanski et al., 2009). While vegetation
productivity is water-limited in tropical savanna systems (Eamus
et al., 2000a; Eamus et al., 2000a), the vegetation patches at our sites
with groundwater access were less susceptible to short-term rainfall
anomalies, as their hydraulic architecture likely evolved with
available groundwater (Eamus et al., 2016). These sites, while less
vulnerable to short-term dry periods, may be influenced by more
severe dry phases or longer-term changes in rainfall patterns (Ma
et al., 2013), which are likely to determine the volume of recharge
and discharge to and from the groundwater store. Analysis of the
relationship between NDVI and rainfall identified that the response
of plant productivity to rainfall amounts was not uniform across
vegetation patches. However, additional rainfall had a greater
positive effect on sites with no groundwater availability to trees.
This corresponds with the finding that rainfall pulses drive savanna
vegetation greening responses at savanna sites in northern Australia;
however, there are limited seasonal and interannual changes in
enhanced vegetation index or LAI at sites with access to deep soil
water or groundwater (Ma et al., 2013).

4.3 EL Niño events reduce vegetation
productivity

It is valuable to relate the reported rainfall anomalies in the
study region to ENSO events as a useful predictor of the impacts
of ENSO on rainfall and vegetation productivity in the future.
Climate studies have found that El Niño events generally occur
every 2–5 years and that La Niña events are usually at least 7 years
apart but are variably spaced (Wolter and Timlin, 2011). Previous

studies, including Kurniadi et al. (2021) and Supari et al. (2018),
reported a more significant influence of ENSO on rainfall during
the dry season than the wet season in Indonesia. Consistent with
these studies, we established that La Niña events resulted in
higher rainfall totals and greater proportions of annual rainfall
falling in the dry season. We also found that El Niño years
resulted in lower than mean rainfall in the study area. More
importantly, our results show that the vegetation productivity of
this karst tropical savanna ecosystem was significantly impacted
by strong El Niño events but recovered when followed by wetter
periods resulting from La Niña conditions. Meanwhile, it was
previously known that NDVI decreases in association with
intense El Niño events (Erasmi et al., 2009; Arjasakusuma
et al., 2018). Our study provides a detailed analysis of this
relationship, specifically in the tropical karst savanna
environment. Our finding supports our third hypothesis that
interannual rainfall variability and anomalies are important
drivers of NDVI in tropical karst savannas. Protracted dry
periods may lead to a significant reduction in vegetation
productivity and a long recovery period at both groundwater-
dependent sites (due to a reduction in groundwater recharge) and
at rainfall-dependent sites due to the absence of soil moisture
(Chiloane et al., 2022). The wettest periods in the time series, the
2000 and 2011 La Niña years, did not contribute to significant
changes in productivity. Annual rainfall thresholds for NDVI
responses, such as the 1,200 mm that we identified, have been
reported in related studies, such as Ahmed et al. (2017),
Nicholson and Farrar (1994), Al-Bakri and Suleiman (2004),
and Fu and Burgher (2015). A threshold of 1,100 mm per year
or 200 mm per month across a range of vegetation types,

FIGURE 7
Spearman’s rank-based correlation of annual NDVI vs. annual rainfall for each site. Bars are grouped by site type.
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including grassland/shrubland, was established by Nicholson
et al. (1990), who studied the GIMMS NDVI3g response to
rainfall in the Sahel and East Africa from 1982 to 1985.
Nicholson and Farrar (1994) reported a threshold amount of
approximately 500 mm per year or 50–100 mm per month on
sandy soils in the semi-arid savanna of Botswana, illustrating a
large variation in NDVI response of savanna vegetation due to
site effects including latitude, mean rainfall trends, and soil type.
Our study investigated the NDVI response to moisture at sites
with consistent soil type, latitude, and annual rainfall as it was
focussed on a small district scale. The study also observed the
variation in responses in relation to access to groundwater and
vegetation management activities.

In karst savannas, it has been found that maintenance of
groundwater levels, and thus maintenance of vegetation
productivity of groundwater-dependent sites, is dependent on
successive wet periods (Cardella Dammeyer et al., 2016). Longer

time series that include a greater number of ENSO events
resulting in rainfall anomalies would provide a greater ability
to predict vegetation response to climate conditions. While not
considered in this study, other climate drivers, including the
Indian Ocean Dipole (IOD), can influence dry season rainfall
between June and November in Indonesia (Kurniadi et al., 2021).
However, ENSO remains the main driver of interannual
variability in the western Pacific monsoon rainfall (Kurniadi
et al., 2021).

4.4 Effect of vegetation restoration on long-
term NDVI trends

While we found that there was no increasing or declining
long-term trend in NDVI at the district scale, our results at the
patch scale identified two sites with significantly increasing

FIGURE 8
Distribution of median annual NDVI values by wet season classification: very dry (VD), moderately dry (MD), moderately wet (MW), wet (W), and very
wet (VW) years and site type: (A) Shallow groundwater sites, (B) Deep groundwater sites—with restoration, and (C) Deep groundwater sites—no
intervention. Boxes span the interquartile range, lines denote themedian, and circles denote themean andmeanmonthly NDVI by site type in a (D) VD, (E)
VW, and (F) W year.
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interannual NDVI trends (an increase of 3.74 × 10−4 NDVI yr−1

and 2.7 × 10−4 NDVI yr−1 at sites one and nine respectively). Both
sites are subject to woody vegetation conservation and
restoration (Pellokila et al., 2014). We attribute the increasing
NDVI trends to the restoration activities that commenced in
2013 at both sites. We did not identify positive trends at the
other sites with restoration activities, which could be related to
lower intensity of tree planting, less seasonal intercropping with
cash crops, or less effective tree management approaches and/or
mitigating factors such as damage from fire and livestock
(Pellokila et al., 2014, V. Sabathini, personal communication,
07 July 2021). It would be valuable to repeat the analysis at
additional restoration sites within the study region to establish
whether positive trends could be detected above the background
regional greening trend.

Studies on long-term backgroundNDVI trends in the region have
provided varying results. Between 2000 and 2010 in Australia, a
decline in both rainfall and NDVI was identified across 90% of the
continent using 1 km resolution 10-day SPOT-derived NDVI surfaces
(Liu et al., 2017). The study by Liu et al. (2017) examined the effect of a
severely dry period on vegetation in Australia and, therefore, did not
explore the effect of the 2011 La Niña event. In spanning a period that
included the 2011 wet event (1982–2011), Chen et al. (2014a) found
that the majority of the Asia–Australia region had no significant trend
in monthly 0.25° resolution NDVI derived from the GIMMS dataset,
with smaller areas showing an annual growth rate of 6.22 × 10−4. A
slight increase of 5 × 105 yr−1 was reported for the Great Mekong
Subregion in the period 1982 to 2013 by Han and Song (2022), while
in Indonesia, de Jong et al. (2011) reported a decreasing trend from
1981 to 2006 by using a linear model of NDVI residuals, also derived
from GIMMS NDVI3g.

Beyond identifying overall NDVI trends in the region, Wu
et al. (2013) attempted to distinguish between background
greening and revegetation efforts and suggested that an annual
increase in MODIS NDVI of 6.0 × 10−4 between the years
2000 and 2010 in the Beijing–Tianjin Sand Source Region may
have been due to an effective ecological restoration program.
However, this increasing trend was not found to be significant.
Wu et al. (2013) also acknowledged that it is difficult to separate
the effects of climate change and human activity on changes in
NDVI in their study. More recently, an annual increase in NDVI
of 1.7 × 10−3 from 1999 to 2015 was identified in China using
multiple linear regressions to investigate the effects of climate
change and ecological restoration on NDVI (Song et al., 2022).
This study also reported a relative contribution of 75% from
afforestation to NDVI increases in most areas. Using residual
trend analysis, Liang et al. (2023) monitored MODIS and GIMMS
NDVI increases resulting from planting efforts in ecological
reserves in China between 1982 and 2018 and identified annual
growth rates up to 5.3 × 10−3. This large range of annual increases
in NDVI in the Asia–Australia region from a minimum of 2.7 ×
10−4 in our study to a maximum of 1.7 × 10−3 reported in China
suggests that the choice of imagery, spatial and temporal scales,
and statistical methods affects NDVI results. The variation in
these methods likely influences the ability to accurately identify
the response of vegetation to changes in moisture availability,
especially in the karst savanna environment where trees
are scattered.

4.5 Limitations of the study

Although we were able to clearly differentiate the NDVI
response of groundwater-dependent vegetation patches from
those reliant on rainfall, as well as detect the effect of managed
vegetation restoration efforts at two sites, this was a small-scale study
over an area of less than 800 km2. There remain some uncertainties
about the relative contributions of climate and human intervention
to changes in NDVI at each site, and it would be valuable to apply
methods such as those in Liang et al. (2023) and Song et al. (2022) to
assess the key driving factors in NDVI increases. In addition, our
findings would be strengthened with an investigation of the
correlation between soil moisture and rainfall in the study area
over the full length of the study period, as well as changes in
temporal dynamics between soil moisture and NDVI during
extreme wet and dry years. In addition to the limitations of a
short time series of soil moisture data, the coarse resolution of
these data precluded an analysis of soil moisture trends at the
vegetation patch scale. To further strengthen conclusions relating
to the groundwater dependency of selected vegetation patches,
future research should include analysis of higher-resolution soil
moisture data.

5 Conclusion

Our study provides foundational insights into the relationship
between available moisture and vegetation productivity in tropical
karst savannas. We established that the NDVI-rainfall relationship
in a tropical karst savanna region is a reliable predictor of shallow
groundwater access or groundwater-dependent ecosystems. We also
found that the fine spatial resolution of Landsat NDVI data is necessary
to identify trends in NDVI at the patch scale. Through the use of MK
trend analyses of Landsat 7 NDVI data, we identified a generally
increasing trend at some, but not all, sites with managed restoration
of woody vegetation. We also showed that interannual rainfall
variability and rainfall anomalies related to ENSO are important
drivers of NDVI, such that a deviation from the usual ENSO
patterns may result in major changes to vegetation productivity.
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