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Measuring agricultural productivity is a multiscale spatiotemporal problem that
requires multiscale solutions. In Vietnam, rice comprises a substantial portion of
the cultivated area and is a major export crop that supplies much of the global
food system. Understanding the when and where of rice productivity is vital to
addressing changes to yields and food security, yet descriptive summarizations
will vary depending on the spatial or temporal scale of analysis. This paper
explores rice trends across Vietnam over a 19-year period, giving specific
attention to modifiable spatiotemporal unit problems by evaluating
productivity across multiple time periods and administrative levels. A
generalizable procedure and tools are offered for visualizing multiscale time-
series remote sensing data in matrix and map form, not only to elucidate the
effects of modifiable spatiotemporal unit problems, but also to demonstrate how
these problems serve as a useful research framework. Remote sensing indices
(e.g., LAI and EVI) were evaluated against national and provincial estimates across
Vietnam during multiple crop production periods using the Pearson Correlation
Coefficient (PCC) to establish a relationship. To overcome challenges posed by
long-term observations masking emerging phenomena, time-series matrices
and multi-spatial and multi-temporal maps were produced to show when,
where, and how rice productivity across Vietnam is changing. Results showed
that LAI and EVI are favorable indices for measuring rice agriculture in Vietnam. At
the province scale, LAI compared to nationally reported production estimates
reached a Pearson’s r of 0.960; 0.974 for EVI during the spring crop production
period. For questions such as, “What portion of Vietnam exhibits a negative linear
trend in rice production?”, the answer depends on how space and time are
organized. At the province scale, 25.4% of Vietnam can be observed as exhibiting
a negative linear trend; however, when viewed at the district scale, this metric
rises to 45.7%. This research contributes to the discussion surrounding
ontological problems of how agricultural productivity is measured and
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conveyed. To better confront how agriculture is assessed, adopting a multiscale
framework can provide a more holistic view than the conventional single spatial or
temporal selection.

KEYWORDS

modifiable areal unit problem, modifiable temporal unit problem, ecological fallacy
problem, remote sensing of agriculture, rice in Vietnam

1 Introduction

1.1 Modifiable areal unit problems

Everything occurs somewhere, some time, and the effects of
scale ubiquitously underpin geographic research (Harris, 2006). The
modifiable areal unit problem (MAUP) is the phenomenon that
spatial aggregations and observations will vary depending on the
locations of sampling, the scale of analysis, and the areal delineations
used (Haggett, 1965; Openshaw, 1983). Prominent examples of
MAUP are described with respect to scale and zone
(Fotheringham and Wong, 1991; Jelinski and Wu, 1996; Wong,
2004). Zone effects are observed when the scale is constant, but
different methods of demarcation are used to organize space (e.g.,
aggregating across a uniform grid or as political boundaries such as
counties). The scale effect is observed when aggregating takes place
at one or multiple levels (e.g., regional, local, or focal
scales—examples being census tract, county, state, or
ecological zones).

The way space is organized also influences cartographic
presentation and interpretation, i.e., data organized and
aggregated by different zones will give differing views of spatial
phenomena (Bird, 1989). Raster structure data and raster
geoprocessing decisions are also subject to the effects of MAUP
(Lechner et al., 2012). As with vector-based areal unit selections,

raster masking based on geographic constraints (e.g., masking to a
particular land-cover type) fundamentally alters what is sampled
when aggregating across a raster (Openshaw, 1983). Temperature
and precipitation data masked to agricultural land will render
different descriptive statistics than if no masking had taken place.
In turn, cartographic presentation and interpretation can vary
depending on the geographic data alterations made and the scale
of analysis (Bird, 1989). During map production, the minimum and
maximum range and color scale used for symbolizing a dataset will
change post-masking, and areas that were formerly not highlighted
at the low or high end can become more apparent, influencing the
conclusions drawn and subsequent decisions made (Figures 1A–C).

Problematically, as scholars have attested, issues of scale often go
ignored by geographers and geographic information systems/science
(GIS) practitioners (Haggett, 1965; Cao and Lam, 1997). Additionally,
literature at the nexus of agriculture and MAUP is relatively scant. A
Web of Science (WOS) search for documents mentioning the
“modifiable areal unit problem” or “MAUP” returned 406 articles
as of 7 May 2024 (WOS, 2024). In a co-occurrence analysis of all
keywords (N = 2,245) using VOSviewer (van Eck and Waltman,
2010), agriculture occurs as a keyword only twice. Rice and Vietnam
do not appear as keywords. For comparison, health and land-use
occur as keywords 32 and 26 times, respectively.

One approach to managing MAUP, though not always
implemented and often not feasible due to various limitations,

FIGURE 1
Demonstration of how geoprocessing steps impact the cartography and perception of a map product. (A) Histograms of 2019 mean EVI across the
full extent of the MRD, as well as mean EVI masked to rice agriculture only. Dashed lines indicate the min and max of each histogram and the
corresponding color ramps across each range of values. (B)Mean EVI of rice agriculture across theMRD for 2019. (C)Mean EVI across the full extent of the
MRD for 2019. In this example, pixel values are consistent across (B,C), but masking has changed the data distribution, thus the color ramp is
“mapped” to the pixel values differently.
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such as data availability, is by using spatial statistics or data mining
to determine the optimal areal units for a specific analysis (Chen
et al., 2019; de Andrade et al., 2021). However, while coined as a
problem, modifiable areal unit phenomena that are elucidated by
multiscale frameworks can be used to construct meaningful
geographic representations (Stone, 1972; Larsen, 2000; Kolaczyk
and Huang, 2001; Nelson and Brewer, 2017; Manley, 2021).
Openshaw (1983) notably remarked that MAUP occurs when
boundaries are drawn at the “whims and fancies” of whoever did
the aggregating. Indeed, data can be arbitrarily or purposefully
arranged; however, in contrast to Openshaw’s remarks, MAUP
can be leveraged to enhance geographic representation when the
producer has intimate knowledge of the data and the spatial context.

1.2 Modifiable temporal unit problems

Parallel to MAUP is the modifiable temporal unit problem
(MTUP), which describes the phenomena of data aggregations
and observations varying depending on the time of observation,
the temporal granularity, or the temporal range of analysis (Çöltekin
et al., 2011; Cheng and Adepeju, 2014). Differences in metrics
generated from data of varying temporal granularity and
temporal range selections are commonly known as the temporal
aggregation and temporal boundary problems, respectively.
Temporal selections of the same length but shifted laterally (e.g.,
January to April vs. February to May) are characterized as the
temporal segmentation problem in MTUP. The temporal
aggregation, temporal segmentation, and temporal boundary
problems associated with MTUP are comprehensively
summarized by Cheng and Adepeju (2014). As is the case with
MAUP, literature at the nexus of agriculture and MTUP is also
relatively scant. The WOS search for documents mentioning the
“modifiable temporal unit problem” or “MTUP” returned 20 articles
as of 7 May 2024 (WOS, 2024). In a co-occurrence analysis of all
keywords (N = 160) using VOSviewer (van Eck andWaltman, 2010),
agriculture does not occur as a keyword.

One common metric—annual accumulated rainfall—can be an
uncharacteristic summary when the tail end of one rainy season and
the start of another are summed, such as when the crop production
and rainy periods cross over the calendar year. Techniques to
detrend time-series data, such as Fourier transformations, have
been used to counter the effects of MTUP related to seasonality
(de Jong and de Bruin, 2011); however, temporal sums and other
descriptive statistics remain prominent methods for managing
temporal phenomena like seasonal rainfall. In one example of
MTUP, Montanher et al. (2018) demonstrated the temporal
“boundary” problem while evaluating suspended sediment
transport in the Amazon River. Their long-term study spanning
1984–2015 showed a negative linear trend of suspended sediment
transport, while an earlier study that spanned 1995–2007 showed a
positive linear trend (Martinez et al., 2009). The incongruent
findings of studies such as these can result in ineffective or
contradictory policy to address changes in suspended sediment
transport along the Amazon River, such as imposing restrictions
on deforestation and other types of land-use/land-cover (LULC)
change. Even with multi-decade data, a negative trend has the
potential to flip positive after a short time frame, or vice versa.

With varying temporal ranges comes different averages,
minimums, maximums, and trend summaries, though while
temporal selections can introduce bias, such selections can also
be useful. Pertaining to rice in the Mekong River Delta (MRD),
Clauss et al. (2018) provide evidence that remote sensing (RS) data,
in this case Synthetic Aperture Radar (SAR), can be used to simulate
rice yields per crop production period, offering temporally explicit
analytics that match agricultural production cycles, rather than
adopting an annual approach, which can often be a semi-
arbitrary decision. Neglecting to recognize crop production cycles
while monitoring agricultural productivity can result in MTUP
errors, notably in regions where the crop production period
crosses over the calendar year.

1.3 The ecological fallacy problem

MAUP and MTUP are both subject to the ecological fallacy
problem (EFP), which states that the characteristics of a group
cannot be used to assume the characteristics of an individual
(Openshaw, 1983; Piantadosi, 1988). In a time-series, a single
year within a decade may not be indicative of any other single
year or the decade as a whole. In spatial aggregations, summary data
within polygons cannot be used to assume the characteristics of a
data point or subregion within those bounds. Similarly, depending
on spatial resolution, the classification of a pixel does not ensure that
a point within that pixel will match the overall classification (Hsieh
et al., 2001). This is the case in majority-based resampling or
classification where a pixel of 1-km spatial resolution classified as
agriculture may contain many other land-cover types, especially in
landscapes that are complex mosaics with mixed use.

Despite well-known research addressing problems such as
MAUP and MTUP, the scope of many studies consists of a
singular temporal range and singular geographic extent,
sometimes as an arbitrary decision, and multi-spatial and multi-
temporal analytics are seldom produced (Watson, 1978;
Meentemeyer, 1989; Cao and Lam, 1997). While understandable
due to various constraints, any geographic and temporal selection
can be a source of bias. However, rather than focusing on MAUP
and MTUP as sources of bias, knowledge of the phenomena can
serve to enhance or uncover a broader, more comprehensive
narrative. Bird (1989) argues that understanding and giving
considerations to MAUP/EFP are necessary conditions for a
geographic analysis (Harris, 2006), and Stone (1972) notes that a
multiscale perspective is a hallmark of the geographer’s craft and
contribution to the sciences.

1.4 Objectives and tools for
spatiotemporal analysis

This paper uses the case of rice production in Vietnam to
demonstrates how consideration of EFP, MAUP, and MTUP in a
multiscale framework can enhance our understanding of time-series
agriculture, as the case reveals that whether rice production across
the country is increasing depends on both when and where the
observations take place. It is critical that production estimates and
spatiotemporal trends that drive policy and resource allocation are
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accurate and reliable. Geographers and decision-makers responsible
for resource distribution and policy must be mindful of multi-scalar
challenges and opportunities presented by MAUP, MTUP, and EFP.
In the case study presented here, production trends are measured
across Vietnam over a 19-year period, giving specific attention to
modifiable spatiotemporal unit problems. Rice production estimates
presented are drawn from both the VietnamGeneral Statistics Office
(GSO) and an RS model to highlight the spatiotemporal variability
across the country at multiple administrative levels and at the pixel
scale. RS-based data are spatially continuous and offer finer
granularity than estimates produced at the province or national
scales, and RS methods facilitate generalizable models that scale
across geographies, which is particularly valuable where survey data
and proximal measurements are scarce. While due consideration
was given to estimating rice production accurately, the primary
contribution of this work is on the subject of modifiable
spatiotemporal unit problems and new openly accessible tools to
address them.

Furthermore, this paper demonstrates a procedure for
visualizing multiscale time-series RS data in matrix and map
form with rice production in Vietnam as the subject. Time-series
matrices were developed here not only to demonstrate the effects of
MTUP, but also to extract multi-temporal-scale information by
visualizing the linear trend of every possible range of years between
the full temporal extent. Multiscale maps were also constructed to
highlight the fact that varying conclusions can be drawn depending
on the geographic scale of analysis. It is argued here that assessing
agricultural productivity through a multiscale framework provides a
more holistic view of spatiotemporal variability and can serve to
better tackle spatiotemporal problems.

Lastly, this paper is accompanied by two openly accessible
tools for visualizing, summarizing, and communicating multi-
spatial and multi-temporal phenomena. The first is a time-series
matrix tool (referred to as TSMx) developed by Boumis and Peter
(2021) and published to Harvard Dataverse as a script for the R
Statistical Software (R Core Team, 2021). TSMx plots time-series
trends and Mann-Kendall significance tests for all possible year
combinations within a given temporal range (Mann, 1945;
Kendall, 1975; Gilbert, 1987); the user only needs to supply a
data table. Second is a multiscale mapping tool (referred to as
MSZSI) published to Harvard Dataverse using JavaScript in
Google Earth Engine (GEE; Gorelick et al., 2017), which
processes user-selected input data and produces maps across
multiple administrative levels over a user-selected time period
(Peter et al., 2021). Links to these open access resources are
supplied in the data availability statement.

1.5 Importance of rice production in Vietnam

Rice is a prominent subsistence and cash crop in Vietnam.
Referred to locally as “white gold,” rice production accounts for
half of all agricultural land in Vietnam and 30% of the nation’s
total agricultural production value (Maitah et al., 2020).
Vietnamese rice is a significant contributor to both regional
and global food security; in 2019, Vietnam was the world’s
third largest exporter of rice, both in export quantity
(5.45 million tonnes) and value (2.43 billion USD), and the

fifth largest producer of rice globally (FAOSTAT 2019).
Beyond its role in global food security, rice is a significant
contributor to the socioeconomic security of Vietnam. Two-
thirds of Vietnam’s rural labor force is employed in rice
cultivation (Shrestha et al., 2016), most of which takes place
in the MRD, the country’s primary rice-producing region.
Approximately 16% of Vietnam’s annual rice production is
exported (Stuart et al., 2018), with rice grown in the MRD
providing approximately 90% of rice exports (Tho and
Umetsu, 2022) and employing approximately 2 million
smallholder farmers (Brown et al., 2018).

Since the 1990s, the country has undergone agricultural
intensification for the purposes of increased rice production.
While yields have increased dramatically according to national
statistics (from 36.9 q/ha in 1995 to 58.2 q/ha in 2019; GSO 2021),
this intensification has also led to an over-reliance on inputs such
as fertilizers and pesticides, leading to a number of both
environmental and socioeconomic problems, such as soil
degradation and rising input costs for agricultural productivity
(Demont and Rutsaert, 2017; Tong, 2017; Tu, 2017; Stuart et al.,
2018). The increasing production costs burden smallholder rice
farmers who constitute a large proportion of the Vietnamese rice
producers and hamper their ability to remain or become
economically and environmentally sustainable (Stuart
et al., 2018).

Moreover, the effects of climate change pose additional
challenges to rice production, and overall crop production

FIGURE 2
Subregions of Vietnam. Hanoi (North) and Ho Chi Minh City
(South) are denoted with red dots on the map.
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more generally. Vietnam is among 10 countries listed as the most
affected from climate change between 1999 and 2018 (Eckstein
et al., 2019), and impacts from climate change such as sea-level
rise, flooding, and saline intrusion put rice farmers and their
crops at risk, particularly those farming in delta regions (Sen and
Bond, 2017; Brown et al., 2018). Vietnamese farmers have already
begun experiencing negative environmental and socioeconomic
impacts, all of which can have significant consequences for
agricultural production and, in turn, the rural labor force (Ho
and Shimada, 2019).

2 Materials and methods

2.1 Study area and scope: regions of Vietnam

This study takes place at multiple spatial scales across Vietnam
(Việt Nam): country, region, province, district, and pixel (Figure 2).
National rice statistics were collected at the country, region, and
province scale from the GSO (GSO 2021). RS and GSO data were
used to construct a model to estimate rice production across each
administrative level, including the district and pixel scales.

Rice is cultivated in all 6 subregions of Vietnam: (i) Northern
Midlands and Mountain Areas (NMMA; Đông Bắc Bộ and Tây Bắc
Bộ), (ii) Red River Delta (RRD;Đồng Bằng Sông Hồng), (iii) Northern
Central and Central Coastal Areas (NCACCA; Bắc Trung Bộ and
Duyên hải Nam Trung Bộ), (iv) Central Highlights (CH; Tây Nguyên),
(v) Southeast (SE; Đông Nam Bộ), and (vi) MRD (Đồng Bằng Sông
Cửu Long). The majority of rice production comes from MRD, RRD,

and NCACCA, though each region covers considerably different
geographic extents. In total, MRD produced 56% of Vietnam’s rice
in 2019, RRD produced 14%, and NCACCA produced 16%; NMMA,
CH, and SE accounted for 8%, 3%, and 3%, respectively (GSO 2021).
Rice production trends from FAO and GSO are shown in Figure 3.
According to the GSO, rice production and rice yield exhibited a
positive linear trend between 2001 and 2019 (GSO 2021), but there are
epochs in between that offer multidimensional information.

2.2 Measuring rice production via
remote sensing

To measure rice productivity, four NASA MODIS (moderate
resolution imaging spectroradiometer) products were
evaluated—NDVI (normalized difference vegetation index; Didan,
2015), EVI (enhanced vegetation index; Didan, 2015), LAI (leaf area
index; Myneni et al., 2015), and GPP (gross primary productivity;
Running et al., 2015) (Table 1). NDVI uses a ratio of the red and
near-infrared (NIR) bands, i.e., (NIR—red)/(NIR + red), to evaluate
vegetation health, vegetation density, and plant leaf structure
(Tucker, 1979). EVI is similar to NDVI in principle, but is
designed to reduce atmospheric interferences (Huete et al., 1994).
LAI is a ratio of the leaf area to ground area and is estimated with
MODIS using a surface reflectance and LUT (look-up-table)
algorithm (Watson, 1947; Myneni et al., 2015). GPP is a function
of photosynthesis and expresses the amount of carbon produced per
unit area (Monteith, 1972; Running et al., 2015). These indices are
commonly applied for monitoring and identifying rice agriculture in

FIGURE 3
Rice production, area harvested, and yield across Vietnam between 2001 and 2019. Source: GSO and FAOSTAT.

TABLE 1 RS indicators of rice productivity and LULC dataset used for masking RS indicators to rice agriculture.

Index NDVI EVI GPP LAI LULC

Dataset MOD13Q1.006 MOD17A2H.006 MOD15A2H.006 HRLULC 20.06

Spatial resolution 250-m 500-m 10-m

Temporal resolution 16-day 8-day n/a

Temporal range Feb. 18, 2000 to present 2016

Source NASA MODIS ALOS-2/ALOS; EORC; JAXA
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East/Southeast Asia (Xiao et al., 2006; Son et al., 2013a; Son et al.,
2014; Zhang et al., 2014; Xin et al., 2020). The utility of spectral
indices, namely, NDVI, LSWI (land surface water index), and EVI,
to identify rice agriculture in Southeast Asia was shown in a notable
publication by Xiao et al. (2006). Son et al. (2013a) demonstrated the
effectiveness of LAI and EVI for monitoring rice yield in the MRD.
In Son et al. (2014), it was shown that EVI performed well (and
outperformed NDVI) in a large-scale yield estimation analysis in the
MRD. Xin et al. (2020) used GPP from the Vegetation
Photosynthesis Model (VPM) to monitor paddy rice production
and planting area in Northeastern China (Zhang et al., 2017). Zhang
et al. (2014) used two MOD17 products, GPP and Net Primary
Production (NPP), to assess vegetation productivity more broadly
following drought events in the Lower Mekong Basin.

The RS metrics are compared here to the national- and
province-scale yield estimates from the GSO, and subsequently
used to estimate production trends (i.e., spatiotemporal
variability) at the sub-province and pixel scales. Indices were
selected on the basis of demonstrated utility in monitoring rice
productivity. Data were masked to rice agriculture using the High-
Resolution Land Use and Land Cover (HRLULC) dataset of
Vietnam provided by the ALOS Research and Application
Project. Geoprocessing and data acquisition of the NASA
MODIS products were conducted using GEE (Gorelick et al.,
2017). Links to data used in this analysis are listed in the data
availability section. The code used for extracting the RS-based
indices and generating zonal statistics from GEE is openly
available on Harvard Dataverse: https://doi.org/10.7910/DVN/
M4ZGXP (Peter et al., 2021). The full procedure is outlined in
Figure 4 and the following sections detail the workflow.

This study uses four primary indicators (NDVI, EVI, LAI, and
GPP) and in total there are twenty-four sub-indicators. All sub-
indicators were compared to both production and yield from the
GSO database. The labeling structure follows the format: Indicator-
TemporalAggregation-SpatialAggregation, e.g., LAI-X-S is LAI
aggregated temporally using the maximum and spatially using
the sum. In this labeling structure M = mean, X = max, and S =
sum. All sub-indicators: (i) EVI-M-M, EVI-M-S, EVI-S-M, EVI-S-S,
EVI-X-M, EVI-X-S, (ii) NDVI-M-M, NDVI-M-S, NDVI-S-M,
NDVI-S-S, NDVI-X-M, NDVI-X-S, (iii) LAI-M-M, LAI-M-S,
LAI-S-M, LAI-S-S, LAI-X-M, LAI-X-S, (iv) GPP-M-M, GPP-M-
S, GPP-S-M, GPP-S-S, GPP-X-M, GPP-X-S.

This study adopts an approach by Clauss et al. (2018) who used
time-series Sentinel-1 SAR to estimate rice production at the district
scale for the MRD, achieving an R2 of 0.93 for the Winter-Spring
production period, and R2 values of 0.86 and 0.87 for the Summer-
Autumn and Autumn-Winter production periods, respectively.
Data were aggregated annually and across three distinct temporal
periods, which correspond with typical planting periods and
regional rice production cycles: 1) Annual (total across the Fall,
Spring, and Winter production periods), 2) Winter-Spring (Dong-
Xuan; January to April; labeled here as Spring), 3) Summer-Autumn
(He-Thu; May to August; labeled here as Fall), and 4) Winter (Lua
Mua; July to October; labeled here as Winter); rice production
periods selected are based on FAO (2002), Son et al. (2013b),
and Phan et al. (2018). At the time of analysis, the official
estimates of rice production/yield that overlapped with the
MODIS data availability was 2001–2019. It is important to note
that there is some overlap in the typical crop production periods due
to variations in planting dates. A sophisticatedmodel addressing this

FIGURE 4
Workflow diagram showing the process of relating remote sensing-based indices to rice production estimates and constructing multi-spatial and
multi-temporal products for evaluating modifiable spatiotemporal unit problems.
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temporal problem might benefit from computing per-pixel planting
dates; however, extracting the maximum value over the ranges is one
way to isolate peak plant growth.

A Pearson correlation coefficient (PCC) test was conducted to
evaluate which RS indicators were most strongly correlated with the
GSO reported rice production and yield between 2001 and 2019. The
PCC analysis was conducted in R using the “ggcorr” and “cor”
functions in the “GGally” package (Schloerke et al., 2024); the code
used is openly accessible on Harvard Dataverse (Peter and Messina,
2019). Pixel-scale temporal aggregations were calculated using the
mean, max, and sum, then zonal aggregations calculated using the
mean and sum across three administrative levels (country, region,
and province). The number of records used for the PCC varied
depending on the temporal and regional scales of assessment. At the
country scale, 19 records were used per sub-indicator for the PCC;
114 at the regional scale (sans spring, where N = 76); and at the
provincial scale the number of records varied depending on the time
period (1,185, 574, 1,177, and 1,101 for the annual, fall, spring, and
winter periods, respectively). Province-scale PCC was also
conducted for the MRD (N = 157–244) and RRD (N = 209)
individually (Table 2).

2.3 Multiscale maps and time-
series matrices

After determining effective RS indicators at the province scale for
relation to rice production, the closest estimations were mapped and
time-series matrices produced. Maps include rice productivity (as
measured via RS indicator, in this case LAI) at multiple spatial
scales—province, district, and pixel (500-m spatial resolution). The
geographic extent is for all of Vietnam with an additional focus on
the MRD. To illustrate both types of modifiable spatiotemporal unit
problems in concert, maps were produced to show 1) which areas
exhibited positive or negative linear trends between 2001 and 2019, and
2) which areas experienced a flip from positive to negative, a flip from
negative to positive, or no change between the decades of 2001–2010 and
2010–2019 (the full temporal range parsed into two equal epochs).

The TSMx output shows the start year on the y-axis and the end
year on the x-axis; each cell stores the relevant information, in this
case the slope of the linear regression line (positive or negative) for
all possible year ranges within the study period. Raw slope or
magnitude of change can also be plotted using a color gradient,
rather than a binary categorization. The structure is similar to that of
a correlation matrix, or a correlogram, such as the ones produced
using the “GGally” package in R with the “ggpairs” function

(Schloerke et al., 2024) or the “corrgram” package (Wright,
2021). The TSMx diagrams for the manuscript were prepared
using slope calculations and conditional formatting options in
Microsoft Excel; a sample template is provided on Harvard
Dataverse at https://doi.org/10.7910/DVN/ZZDYM9 (Boumis and
Peter, 2021). The structure can accommodate alternative time
ranges with minimal modifications, though a programmatic
version was also developed for use in the R Statistical Software
(Boumis and Peter, 2021; R Core Team, 2021). The TSMx R script
can be used to construct time-series matrices of the kind presented
here and has the flexibility to accommodate any year range. In
addition to the binary positive or negative slope classifications,
slopes can be displayed as a gradient with Mann-Kendall
significance calculated (Mann, 1945; Kendall, 1975; Gilbert,
1987). The script requires only a 2-column table of years and
values as input.

One of the benefits of a TSMx over the conventional time-series
plot is that it removes any visual ambiguity when determining
whether a slope is increasing or decreasing over any particular
time window. It also allows for immediate visual interpretation of
epochs within a broader time-series that experienced a long-term
trend or a short-term event, which will appear as large or small
clusters in the matrix, respectively. TSMx serves as a supplemental
tool alongside traditional time series charts for visualizing and
interpreting multi-temporal problems. Furthermore, the matrix
elucidates temporal clusters of positive or negative trends,
i.e., long-term periods of increase or decrease, as well as
individual anomalous incidents. Temporal trends displayed in
this manner can be a useful tool for discerning short- and long-
term trends and isolated incidents that can be linked to both
biophysical and socioeconomic factors.

3 Results

3.1 RS indicator correlation to national
statistics

Overall, LAI and EVI sub-indicators most often exhibited the
strongest correlation with GSO production and yield estimates
across crop production periods and spatial scales (Table 3). This
evidence is consistent with other studies, such as Son et al. (2014),
who demonstrated a significant relationship between rice
productivity and LAI and EVI. At the country scale, the
Pearson’s correlation for production and yield were high
(Pearson’s r > 0.770; except for winter rice production), though

TABLE 2 Number of records used for calculating Pearson’s r.

Scale Country Region Province

Extent Country MRD RRD

Annual|January to December 19 114 1,185 244 209

Fall|May to August; He-Thu 19 114 574 244 n/a

Spring|January to April; Dong-Xuan 19 76 1,177 233 209

Winter|July to October; Lua Mua 19 114 1,101 157 209
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there were few data points available for testing. Country scale LAI
and GSO rice metrics are plotted alongside each other in Figure 5.

The region and province scale evaluations show a contrast
between the RS indicator correlations to yield and production,
with Pearson’s r being substantially higher in the production
comparisons. For example, the top performing RS indicator for
rice production at the province scale (annual temporal scale) was
LAI-X-S with a Pearson’s r of 0.960, whereas the top performing
correlation to yield was EVI-X-M with a Pearson’s r of 0.443. The
differences between RS indicator correlations to rice yield and
production are consistent across crop production periods. This
distinction is notable considering that zonal means are a
common selection for aggregating indices across space, but this
study supports using the zonal sum for estimating production.

Some variation in the relationship is due to variable planting/
harvesting dates across regions. All of the top performing RS
indicators across crop production periods, regions, and
productivity metrics are presented in Table 3. Moving forward,
LAI-X-S was selected as the primary indicator of rice production for
the maps and matrices given that it performed consistently well; all
LAI-X-S results with respect to rice production are listed in Table 3.
Scatterplots of the RS indicators with GSO production and yield
estimates are shown in Figures 6A–F. Stronger correlations exist
between the RS indicators and production than with those compared
to yield. At the annual temporal scale, LAI-X-S exhibits the strongest
correlation with rice production across Vietnam (using province-
scale data) with an R2 of 0.92. While this correlation presents
strongly, it is important to note that the correlation can be

TABLE 3 Sub-indicator with themaximumPearson’s r for each crop production period and scale as compared toGSO production/yield estimates. A, annual;
F, fall; S, spring; W, winter.

Scale Country Region Province

Extent Country MRD RRD

A Prod LAI-X-S r = 0.884 LAI-X-M r =
0.884

LAI-X-S r = 0.984 LAI-S-S r =
0.992

LAI-X-S r = 0.960 LAI-X-S r = 0.936 GPP-S-S r =
0.952

LAI-X-S r = 0.942 EVI-M-S r =
0.979

Yield LAI-X-M r = 0.889 EVI-X-M r = 0.566 EVI-X-M r =
0.443

LAI-X-M r = 0.764 NDVI-X-M r = 0.629

F Prod LAI-X-S r = 0.746 LAI-X-S r = 0.981 LAI-X-S r = 0.917 LAI-X-S r = 0.869 n/a

NDVI-S-S r = 0.874

Yield NDVI-S-S r = 0.843 EVI-X-M r = 0.475 LAI-X-M r =
0.494

LAI-X-M r = 0.535

S Prod LAI-X-S r = 0.828 LAI-X-S r = 0.987 LAI-X-S r = 0.968 LAI-X-S r = 0.961 LAI-X-S r = 0.907

LAI-X-M r = 0.828 EVI-X-S r = 0.993 EVI-X-S r = 0.974 EVI-X-S r = 0.968

Yield LAI-X-M r = 0.784 EVI-X-M r = 0.646 EVI-X-M r =
0.601

LAI-X-M r = 0.731 EVI-X-S r = 0.469

W Prod LAI-X-S r = 0.115 LAI-X-S r = 0.382 LAI-X-S r = 0.458 LAI-X-S r = −0.288 LAI-X-S r = 0.916

GPP-X-S r = 0.195 GPP-S-S r = 0.547 EVI-S-S r = 0.516 LAI-S-M r = 0.358 EVI-S-S r = 0.954

Yield LAI-X-M r = 0.770 EVI-X-M r = 0.394 NDVI-S-M r =
0.235

LAI-X-M r = 0.484 EVI-S-M r = 0.592

FIGURE 5
Time-series comparison of RS sub-indicators and rice production and yield at the country spatial scale and annual temporal scale.
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attributed in part to large variations in the magnitude of rice
production across Vietnam. For comparison, the correlation
between LAI-X-S and rice production across Vietnam (using
country-scale data; annual temporal scale) resulted in an R2 of
0.78. Furthermore, despite this analysis considering multiple time
windows (i.e., annual, fall, spring, and winter), the annual
production metrics tracked well with the RS data and were used
for demonstrating MAUP/MTUP/EFP effects in the following
sections (Table 3).

3.2 Time-series matrix (TSMx)

Figure 7 shows the TSMx diagrams for the GSO production and
rice yield, respectively. For the most part, both metrics have steadily
increased over the 19-year period under study (gray cells marked
with a plus symbol denote a time window with a positive slope);
however, there are notable periods where a downshift took place (red
cells with a minus symbol). Declines in rice productivity appear in
2012/2013, a trend which is mirrored by EVI-X-M and LAI-X-S in
Figure 8. These declines may signal a projected decline in future
years, but may only be a temporary change or plateau. That is, a
time-series trend can shift positive or negative on an annual basis
and an observed trend may only be relative to the temporal range
under observation and not indicative of what is to come in the near
or far future (Burke et al., 2022). EVI-X-M is also presented for
illustration in Figure 8 since it is a common method for estimating

rice productivity in Vietnam (Son et al., 2013a; Son et al., 2014). This
TSMx depicts more compelling evidence of an emerging downward
trend in rice production, and is consistent with observations (Chau
2021). Interestingly, this is a time period (2012/2013) in which
Vietnam was contending with an oversupply of rice, which is noted
by an export target reduction from 7.5 to 7.0–7.2 million tons by the
Vietnam Food Association (VFA) due to trade competition (Tran,
2013); more context is given in the discussion section (4.1).

Overall, the RS indicators and GSO statistics are visually
comparable. Across the temporal range (2001–2019) there is a
general positive linear trend for the majority of the intra-temporal
year ranges. Rice production shows a short-term negative trend in the
years following 2004 (2004–2005, 2004–2006, 2004–2007) before
flipping positive in 2008. In the last decade, the RS indicators and
GSO statistics are consistent in depicting an emergent negative linear
trend (Figures 7, 8). Additionally, to highlight the multi-spatial and
multi-temporal scale results, a TSMx diagram is also presented for the
MRD spring production period using LAI-X-M (Figure 9), which was
the strongest yield correlation for the MRD (Pearson’s r of 0.731;
R2 of 0.53).

3.3 Multiscale mapping

The following maps show the combined effects of MAUP and
MTUP. Figures 10A–D show time-series trends at the province and
district scales (continuous values representation) between 2001 and

FIGURE 6
Top RS sub-indicators in relation to rice production and yield at the province spatial scale and annual temporal scale. (A) LAI-X-S related to
production, (B) EVI-X-M related to yield, (C)GPP-S-S related to production, (D) LAI-X-M related to yield, (E) EVI-M-S related to production, and (F)NDVI-
X-M related to yield.
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2019 and Figures 11A–D illustrate binary positive or negative linear
trends. The binary classification was used in the following
summarizations to highlight the modifiable spatiotemporal unit
problems. At the province scale, 16 of 63 (25.4%) exhibited a
negative trend; at the district scale, 300 of 657 (45.7%) exhibited
a negative trend (measured via LAI-X-S; Figures 10A, 11A). Of the
HRLULC rice agriculture pixels across Vietnam, 34.7% exhibited a
negative linear trend (2001–2019; maximum LAI). Figures 11B, C
show linear trends between 2001 to 2010 and 2010 to 2019,
respectively. These two time periods are an equal parsing of the
complete temporal range and are used to demonstrate how temporal

selections impact conclusions drawn. Focusing solely on a complete
temporal range can mask the emergence of directional shifts; in
some cases, assessing emerging trends may be more effective for
policy than results driven largely by legacy data. Figure 11D
compares 2 decades (2001–2010 and 2010–2019) to show which
zones exhibited a trend direction switch. In the most recent decade,
12 provinces flipped negative (19.0%), 10 flipped positive (15.9%),
and 41 (65.1%) showed no change (i.e., continued trajectory);
128 districts flipped negative (19.5%), 164 flipped positive
(25.0%), and 365 (55.6%) showed no change (Table 4). To
summarize, at the province, district, and pixel scales it could be

FIGURE 7
Top: GSO Rice production TSMx. Black: 2001–2019; red: 2012–2017. Bottom: GSO Rice yield TSMx. Black: 2001–2019; red: 2014–2019. Specific
temporal range highlighted (in red) to demonstrate a contrasting trend (negative) to the complete time-series (positive) and show how it corresponds
with the matrix.
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stated the proportion of Vietnam exhibiting a negative trend is either
25.4%, 45.7%, or 34.7%, respectively.

At the pixel scale across all of Vietnam, between 2001 and 2010,
58.1% exhibited a positive trend and 41.9% exhibited a negative
trend. Between 2010 and 2019, 56.0% exhibited a positive trend and
44.0% exhibited a negative trend. Across the full time-series,
2001–2019, 65.3% exhibited a positive trend and 34.7% exhibited
a negative trend. Comparing the 2 decades (2001–2010 and
2010–2019) shows which pixels exhibited a trend direction
switch. In the most recent decade, 25.8% of all pixels flipped
negative, 23.7% flipped positive, and 50.6% showed no change
(i.e., continued trajectory). Figure 12A again shows the combined

effects of MAUP and MTUP, but at the pixel scale for the MRD. At
the pixel scale, between 2001 and 2010, 64.2% exhibited a positive
trend and 35.8% exhibited a negative trend. Between 2010 and 2019,
67.8% exhibited a positive trend and 32.2% exhibited a negative
trend. Across the full time-series, 2001–2019, 77.4% exhibited a
positive trend and 22.6% exhibited a negative trend. Figure 12B
compares 2 decades (2001–2010 and 2010–2019) to show which
zones exhibited a trend direction switch. In the most recent decade,
21.2% of all pixels flipped negative, 24.8% flipped positive, and
54.1% showed no change (Table 5).

Table 6 shows a breakdown of trends across nested scales,
i.e., country, RRD, and all the provinces within RRD. While the

FIGURE 8
Top: LAI-X-S TSMx. Black: 2001–2019; red: 2014–2019. Bottom: EVI-X-M TSMx. Black: 2001–2019; red: 2010–2019. Specific temporal range
highlighted (in red) to demonstrate a contrasting trend (negative) to the complete time-series (positive) and show how it corresponds with the matrix.
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country exhibited a positive linear trend across the study range, RRD
exhibited a negative trend; however, the province scale is more
nuanced. At the annual temporal scale, 7 provinces exhibited a
negative trend, which aligns with the regional trend, but 4 provinces
within the area exhibited a positive trend. This is an example where a
nested zone can exhibit a different or contrasting result and
assuming that a zone exhibits the characteristics of a greater zone
of which it is a part would be indicative of the EFP. Furthermore, this
is not an uncommon phenomenon, which is why it is important to
select a scale that is relevant to analysis, policy, or extension (Shariff
et al., 2011; Peter et al., 2018). In Peter et al. (2021), there is an
example of stark contrast across scales within the MRD—positive
trend at the province scale (Sóc Trăng) and negative trend at the
district scale (Cù Lao Dung).

4 Discussion

4.1 Shifting trends: evidence from the
literature

The recent negative trend in Vietnamese rice production has
been noticed before, though without the nuance of scale
demonstrated in this paper. Explanations for the downturn range
from economic to ecological. Kompas et al. (2012) identified the
start of the trend, while Pedroso et al. (2018) observed productivity
decreases. Both theorized a downturn could be due to agricultural
land fragmentation, a result of land allocation policies, as well as
increasing urbanization. Yuen et al. (2021), after doing a review of
literature around the factors affecting rice yields, notes that
anthropogenic developments meant to improve agricultural

productivity can create many unwanted environmental
consequences such as an increase in flooding, saltwater intrusion,
and land subsidence, which in turn decreases rice production and
quality. In addition, they note that natural hazards may amplify the
problems created by human activities (Yuen et al., 2021). Nguyen
et al. (2019) also attributed impacts on Vietnamese agricultural
productivity to rural-urban migration and urbanization.
Laiprakobsup (2019) introduced a broader lens, focusing on the
association between the reduction of tax and trade barriers and the
growth of rice productivity. In 2013, Tran (2013) and various news
outlets noted overproduction of rice and problems of lowered prices,
so it is possible that a downturn in productivity can actually signal
desired outcomes, both economic and environmental (Ives, 2013).
In 2023, the Vietnam government announced its aim to reduce rice
exports to 4 million tons by 2030 for the purposes of food security,
climate change adaptation, and quality control (Vu, 2024).

In addition to political and economic factors, many scholars cite
crop management decisions as potentially impactful. Chapman and
Darby (2016), among others, suggest that the increase in dyke
network heights (an infrastructure improvement process that
began in the 2000s) to help mitigate flooding issues also excludes
nutrient-rich sediment from the protected areas in the long-term.
More than a decade out, recent negative trends could be a
manifestation of the impacted soil. Similarly, the three-crop
method that allows for intensified production requires high dykes
to be implemented but has been criticized as unsustainable in the
long-term (Tong, 2017). Other possible explanations include
adaptation to climate change (or lack thereof) and the resulting
salinity issues in the delta regions (Ho and Shimada, 2019). Vietnam
is highly vulnerable to climate change, especially sea level rise
(Dasgupta et al., 2009). Increasing salinity concentrations in river

FIGURE 9
LAI-X-M TSMx for the MRD spring crop production period. Black: 2001–2019; red: 2014–2019. Specific temporal range highlighted (in red) to
demonstrate a contrasting trend to the complete time-series (positive) and show how it corresponds with the matrix.
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basins results in lower agricultural productivity (Pedroso et al.,
2018). The pixel-scale analysis presented here of the MRD does
indeed show recent declining trends throughout the region
(Figure 12); however, contrasting evidence is illustrated by an
apparent increase in productivity in much of the cultivated
region along the MRD coast.

Rice farmers could also face a productivity plateau, where
improvements in inputs and increasing fertilizer use now result

in diminishing returns to scale. Tu (2017) surveyed farmers who
reported decreasing returns to scale since the 2010s. Since 2003, the
Vietnamese government has adopted policies to improve crop
management practices, including the ‘One Must Do, Five
Reductions’ (1M5R) model favored in 2006 (Stuart et al., 2018).
The one “must do” of 1M5R is to use good-quality seeds, while
reducing seed rates, pesticide use, fertilizer inputs, water use, and
postharvest losses. Compliance with 1M5R is mixed; Connor et al.

FIGURE 10
Temporal trends and decades comparison showing slope of the linear regression line (LAI-X-S) at the province and district scales. Symbology is
based on a < −100 to >100 scale. Figure 11 shows the same data in binary form. (A) Slope of the linear regression line: 2001–2019, (B) Slope of the linear
regression line: 2001–2010, (C) Slope of the linear regression line: 2010–2019, and (D) Slope Difference: 2001–2010 v. 2010–2019.
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(2020) found that farmers struggled to reduce their fertilizer use,
water use, and seed rate—all of which could contribute to a
flattening or even decreasing productivity curve.

Realistically, the probable cause of decreasing rice production
trends is a combination of the forces and factors listed above. Just as
there is heterogeneity in production trends, so too is there in
explanatory factors. The problems posed by agricultural
intensification and climate change are not felt equally across
regions and potential solutions for one area should not be
assumed to be equally viable in another area. Variability in
environmental conditions and constraints, as well as the extent of
financial assets available to stakeholders, should be considered when

addressing agricultural production across a country. This is why the
MAUP/MTUP method is so useful—it can help pinpoint the
temporal and spatial hotspots and serve as a constraint on
theories of observed changes in production. For example, if
productivity is decreasing in a region that has largely adopted
1M5R and does not display fragmented agricultural land,
exploring climate and environmental factors could be more
fruitful than focusing on agricultural or land-use policy.

The MAUP/MTUP method also highlights the need for data at
multiple scales. Despite the preponderance of agriculture in
Vietnam, rice in particular, agriculture, forestry, and fishing
(AFF) receives disproportionately little in foreign direct

FIGURE 11
Temporal trends and decades comparison showing positive or negative trends and locations with a linear trend switch (LAI-X-S)—province and
district scale. This is a binary reclassification of Figure 10. (A) Slope of the linear regression line: 2001–2019, (B) Slope of the linear regression line:
2001–2010, (C) Slope of the linear regression line: 2010–2019, and (D) Trend switch: 2001–2010 v. 2010–2019.
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investment (FDI) compared with manufacturing and real estate
activities (GSO 2021). According to GSO (2021), between 2005 and
2019, FDI related to AFF was, on average, 134.4 million USD per
year. While the overall monetary contribution of FDI toward AFF
has trended positive between 2005 and 2019, the relative
contribution (both the number of projects and the amount of
capital) among all FDI has trended negative. In 2005,
39.1 million USD went toward AFF, and in 2020, 104.1 million
USD went toward AFF, though with some interannual volatility
(standard deviation of 60.9 million USD; maximum of 258 in 2015;
minimum of 36.2 in 2010). In 2005, the proportion of projects
related to AFF was at 2.0% and in 2019 dropped to 0.4%; in terms of
capital, the proportion of money directed toward AFF was 0.7% in
2005 and 0.3% in 2019. However, at a national level, and aggregated
to include all AFF projects, FDI data reveals little about the impact of
FDI on Vietnam’s rice production. Even if all else remained the
same, FDI disaggregated to the province or district level combined
with the MAUP/MTUP method could be used to discern where and
when FDI may be a positive driver in production and/or yield
improvements.

4.2 MAUP, MTUP, and EFP

What proportion of Vietnam is experiencing, or has
experienced, a decrease or increase in rice production? The
answer to this question varies depending on both the temporal
and spatial scale. The results here demonstrate multiple ways the
question can be addressed using the same underlying data, in this
case LAI-X-S. 1) When data are aggregated by province,
approximately 25.4% of the regions in Vietnam exhibit a negative
linear trend between 2001 and 2019. 2) When data are aggregated by
district, approximately 45.7% of the regions in Vietnam exhibit a
negative linear trend between 2001 and 2019. On rice agriculture
across Vietnam at the pixel scale (in this case LAI at a 500-m spatial
resolution), 34.7% exhibited a negative linear trend from 2001 to
2019. All three scales produce a different metric when addressing the
same question. These results demonstrate the impact that the spatial
arrangement of data aggregations can have on data interpretation,
both visually and quantitatively. The characteristics of individual
districts within each polygon can greatly influence the way the
province becomes characterized and it would be a fallacy (i.e., the

EFP) to assume that any district within a province exhibits the
characteristics of the whole. In one specific case, the province of Dak
Lak presents as a positive linear trend (2001–2019); however, 7 of
13 districts within that region exhibit a negative linear trend. As for
the MRD region, 39 of 124 districts exhibit a negative linear trend
(2001–2019), yet at the province scale all 13 provinces exhibit a
positive linear trend. Furthermore, this research shows that the
optimal index and type of spatiotemporal aggregations differ across
spatiotemporal scales, making a one-size-fits-all approach to
measuring rice production across Vietnam a challenge, though it
should be noted that LAI-X-S performed consistently well.

Answers to these types of questions also vary temporally. For
example, what fraction of Vietnam is experiencing a negative linear
trend in rice production? At the province scale, 33.3% of provinces
exhibited a negative linear trend between 2010 and 2019, yet at the
district scale, 46.1% of districts exhibited a negative linear trend
between 2010 and 2019. The overarching trend from 2001 to 2019 is
not indicative of the most recent decade (2010–2019) for many
provinces and districts, which can impact how resources are
distributed and potentially negatively impact the return on
investment if resources are delivered to places that do not have a
present need. While new data can and do update our knowledge,
narratives drawn often persist beyond their scope. In some cases,
there is not enough data to determine whether a trend shift will
persist another year or into the future (Burke et al., 2022). Should a
reversed trend continue, it can still take time for the scientific
community and the literature to catch up and shift a
longstanding narrative. This analysis serves as a reminder that
long-term trends and “recent” metrics are not necessarily
representative of current conditions.

4.3 Multiscale utility

As has been mentioned throughout this study, multiscale
problems require multiscale solutions, and a geographically
explicit multiscale framework offers unique insights (Stone,
1972). Section 4.1 discussed relationships between observational
data and policy on the ground, but what value can multiscale
mapping add? In view of the 2023 plan to limit rice production,
where should agricultural investments focused on improved rice
productivity be directed? It is argued here that one benefit of the

TABLE 4 Rice production summary of trends and slope flips for 2001–2019, 2001–2010, and 2010–2019 at the province and district scales across Vietnam.

Slope 2001–2019 2001–2010 2010–2019 Trend switch (%)

Province Positive n = 47; 74.6% n = 44; 69.8% n = 42; 66.7% n = 10; 15.9

Negative n = 16; 25.4% n = 19; 30.2% n = 21; 33.3% n = 12; 19.0

No change n/a n/a n/a n = 41; 65.1

Net change 3.1% negative; 2 provinces

District Positive n = 357; 54.3% n = 318; 48.4% n = 354; 53.9% n = 164; 25.0

Negative n = 300; 45.7% n = 339; 51.6% n = 303; 46.1% n = 128; 19.5

No change n/a n/a n/a n = 365; 55.6

Net change 5.5% positive; 36 districts
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multiscale perspective is that it offers a better framework for the
resource/policy pipeline. In Vietnam, the agricultural extension
(AE) sector is critical infrastructure for transferring knowledge

and technologies to farmers, and each province has a center for
AE, which extends down to the district and commune level (Truong,
2022). AE agencies are designed to serve multiple scales, thus

FIGURE 12
(A) Slope of the linear regression line for time periods 2001–2010, 2010–2019, and 2001–2019. (B) Linear trend switch (LAI-X-S)—pixel scale.

TABLE 5 Rice production summary of trends and slope flips for 2001–2019, 2001–2010, and 2010–2019 at the pixel scale across the MRD.

Slope 2001–2019 2001–2010 2010–2019 Trend switch (%)

Pixels (MRD) Positive 77.4% 64.2% 67.8% 24.8

Negative 22.6% 35.8% 32.2% 21.2

No change n/a n/a n/a 54.1

Net change 3.6% positive
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multiscale maps can serve to aid such agencies in the decision
making process (Shariff et al., 2011). For example, in Figure 1A, at
the regional scale, the MRD exhibits an overall positive trend from
2001 to 2019, which holds at the province scale; however, at the
district scale we can observe existing heterogeneity, with 31% of
districts exhibiting a negative trend. The same framework can also
be employed to disentangle the cross-scale spatial variability of rice
production (in combination with trend data) to identify potential

target areas for: 1) districts that exhibit a negative trend and are not
meeting production needs, 2) districts that exhibit a negative trend
but are meeting production needs, 3) districts that exhibit a positive
trend but are not meeting production needs, and 4) districts that
exhibit a positive trend and are meeting production needs. Scenario
three, where districts exhibit a positive trend but are meeting (or
exceeding) production needs may not need investments in
agriculture. On the other hand, in scenario one, where districts
exhibit a negative trend and are not meeting production needs
would be candidates for agricultural improvement efforts. To
summarize, agencies and institutions enacting policy or aid at the
country, region, province, and district scales, may require intra-
country, intra-region, intra-province, and intra-district scale spatial
information, respectively, to more effectively address spatial
problems (Figure 13).

One challenge of a multiscale framework as proposed here is
that it can complicate the process of selecting spatial and temporal
boundaries. With all the different ways of organizing space and
time, varied—sometimes even contradictory—“truths” can emerge
(Peter et al., 2021; Burke et al., 2022). The challenges (or
opportunities) of MAUP/MTUP are consistent with the
philosophy of pluralism, which is the idea that multiple factual
versions of reality can coexist simultaneously and that each
version offers unique insights, whether complementary or
contradictory (Martin, 2021). Considering this challenge, the
onus on the researcher to disentangle a story that best
represents reality is complex. While difficult, the alternative is
that the researcher selects a single spatial and temporal boundary
and is unaware of phenomena that exist across other
spatiotemporal dimensions. This notion is echoed by Comber
and Harris (2022), who refer to an abundance of literature
exhibiting scale blindness. Additionally, Manley (2021)
recognized a problematic tendency associated with multiscale
studies, noting that “to acknowledge the MAUP, even

TABLE 6 Slope of the linear regression line (LAI-X-M) for the country, RRD,
and each of the provinces within the RRD.

Annual Spring Winter

Country 0.029 0.032 0.036

RRD −0.015 −0.022 −0.019

Bắc Ninh 0.002 −0.013 −0.003

Hà Nam −0.041 −0.035 −0.043

Ha Noi −0.022 −0.017 −0.025

Hải Duong 0.001 −0.023 0.001

Hai Phong −0.026 −0.027 −0.029

Hưng Yên −0.026 −0.020 −0.030

Nam Đi
_
nh −0.021 −0.027 −0.020

Ninh Bình −0.014 −0.018 −0.023

Quảng Ninh 0.012 0.005 0.003

Thái Bình −0.011 −0.033 −0.013

Vĩnh Phúc 0.001 −0.009 −0.015

Positive 4 1 2

Negative 7 10 9

FIGURE 13
Multiscale pipeline—data presented at actionable administrative levels and disentangling heterogeneity across spatial scales. Shown are Vietnam
(province scale), the MRD region (district scale), and Cầu Ngang District (pixel scale). Maps depict positive and negative slopes of the linear regression line
from 2001 to 2019 as measured via LAI-X-S.
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informally raises questions on the validity of the analysis
conducted and any conclusions reached” (p. 1713). Martin
(2021) put forth a case for why pluralism is a useful concept to
employ in economic geography. While a singular temporal/spatial
selection is understandable, logical, and still useful, it is argued
here that results of such an analysis should be presented as specific
to the spatiotemporal selections made and not extrapolated more
broadly (Tuson et al., 2019). That is, the scale selected should
match the granularity of the subject being analyzed and the
conclusions drawn should address that specific scale (Tuson
et al., 2019; Comber and Harris, 2022). At the very least,
researchers should recognize MAUP and communicate
explicitly the spatial and temporal selections made (Manley, 2021).

Somewhat in contrast to what is suggested here—that a
multiscale view can provide multiscale insights—Tuson et al.
(2019) assert that geographic analyses should take place at the
smallest possible scale. Though very reasonable from a data
analytics standpoint, the smallest possible scale is often not
relevant to policymakers who operate at coarser scales, e.g.,
county versus state, and multivariate studies may be limited
by data availability spanning multiple scales (Shariff et al.,
2011; Peter et al., 2018). MAUP is particularly important in
policy- and decision-making, as results obtained from spatial
analysis at one scale may not be generalizable to another scale
(Hennerdal and Nielsen, 2017; Chen et al., 2022). Put into
practice, policies derived from such analyses may have serious
social, economic, and ecological implications (Nelson and
Brewer, 2017; Cima et al., 2021).

An obvious limitation of this analysis is that the “best”
indices, zones, and temporal selections are not identified;
however, the multiscale framework offers tools to handle
problems of aggregations across space and time (MAUP,
MTUP, and EFP) and uncover multiscale perspectives of
agricultural production. To suggest that there may not be an
optimal scale of analysis may be an unsatisfying conclusion,
especially considering that multiple outlooks can produce
divergent findings; however, modifiable spatiotemporal unit
problems might simply be inescapable realities with which
research will continuously contend and any proposed
“solutions” merely manage the problem. A viewpoint
expressed here and supported by Manley (2021) is that there
may not necessarily a single optimal scale for a given analysis and
that multiple scales can offer unique utility. Future use of this
study and the tools supplied will enable future researchers, as well
as those who have previously published on agricultural trends, to
recontextualize or interrogate their results. Moreover, while rice
production is the trend discussed in this paper, these tools are of
use to any multiscale trend study, e.g., monitoring deforestation
in the Amazon, maize production in Sub-Saharan Africa, or
wetland rehabilitation in the US.

4.4 Key takeaways

1. Spatial and temporal selections have a substantial effect on the
results of any geospatial analysis. Spatial resolution, spatial
selections, and temporal selections should be explicitly stated
and MAUP/MTUP acknowledged.

2. When multiscale data are available, a sensitivity or
optimization analysis should be undertaken, or a multiscale
analysis considered.

3. The resolution of the conclusions drawn should match the
resolution/scale of both the data and analysis. Caution should
be given when attempting to extrapolate results above or below
the analysis scale.

4. Multiscale solutions serve to disaggregate homogeneity at
coarser scales to reveal finer-scale heterogeneity. Conversely,
multiscale solutions can serve to aggregate heterogeneity at fine
scales and be coarsened to more general trends at actionable or
data rich levels.

5. Challenges associated with MAUP/MTUP in the context of
agriculture are underrepresented in the literature and should
be an area of more focused research.

6. LAI and EVI are effective indices for monitoring rice
agriculture in Vietnam across multiple scales. Alternative
index and descriptive statistic selections (i.e., those other
than defaulting to NDVI and mean summaries) should be
considered for any remote sensing of agriculture analysis.

7. The annual timescale proved to be a useful aggregation unit for
monitoring rice agriculture in Vietnam, despite there being
multiple crop production periods; however, for period-specific
assessments, alternative timescales need to be selected.

8. Open access geospatial tools facilitate the production of
multiscale maps and multiscale time-series charts.

4.5 Conclusion

Global satellites and time-series spatial information can help in
the evaluation of long-term resilience of agricultural systems
(Haworth et al., 2018); however, statistical aggregations can vary
depending on how data are distributed across both spatial and
temporal scales. Assumptions of areal and temporal homogeneity
are often erroneously applied to an individual pixel, region, or epoch
based on aggregated data (Openshaw, 1983). As demonstrated here,
results biased by MAUP and MTUP phenomena can lead to
misrepresentation of spatiotemporally dependent problems.
Conversely, these phenomena can also be exploited as a
framework to understand agricultural production across
spatiotemporal scales. In rice agriculture, for example, production
viewed through one temporal scale can lead to investments that
inadequately address long-term trends, short-term situations, or
emerging long-term changes.

Making use of multiscale temporal and spatial aggregations
for four indicators (LAI, NDVI, GPP, and EVI), this paper first
establishes a relationship between RS data and national statistics
on rice production in Vietnam. The best-performing LAI and
EVI sub-indicators were then used to explore productivity trends
across Vietnam at the province and district level, as well as the
pixel scale. Of particular note is that the method used for
organizing space changes the outcomes of summary statistics.
One question that may be asked is, what fraction of Vietnam is
experiencing a negative linear trend? There is more than one
answer. Going by province-scale aggregations, 25.4% of Vietnam
provinces exhibit a negative linear trend, yet simultaneously
45.7% of Vietnam districts exhibit a negative linear trend
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(based on estimations from LAI-X-S). At the pixel scale, 34.7% of
rice agriculture across Vietnam exhibits a negative linear trend.
In addition to the variations produced from differing methods of
organizing space, this manuscript also shows how time plays a
major role in quantifying agricultural productivity. In the MRD,
3.6% more of rice agriculture exhibited a positive linear
trend between 2010 and 2019 as compared to 2001–2010;
however, while many pixels flipped positive, many also
flipped negative.

While there is an abundance of research evaluating
agricultural production in Vietnam, studies seldom produce
results at multi-spatial and multi-temporal levels. To evaluate
the impact of MAUP and MTUP, this study proposed a
framework to conduct multiscale analysis that incorporates the
impacts of spatial and temporal scales, by using the rice
production in Vietnam over a 19-year period as a case to
illustrate the utility. The MAUP/MTUP analytics presented
here offer researchers a framework for conducting multiscale
analyses and giving due consideration to the impact that spatial
and temporal scales have when assessing agricultural production.
This study also supplies generalizable tools to map, visualize, and
quantify the linear trend of all possible year combinations within
a temporal range to track agricultural production variability and
identify both long- and short-term epochs with distinct
trajectories, which can then be linked to both biophysical and
socioeconomic drivers.
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