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The primary ocean color product is the spectrum of remote sensing reflectance
RRS that allows the quantification of in-water optically significant constituents and
all ocean color applications. The determination of its uncertainties is thus key to
the creation of comprehensive uncertainty budgets for all derived ocean color
products. The assessment of satellite RRS uncertainties has largely relied on
corresponding field measurements but this process is solid only if these field
measurements are in turn fully characterized. Uncertainty budgets have therefore
been defined and reported for the radiometric measurements collected in the
framework of the Ocean Color component of the Aerosol Robotic Network
(AERONET-OC). The contemporaneous deployment of two autonomous
systems for 5.5 years on the Acqua Alta Oceanographic Tower (AAOT) located
in the northern Adriatic Sea led to the collection of 4,449 pairs of coincident
observations (collected with a time difference lower than 10 min) distributed over
659 days of data acquisitions that can be used to verify reported uncertainty
values. The comparison of matched pairs showed a good agreement for RRS (with
differences of typically 2%–3% between 412 and 560 nm), as well as for the aerosol
optical thickness τa (3%–6%). Differences between data from the two systems
appear generally consistent with their stated uncertainties, indicating that they are
metrologically compatible and that uncertainties reported for AERONET-OC data
are usually trustworthy (with possible exceptions depending on the level of error
correlation between measurements from the two systems). Using uncertainty
cone diagrams, this result holds across the range of uncertainty values with few
exceptions. Independent uncertainty estimates associated with non-systematic
error contributions were obtained using a collocation framework allowing for
error correlation between measurements from the two systems. The resulting
uncertainties appeared comparable with the reported values for τa and RRS. The
related mathematical development also showed that the centered root-mean-
square difference between data collected by two systems is a conservative
estimate of the uncertainty associated with these data (excluding systematic
contributions) if these data show a good agreement (expressed by a slope of
method II regression close to 1) and if their uncertainties can be assumed similar
with errors moderately correlated (typically lower than 0.5).
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1 Introduction

Ocean color products derived from data of water-leaving
radiance LW or remote sensing reflectance RRS offer an extensive
array of applications (IOCCG, 2008), including environmental
monitoring or climate science, in the context of which LW is
listed as an Essential Climate Variable (ECV) (GCOS, 2011). But
the use of ocean color remote sensing is only trustworthy if these
products are accompanied by uncertainty estimates (IOCCG, 2019),
a requirement increasingly recognized in explicit terms in related
projects (Donlon et al., 2012; Hollmann et al., 2013; Ahmad et al.,
2019). Much of what is known about uncertainties of ocean color
data relies on comparison with field measurements, a process
termed validation. In the context of climate studies, validation
activities are actually required by the Global Climate Observing
System (GCOS) for the generation of ECV products (GCOS, 2010).
Among the field data used for validation activities, Fiducial
Reference Measurements (FRM) have a central role to play as
data of particularly high quality; they must fulfill some criteria
on measurement and quality control protocols, uncertainty
characterization, and traceability to standards (Ruddick et al.,
2019; Donlon et al., 2014; Fahy et al., 2022). However, the
validity of uncertainty estimates associated with FRMs should
also be verified, a process that can rely on inter-comparison
exercises (Donlon et al., 2014). Even though such exercises have
proved useful for an improved characterization of radiometric
measurements and associated uncertainties (e.g., Hooker and
Maritorena, 2000; Hooker et al., 2002; Zibordi et al., 2004;
Vabson et al., 2019; Alikas et al., 2020; Tilstone et al., 2020), they
have often been limited to short periods of time.

Since 2002, the Ocean Color (OC) component of the Aerosol
Robotic Network (Holben et al., 1998), AERONET-OC (Zibordi
et al., 2021), has provided standardized radiometric measurements
collected by autonomous Sun photometers operating from offshore
structures in coastal regions or lakes. AERONET-OC radiometric
measurements have been extensively used for the validation of
satellite radiometric products (normalized water leaving radiance
LWN or RRS) from a variety of satellite missions (e.g., Zibordi et al.,
2009a; Zibordi et al., 2022b; Mélin et al., 2011; Mélin et al., 2012;
Pahlevan et al., 2021; McCarthy et al., 2023) as well as for other
applications such as the assessment of detection methods for specific
types of phytoplankton (Cazzaniga et al., 2021; Cazzaniga et al.,
2023), the testing of multi-mission merging techniques (Mélin and
Zibordi, 2007; Mélin et al., 2009) or system vicarious calibration
(Mélin and Zibordi, 2010). They benefit from a calibration traceable
to standards (Johnson et al., 2021) and a comprehensive set of
quality control procedures (Zibordi et al., 2022a; D’Alimonte and
Zibordi, 2006; Giles et al., 2019). Studies by Gergely and Zibordi
(2014) and Cazzaniga and Zibordi (2023) also described an
approach to compute uncertainty estimates for each AERONET-
OC LWN record.

In October 2017, the AERONET-OC system operating on the
Acqua Alta Oceanographic Tower (AAOT), located in the northern
Adriatic Sea (45.314°N, 12.508°E), was updated with the installation
of a CE-318T Sun photometer with enhanced capabilities but the
previous CE-318 instrument was kept in operation till March 2023,
which has provided 5.5 years of simultaneous measurements from
similar instruments. This dual configuration and the resulting large

body of data offer a unique opportunity to assess the AERONET-OC
observations and their uncertainty budget by analysing if the
differences observed between measurements of two instruments
are compatible with their associated uncertainties. The first
objective of this study is thus to verify the uncertainty estimates
reported for the AAOTAERONET-OC data as well as to validate the
approach devised to compile these uncertainties. The second
objective is more methodological, i.e., to present a metrologically
sound approach for such an assessment that could be applied to
other cases of simultaneous observations.

2 Materials and methods

The Acqua Alta Oceanographic Tower (AAOT) in the northern
Adriatic Sea has been hosting a SeaWiFS1 Photometer Revision for
Incident Surface Measurements (SeaPRISM or simply PRS
hereafter) CE-318 system since 2002 and is the precursor site for
AERONET-OC. This site is characterized by a large variability in
bio-optical quantities since located in a transition region between
open sea and coastal waters affected by the input from several rivers
(Zibordi et al., 2009a). The aerosol type is mostly continental,
occasionally maritime (Mélin and Zibordi, 2005; Mélin et al., 2006).

In October 2017, a more recent SeaPRISM system (CE-318T,
Zibordi et al., 2021) was additionally deployed on AAOT. The two
instruments were located a short distance apart (~65 cm) and
observed the same portion of the sea (see Zibordi et al., 2021, for
a view of the setting). The two systems (hereafter called PRS0 and
PRS1 for CE-318T and CE-318, respectively) operated
simultaneously from October 2017 to March 2023. CE-318 and
CE-318T differ mainly in the number of measurement sequences
performed and the number of the center-wavelengths at which
measurements are acquired, which are both higher for PRS0 (CE-
318T). Every hour, whereas CE-318 instruments perform two
sequences of measurements, CE-318T instruments perform two
triplets of measurement sequences. Each triplet is composed of
three complete measurement sequences typically completed
within 10 min.

CE-318 acquires measurements at eight bands with nominal
center-wavelengths at 412.5, 442.5, 490.0, 532.0, 551.0, 667.0,
870.0 and 1,020.0 nm, while CE-318T acquires measurements at
11 bands with nominal center-wavelengths matching those of the
Ocean and Land Colour Imager (OLCI, Donlon et al., 2012), at
400.0, 412.5, 442.5, 490.0, 510.0, 560.0, 620.0, 665.0, 779.0, 865.0, and
1,020.0 nm. Exact center-wavelengths actually vary with each
deployment, with a maximum deviation of 4.4 nm for CE-318
(maximum in the range 551–555 nm) and 0.3 nm for CE-318T.
In the considered observation period (Oct. 2017-March 2023), 2 and
5 instruments were alternatively deployed for PRS0 and PRS1,
respectively. These instruments were regularly substituted for
maintenance and re-calibration: the considered period was
associated with seven deployments for PRS0 and 8 deployments
for PRS1, so that the pair of instruments in operation varied at
irregular intervals. Even though comparison statistics may

1 standing for Sea-viewing Wide Field-of-view Sensor
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somewhat vary from one pair of instruments to another (Zibordi
et al., 2021), the observations collected by successive deployments of
CE-318T and CE-318 were considered as a single time-series
covering the whole period for PRS0 and PRS1, respectively, which
is consistent with the way the respective data sets are distributed
through the AERONET-OC portal2 for the “AAOT” and
“Venice” sites.

2.1 PRS measurements

The water-leaving radiance LW at wavelength λ is quantified by
PRS measurements in the following way (Zibordi et al., 2021, and
references therein):

LW λ, θ, θ0,ϕ( ) � LT λ, θ, θ0,ϕ( ) − ρ θ, θ0, ϕ, w( )Li λ, θ′, θ0,ϕ( ) (1)
where LT is the total radiance measured by the instrument pointed at
the sea surface with the geometry defined by the zenith viewing angle
θ (fixed at 40°) and relative azimuth with respect to the solar plane ϕ
(fixed at 90°) with a solar zenith angle θ0, and Li is the sky radiance
collected with a viewing angle θ′ = 180°-θ. The sea-surface
reflectance factor ρ is computed as a function of geometry and
sea state represented by wind speedw (Mobley, 1999; Mobley, 2015).
For each measurement sequence, 11 measurements of LT and
3 measurements of Li are performed. Selected values of LT and Li
are then obtained by averaging all Li measurements and the lowest
2 out of 11 measurements of LT, aiming at minimizing the impact of
wave perturbations, as described in Zibordi et al. (2021) and in
D’Alimonte et al. (2021).

The conversion from LW to the normalized water-leaving
radiance LWN is performed through:

LWN λ( ) � LW λ, θ, θ0,ϕ( )
d2 cos θ0td λ, θ0( )CQ λ, θ, θ0,ϕ, OP, w( ) (2)

where d is the inverse normalized Earth-Sun distance, and td is the
diffuse atmospheric transmittance (Deschamps et al., 1983). The
remote sensing reflectance RRS is simply defined as LWN/E0, where E0
is the mean extra-terrestrial solar irradiance (Thuillier et al., 2003).
In effect, the product d2cos θ0E0td normalizes LW by the incident
downward irradiance. CQ is a factor correcting for bidirectional
effects associated for non-nadir illumination and observation
conditions. It is here modeled as a function of geometry, wind
speed and the optical properties of the water (labeled OP),
represented either by chlorophyll-a concentration (Chl) according
to Morel et al. (2002) or by Inherent Optical Properties (IOP)
according to Lee et al. (2011). Both correction methods are
provided for AERONET-OC data and corresponding RRS values
are hereafter referred to as RChl

RS and RIOP
RS , respectively.

As indicated above, wavelengths associated with any two systems
differ slightly. This could be corrected with a band-shift correction such
as that described in Zibordi et al. (2009a) and applied to LWN. This shift
includes a correction for E0 (which is here embedded in the conversion
to RRS) and a component modeling spectral changes in IOPs of the
water, themselves computed with LWN with a regional algorithm. This

part of the correction may be associated with significant uncertainties
(Mélin and Sclep, 2015; Salem et al., 2023) that are not easily quantified
for all records. Thus, considering that differences in wavelengths are
relatively small and that comparison statistics actually do not improve
when applying the correction, it is not applied here.

For completeness, it is recalled that AERONET-OC sites also
function as generic AERONET sites for the determination of the
aerosol optical thickness τa using direct solar irradiance
measurements (Holben et al., 1998; Smirnov et al., 2000).
Reported uncertainties for τa measurements are typically
decreasing with wavelength from the blue to the near-infrared
(NIR) in the interval 0.010–0.015 (Eck et al., 1999; Schmid et al.,
1999). In the comparison between τa collected by instruments at
different wavelengths, a band-shifting procedure is applied by
modeling the spectrum of τa as a second-order polynomial (in
log-space) (O’Neill et al., 2001; Mélin et al., 2007; Mélin
et al., 2013).

2.2 Uncertainties associated with PRS ocean
color measurements

In this work, only Level 2.0 AERONET-OC data,
i.e., measurements that passed the highest level of quality control
(QC), were used. A first automated QC process, fully described in
Zibordi et al. (2022a), discarded measurements potentially affected
by clouds, high aerosol load, high variability in both illumination
and water surface conditions. Additionally, until March 2023, data
were qualified as Level 2.0 after an expert-based quality control
procedure. For more recent data, an automated comprehensive QC
procedure was instead applied, which included former automated
checks and mimicked the expert analysis during the final QC of
AERONET-OC data.

The measurement function associated with the AERONET-OC
systems and its related error sources is displayed in an uncertainty
analysis diagram (also called uncertainty tree) following Mittaz et al.
(2019) (Figure 1). In the works by Gergely and Zibordi (2014) and
Cazzaniga and Zibordi (2023), the combined standard uncertainty
(with a coverage factor k = 1) associated with AERONET-OC LW
data, u(LW,j) for record j, was expressed by the law of uncertainty
propagation applying a first-order Taylor series development to Eq.
1 (Ku, 1966; GUM, 2008) leading to (omitting the spectral
dependence for simplicity):

u2 LW,j( ) � LT,ju% LT( )( )2 + Li,ju% Li( )ρj( )2 + Li,ju%,j ρ( )ρj( )2 (3)

where u%(LT) and u%(Li) are LT and Li relative uncertainty values,
respectively, which include the uncertainty affecting instrument
calibration, the decay of instrument sensitivity during a
deployment and the short-term environmental perturbations
uenv(LT) and uenv(Li) (Figure 1) (the notation u% will indicate
relative uncertainties in % throughout the manuscript). Since
only PRS0 systems provide triplets of measurements, used to
estimate uenv(LT) and uenv(Li), u%(Li) and u%(LT) were calculated
as in Cazzaniga and Zibordi (2023) only for PRS0 time series, and
their average values were applied too when calculating PRS1
uncertainties. For those PRS1 center-wavelengths which were not
available from PRS0, these average values were interpolated2 https://aeronet.gsfc.nasa.gov/new_web/ocean_color.html
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spectrally. Finally, u%,j(ρ), relative uncertainty for ρ, was calculated
for each LW,j value as in Cazzaniga and Zibordi (2023). It is
acknowledged that Eq. 3 does not include error correlation terms
that are deemed insufficiently characterized.

The conversion from LW to the normalized water-leaving
radiance LWN or, equivalently, to the remote sensing reflectance
RRS (LWN and RRS merely differ by the factor E0, Eq. 2) is
illustrated by the uncertainty tree diagram of Figure 2. For
each record j, the combined standard uncertainty for LWN,
u(LWN,j), was calculated from u(LW,j) and the law of
uncertainty propagation applied to Eq. 2, according to (also
ignoring correlated terms):

u2 LWN,j( ) � CQ,jCA,ju LW,j( )( )2 + LW,ju% CQ,j( )CQ,jCA,j( )2
+ LW,ju% CA,j( )CA,jCQ,j( )2 (4)

where CA,j � d2j cos θ0,jtd,j, and its relative uncertainty u%(CA) is
assumed constant for all center-wavelengths and equal to 1.5%
(Zibordi et al., 2009b). This estimate encompasses several
sources of error such as those due to aerosol, ozone and
Rayleigh optical thickness and related optical properties
(Figure 2). The relative uncertainty associated with CQ (term
correcting for bidirectional effects), u%(CQ,j), is calculated for
each record j as in Cazzaniga and Zibordi (2023), differently

FIGURE 1
Uncertainty tree diagram for the AERONET-OC LW measurement function (associated with Eq. 3). The measurement function is in the grey
rectangle, expressing the measurand as a function of its influence quantities (or input quantities). For each input, the associated error sources are traced
with various colors to their contributing factors. Rounded black rectangles indicate the sensitivity factors (expressed as partial derivatives), i.e., the extent
to which an error in an input impacts themeasurand. For all equations in the diagram, q0 is a generic notation indicating a possiblemodel error.Ω is a
short notation for the geometry of observation and illumination.

FIGURE 2
Uncertainty tree diagram for the conversion from LW to RRS (associated with Eq. 4). Its construction is similar to Figure 1. Bold notations indicate a
spectrum of values for RRS or for optical propertiesOP. td,r, td,a, and td,o are transmittance associated with air molecules (Rayleigh), aerosol and ozone. τr is
the Rayleigh optical thickness (dependent on tabulated values at the standard atmospheric pressure and the actual atmospheric pressure).
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when considering Chl-based or IOP-based bidirectional
correction functions. Uncertainty values associated with RRS

were eventually obtained from u(LWN) by dividing by E0
considered as well known [in reality, this step could
introduce an additional, spectrally-varying, uncertainty
contribution of the order of 1%, Figure 2, Thuillier et al.
(1998)]. Finally, uncertainty estimates shown in this work
could slightly vary from those reported in Cazzaniga and
Zibordi (2023) due to an updated AERONET-OC time-series
which includes more recent data.

2.3 Statistics of comparison

For each day of operation of PRS0 and for each measurement,
the data collected by PRS1 were searched for the record with the
closest time of acquisition, and the pair of coincident measurements
was selected for comparison if the time difference was smaller than
Δt. From the data set of N pairs of matched data (x0,i)i�1,N and
(x1,i)i�1,N associated with PRS0 and PRS1, respectively, statistics of
comparison were computed (Mélin and Franz, 2014; IOCCG, 2019),
such as:

Δ �

���������������
1
N

∑N
i�1

x1,i − x0,i( )2√√
(5)

δ � 1
N

∑N
i�1

x1,i − x0,i( ) � x1 − x0 (6)

Δc �

�����������������������
1
N

∑N
i�1

x1,i − x0,i + x0 − x1( )2√√
�

������
Δ2 − δ2

√
(7)

where the overbar indicates an average value. Δ, the root-mean-
square (RMS) difference between x0 and x1 (Eq. 5), can be expressed
as the sum (in quadratic form) of the average difference (also called
bias), δ, and the centered RMS difference Δc.

Acknowledging that there was no reason to consider one
measurement better than the other, relative differences were
quantified using their unbiased (or symmetric) form, i.e., taking
the average of x0 and x1 as a reference (at the denominator) (e.g.,
Hooker and Morel, 2003; Mélin and Franz, 2014).

|ψu|m � median
2|x1,i − x0,i|
x0,i + x1,i

( )
i�1,N

(8)

ψu,m � median
2 x1,i − x0,i( )
x0,i + x1,i

( )
i�1,N

(9)

The “median” operator was adopted to reduce the possible impact of
outliers; |ψu|m is the median unbiased absolute relative difference
(here “absolute” refers to the use of the modulus operator | |, Eq. 8)
and ψu,m is the median unbiased relative difference (Eq. 9).

The Pearson correlation coefficient r between coincident PRS0
and PRS1 measurements (RRS or τa) was also computed.

2.4 Error model for collocation statistics

Going beyond simple comparison statistics, collocation analysis
underpinned by an error model can provide more elaborate statistics
characterizing uncertainties (Stoffelen, 1998; Toohey and Strong,
2007). Here the following error model was adopted for the records
(x0,i)i�1,N and (x1,i)i�1,N associated with PRS0 and PRS1, respectively:

x0,i � ti + ϵ0,i (10)
x1,i � α + βti + ϵ1,i (11)

where t is a reference value and the ϵ′s are zero-mean random error
terms. The term t that serves as a link between x0 and x1 can be
related to the true value and is not impacted by non-systematic
effects that are captured by ϵ. Additive and multiplicative biases, α
and β, respectively, further relate x0 and x1. Besides systematic
effects, uncertainties of x0 and x1 could be characterized by the
standard deviation of the associated (ϵi)i�1,N, σϵ.

FIGURE 3
Overall average statistics: (A) Spectrumofmedian RRS for PRS0 (line) and PRS1 (dashed line), for RChl

RS (line and circle) and for RIOP
RS (simple line), the grey

envelope representing ± the standard deviation of RIOP
RS,0; (B) Median uncertainty u (RRS) for PRS0 (line) and PRS1 (dashed line), for u(RChl

RS ) (line and circle)
and for u(RIOP

RS ) (simple line), the grey envelope representing ± the standard deviation of u(RIOP
RS,0).
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This framework was adopted to investigate uncertainties of
satellite values (Mélin, 2010; Mélin et al., 2016; Mélin, 2021;
Mélin, 2022) with the assumption that the ϵ terms were
uncorrelated with t and with each other. Considering that the
simultaneous determination of RRS by the 2 PRS systems share
some elements (Figures 1, 2), this assumption is not warranted here
and the framework was extended to the case where ϵ0 and ϵ1 are
correlated with a coefficient rϵ. Writing the variance and covariance
terms associated with x0 and x1 in that case leads to:

σ20 � σ2t + σ2ϵ0 (12)
σ01 � βσ2t + rϵσϵ0σϵ1 (13)
σ21 � β2σ2t + σ2ϵ1 (14)

where σ0 and σ1 are the standard deviation of x0 and x1, respectively,
and σϵ0 and σϵ1 the standard deviation of ϵ0 and ϵ1, respectively.

This system can be rewritten by removing σt from Eqs 12, 14
using Eq. 13:

σ20 �
σ01 − rϵσϵ0σϵ1

β
+ σ2ϵ0 (15)

σ21 � β σ01 − rϵσϵ0σϵ1( ) + σ2ϵ1 (16)
This system with two equations and four unknowns can be solved if
the ratio σϵ1/σϵ0, noted η, and rϵ are known. This leads to a second-
order polynomial with the solution:

β � σ21 − η2σ20 +
������������������������������������
σ21 − η2σ20( )2 + 4 σ01 − rϵησ20( ) η2σ01 − rϵησ21( )√

2 σ01 − rϵησ20( )
(17)

The case rϵ = 0 reduces β to the slope of the model II regression, and
to the slope of a simple major-axis regression if additionally η = 1
(Legendre and Legendre, 1998).

The value of β finally leads to σϵ0 and σϵ1 that are considered as
the uncertainties associated with x0 and x1 (excluding
systematic effects).

σ2ϵ0 �
βσ2

0 − σ01
β − rϵη

(18)

σ2ϵ1 �
σ21 − βσ01
1 − βrϵ/η (19)

3 Results

3.1 General statistics on data and
uncertainties

During the common period of operations (~5.5 years), PRS0
produced Level 2.0 data over 1,112 days totaling 14,700 records,

FIGURE 4
Normalized distribution functions of the uncertainties u(RRS) for PRS0 at (A) 412 nm, (B) 443 nm, (C) 490 nm, (D) 510 nm, (E) 560 nm and (F) 665 nm.
Grey histogram and statistics are associated with u(RChl

RS ), while black line and statistics are associated with u(RIOP
RS ). μ and σ give median and standard

deviation, respectively.
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while data were collected by PRS1 in 811 days (3,059 records). The
difference in the number of acquisitions is mostly explained by the
higher frequency of observation granted by the CE-318T system (PRS0).

Figure 3 shows the median values for RRS and associated median
uncertainty u(RRS) for both terms RChl

RS and RIOP
RS . RRS values are

typical of the AAOT site, representative of coastal waters with
moderately turbid conditions and a peak at 490–530 nm (or
secondarily at 555–560 nm) (e.g., Zibordi et al., 2021). The
median spectra RRS display a remarkable agreement, both
between methods (RChl

RS and RIOP
RS ) and between systems (PRS0

and PRS1), in the latter case when wavelengths are coincident.
The spectra u(RRS) have a broadly similar shape, with the highest
values in the interval 490–560 nm, with lower values in the blue and
much lower values in the red. The median spectra u(RRS) for PRS1
usually appear higher than for PRS0, which is due mostly to the
different amounts of data (these differences largely disappear when
considering common records, see below).

The overall median aerosol optical thickness τa decreases
from 0.167 (standard deviation, s.d., 0.133) at 412 nm to 0.054
(s.d. 0.051) at 865 nm for PRS0, and from 0.166 (s.d. 0.143) at
412 nm to 0.055 (s.d. 0.056) at 869 nm for PRS1. The median
Ångström exponent [computed with a log-transformed linear
regression for bands between 412 and 869 nm, Ångström, (1964)]
is equal to 1.55 (s.d. 0.30) and 1.52 (s.d. 0.31) for PRS0 and PRS1,
respectively. These values are also typical for the site and
representative of the continental aerosols encountered in the

region (Mélin and Zibordi, 2005; Mélin et al., 2006; Clerici and
Mélin, 2008).

Focusing on the uncertainties of RRS (calculated assuming
uncorrelated inputs, see Section 2.2), Figure 4 shows the
distribution functions of u(RChl

RS ) and u(RIOP
RS ) for PRS0, (results

for PRS1 are similar with slightly higher values). Results are
consistent with those given by Cazzaniga and Zibordi (2023),
with median u(RChl

RS ) and u(RIOP
RS ) in the interval 2.2–2.8 10−4

sr−1 for wavelengths below 665 nm for PRS0 (2.5–3.6 10−4 sr−1 for
PRS1). For PRS0, median values at 665 nm are 0.83 10−4 sr−1 for
u(RChl

RS ) and 0.58 10−4 sr−1 for u(RIOP
RS ) (1.1 and 0.68 10−4 sr−1 for

PRS1 at 667 nm). The distributions for u(RChl
RS ) and u(RIOP

RS ) are
fairly similar, with the former showing a longer tail of high values. In
that respect, the corresponding distributions for the relative
uncertainties (Figure 5) show more pronounced differences, with
u%(RChl

RS ) extending towards larger values. Considering both PRS0
and PRS1, the median u%(RIOP

RS ) is in the interval 4.2%–5.4% for
wavelengths below 665 nm, and increases to ~6.2% at 665–667 nm;
the median u%(RChl

RS ) is slightly higher, in the interval 4.4%–6.4% for
wavelengths below 665 nm, and 10.1%–12.1% at 665–667 nm.

3.2 Comparison of τa and RRS data

Selecting a maximum time difference Δt of 10 min, 659 days
have at least one pair of matching observations, amounting to a total

FIGURE 5
Normalized distribution functions of the relative uncertainties u%(RRS) for PRS0 at (A) 412 nm, (B) 443 nm, (C) 490 nm, (D) 510 nm, (E) 560 nm and (F)
665 nm. Grey histogram and statistics are associated with u%(RChl

RS ), while black line and statistics are associated with u%(RIOP
RS ). μ and σ give median and

standard deviation, respectively.
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of 4,449 pairs. This short time difference is associated with similar
conditions of illumination, with a mean absolute difference of 0.49°

for the solar zenith angle and 1.9° for the solar azimuth angle. In this
matching exercise, several members of each PRS0 triplet (up to 3)
can be associated with the same PRS1 record. Enforcing the
occurrence of the PRS1 data in one matching pair only would
reduce the number of matching pairs by half: it would exclude
some members of the associated PRS0 triplet and ultimately a
considerable number of valid observations in an arbitrary way.
The option adopted here is to consider all PRS0 data as valid
independent observations to be compared to PRS1 observations.
Importantly, besides a lower number of match-ups, results are not
affected by this choice.

The comparison between τa from PRS0 and PRS1 shows a
remarkable agreement with a determination coefficient r2

decreasing from 0.994 at 412 nm to 0.977 at 865 nm, maximum
RMS differences Δ of ~0.01 in the spectral range 412–560 nm, and
median unbiased absolute relative differences |ψu|m lower than 5%
(6.5% at 865 nm) (see Table 1 and Figure 6). There are very few

outliers that might be associated with cases of rapid changes in the
atmosphere. For instance on 25 February 2020 (the case associated
with the highest τa in Figure 6), PRS0 detected three values of τa
(412) in a hour, 1.26, 1.25 and 1.67, while PRS1 recorded only one
value (1.38) 6 min before the third PRS0 record.

The RRS data from the two systems also agree very well with very
few outliers (Figure 7) in agreement with preliminary results found
in Zibordi et al. (2021). This is true for both RChl

RS and RIOP
RS , with Δ of

the order of 3 10−4 sr−1 (except ~1.66 10−4 sr−1 at 665 nm), |ψu|m of
2%–3% (except 5.8% at 665 nm), median unbiased relative
differences ψu,m around or below 1% (except 2.5% at 665 nm)
and r2 in the range 0.967–0.994 (Table 2).

3.3 Uncertainty estimates versus comparison
statistics

Considering the similar conditions of observations associated
with the matched data and the common method to derive
uncertainty estimates, u(RRS) from PRS0 and PRS1 are expected
to be close, which is indeed verified by Figure 8. For both u(RChl

RS )
and u(RIOP

RS ), r2 between the two distributions is ~0.98. For u(RChl
RS ),

Δ is ~0.2 10−4 sr−1, except at 560 nm where it is 0.6 10−4 sr−1. In the
case of the green band, there are more outliers and an overestimate
of the uncertainty from PRS0 with respect to u(RChl

RS ) from PRS1.
This can not be easily explained by differences in center wavelengths,
as RRS would tend to decrease (and likely its related uncertainty)
from 551–555 nm (typical of PRS1) to 560 nm (associated with
PRS0). Except few outliers, the agreement is slightly better for
u(RIOP

RS ) (Figure 8B) with Δ in the interval 0.15–0.25 10−4 sr−1

between 412 and 560 nm (and 0.08 10−4 sr−1 at 665 nm); in
agreement with Figure 4, there are also less u(RIOP

RS ) values in the
upper range (and none above 1.4 10−3 sr−1).

The uncertainty estimates should now be related to the
differences between coincident records of RRS from PRS0 and
PRS1 documented in the previous Section 3.2. The uncertainty
associated with the difference RRS,1 − RRS,0 can be expressed with
(Mélin, 2021):

u2 RRS,1 − RRS,0( ) � u2 RRS,0( ) + u2 RRS,1( )
− 2r e RRS,0( ), e RRS,1( )( )u RRS,0( )u RRS,1( ) (20)

where r(e(RRS,0), e(RRS,0)) is the correlation between the errors associated
with RRS,0 and RRS,1. If this correlation is null in Eq. 20, the uncertainty
associatedwith the difference is the sumof the uncertainties (in quadratic
form) [e.g., Immler et al. (2010)]. The following inequality may then be
introduced (Kacker et al., 2010; Mélin, 2021):

TABLE 1 Comparison statistics for τawith determination coefficient r2, RMS difference Δ, median unbiased absolute relative difference |ψu|m and median unbiased
relative difference ψu,m. Positive values indicate that τa from PRS1 is higher than from PRS0.

Wavelength λ [nm] 412 443 490 560 665 865

r2 0.994 0.994 0.989 0.990 0.987 0.977

Δ 0.0103 0.0094 0.0112 0.0095 0.0079 0.0075

|ψu|m [%] 3.1 2.6 3.7 5.1 4.5 6.5

ψu,m [%] −1.4 −1.1 −0.9 −3.1 −1.3 −2.0

FIGURE 6
Scatter plot of τa between PRS0 and PRS1 for the indicated
wavelengths. Statistics of comparison are given in Table 1.
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|RRS,1 − RRS,0|< k
�������������������������������������������������
u2 RRS,0( ) + u2 RRS,1( ) − 2r e RRS,0( ), e RRS,1( )( )u RRS,0( )u RRS,1( )√

(21)

where k is the so-called coverage factor. With a normal hypothesis,
this inequality would be true in 68% of cases with a coverage factor
k = 1. Strictly speaking, this reasoning is valid for a hypothetical
situation where multiple measurements are repeated in identical
conditions; it was here extended to the current match-up data set
where RRS (and their uncertainties) are associated with varying
conditions experienced during years of operations. No estimate is
readily available to quantify the term associated with error
correlation (see further on for discussion on this issue) and four
cases were considered (with the correlation coefficient assumed
constant across the data set): no correlation, low correlation
(0.2), moderate correlation (0.5) and high correlation (0.7). The
percentage κ of records where Eq. 21 is true appears much higher
than 68% for RChl

RS (Table 3); only in the worst case scenario (r = 0.7)
does κ become slightly lower than 68% at 412 and 665 nm. For RIOP

RS

between 412 and 490 nm, κ is only slightly lower than for RChl
RS (and

mostly well above 68% except at 412 nm for r = 0.7) but is noticeably
lower at 560 and 665 nm, and lower than 68% for an error
correlation above 0.5. Average differences between PRS0 and
PRS1 are similar for RChl

RS and RIOP
RS (actually higher in the latter

case at 560 nm, Table 2), while uncertainty estimates tend to be
lower for RIOP

RS than for RChl
RS (Figures 4, 5), which explains why Eq.

21 is less often verified for RIOP
RS , and ultimately the degraded results

obtained for κ associated with RIOP
RS .

The previous analysis was conducted with statistics compiled
over the whole data set; taking advantage of the amount of data
available, it can be completed by a more detailed analysis along the
range of uncertainties. The set of uncertainties u(RRS) was split into
20 bins of equal sample size for which the average value was
computed. Then, the centered RMS difference Δc (Eq. 7) and
average difference δ (Eq. 6) between RRS from PRS0 and PRS1
were computed using the records associated with each bin.

Results for RChl
RS and RIOP

RS are shown for representative
wavelengths in the uncertainty “cone diagrams” of Figures 9,
10, respectively. For each bin, the vertical bar represents ±Δc (that
is the standard deviation of RRS,1 − RRS,0) while the circle shows δ
(the dotted lines being the ±1:1 lines). This type of graphs is more
readily used to verify uncertainty estimates when a data set y
(typically satellite retrievals) is compared with reference data x
(typically field data) (e.g., Ghent et al., 2019). If the error
associated with x is negligible, Δc is the standard deviation of
the errors associated with y and the extremities of the vertical
bars should follow the dotted lines (with the assumption that the
errors of x and y are not correlated). The dotted uncertainty lines
are not extended to 0: in the case of a comparison with reference
data, the cone is extended on the lower range by horizontal lines
that represent the uncertainty associated with these reference
data, considered as the minimum possible value (in the current
case the uncertainty lines are only displayed for the available
range). Vertical bars exceeding the conic envelope of the dotted
lines would indicate that the uncertainty values are

FIGURE 7
Scatter plots comparing (A) RChl

RS and (B) RIOP
RS from PRS0 and PRS1 for the indicated wavelengths. Statistics of comparison are given in Table 2.

TABLE 2 Comparison statistics for RChl
RS (upper part) and RIOP

RS (lower part) with
determination coefficient r2, RMS difference Δ, median unbiased absolute
relative difference |ψu|m andmedian unbiased relative difference ψu,m. Positive
values indicate that RRS from PRS1 is higher than from PRS0.

Wavelength λ [nm] 412 443 490 560 665

r2 0.982 0.991 0.993 0.994 0.967

Δ [10–4 sr−1] 3.24 2.90 3.33 3.01 1.66

|ψu|m [%] 3.2 2.4 2.0 2.6 5.8

ψu,m [%] +1.2 +0.5 +0.3 +0.6 +2.6

r2 0.981 0.991 0.994 0.992 0.969

Δ [10–4 sr−1] 3.01 2.69 2.99 3.64 1.62

|ψu|m [%] 3.2 2.3 1.8 3.0 5.8

ψu,m [%] +1.2 +0.5 +0.3 +0.5 +2.5
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underestimated (i.e., that the actual uncertainties would be
higher), while vertical bars well contained within the dotted
envelope would suggest the opposite. In the current study,
neither PRS0 nor PRS1 can be taken as a reference value,
which means that the comparison between estimated
uncertainties and Δc remains imperfect. It can just be noted
that if the true value of RRS happened to be always in the interval
[RRS,0; RRS,1], then Δc would be larger than the uncertainty.

At almost all wavelengths and across the range of reported
uncertainties, the average differences δ between RRS,0 and RRS,1 is
well below the uncertainty (circles in the dotted cone in Figures 9,
10), the exception being the case of RIOP

RS at 665 nm where δ is
close to u(RIOP

RS ) (Figure 10C). For RChl
RS between 412 and 560 nm,

the extremities of the vertical bars ±Δc tend to follow the
uncertainty estimates (the dotted lines) in the low range of
values; in the higher range of uncertainty values, ±Δc remains
further away from the conic envelop (for instance, at 560 nm Δc

tends to remain stable above uncertainties of 3 10−4 sr−1,
Figure 9B), suggesting that uncertainty values could actually
be too high. The same behavior is seen at 665 nm but the

extremities of ±Δc follow the uncertainty estimates for almost
the entire uncertainty range (Figure 9C). For RIOP

RS (Figure 10),
the extremities of ±Δc closely follow the cone lines (or are
included within the cone) across the range of reported
uncertainties from 412 to 560 nm, while at 665 nm, they
exceed the uncertainty estimates, suggesting that reported
uncertainties may be too low. This is of course coherent with
the relatively low values obtained for κ in that case (Table 3).
Again, the interpretation that can be given about the positions of
the vertical bars ±Δc within (or beyond) the uncertainty cone
implicitly assumes that the error correlation between the PRS0
and PRS1 records is negligible. If this is not the case, conclusions
drawn from the cone diagrams are too favorable to an extent
dependent on the error correlation (Section 3.6). The cone
diagram analysis is still valuable as complementary to the
analysis conducted with all data (Table 3) as it looks at the
behavior of statistics across the range of uncertainties.

3.4 Uncertainty estimates versus collocation
statistics for τa

The collocation approach was first applied to the aerosol
optical thickness data τa. Considering the agreement of the τa
data from PRS0 and PRS1 (Figure 6), the choice of η = 1 (ratio of the
σϵ’s) appears justified. A value for the error correlation is also
required and four cases are again considered with rϵ equal to 0, 0.2,
0.5 and 0.7. For the case of rϵ = 0, the value of β varies between
0.996 and 1.011 (at 865 nm) (Table 4), values that are barely
affected by the choice of rϵ. σϵ tends to decrease with
wavelength, e.g., from 0.0072 at 412 nm to 0.0053 at 865 nm for
rϵ = 0. Contrary to β, σϵ increases with rϵ (following Eqs. 18, 19),
from 0.0072 for rϵ = 0 to 0.0131 for rϵ = 0.7 at 412 nm, or from
0.0053 to 0.0096 at 865 nm. These results are mostly lower than
reported uncertainties (Eck et al., 1999; Schmid et al., 1999) of
0.01–0.015 (in the interval 412–865 nm, decreasing with
wavelength) but are very close in the case of rϵ = 0.7. Similar

FIGURE 8
Scatter plots comparing (A) u(RChl

RS ) and (B) u(RIOP
RS ) from PRS0 and PRS1 for the indicated wavelengths.

TABLE 3 Fractions κ (given in %) of records where Eq. 21 is verified for RChl
RS

(upper part) and RIOP
RS (lower part) and for the four cases of error correlation.

Wavelength λ [nm] 412 443 490 560 665

r = 0 89 92 94 93 81

r = 0.2 85 89 92 90 78

r = 0.5 78 82 86 83 70

r = 0.7 67 73 77 73 63

r = 0 87 90 93 81 67

r = 0.2 83 87 91 76 63

r = 0.5 74 80 85 65 55

r = 0.7 63 70 75 53 46
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inputs in environmental variables used in τa retrieval, such as
atmospheric pressure for the determination of the Rayleigh optical
depth or ozone concentration and properties, would result in an
error correlation for two instruments functioning simultaneously,
whereas effects such as instrument noise would not. While
determining the relative weights of correlated and uncorrelated
effects in τa retrievals is out of the scope of this work, it can be said
that, unless the contribution to the uncertainty budget from
environmental variables is dominant, leading to the upper value
of the error correlation, σϵ is found somewhat lower than reported
uncertainty values; but it is also stressed that σϵ does not contain
contributions from systematic effects (these would be captured by
α and β in Eqs. 10, 11), which can be significant (Giles et al., 2019).
For completeness, it is noted that the median difference between τa
from PRS0 and PRS1 varies (in modulus) between 0.0010 and
0.0033. Overall, collocation statistics appear consistent with
reported uncertainty values for τa.

3.5 Uncertainty estimates versus collocation
statistics for RRS

A similar analysis was conducted with RRS with results reported in
Table 5 for the same four cases of error correlation rϵ (this time relative
to RRS), again under the assumption of η = 1 considering the agreement
in RRS illustrated in Figures 7, 8. The value of β is only given for rϵ =
0 since it hardly varies with rϵ (with values very close to 1). As for τa and
according to Eqs 18, 19, σϵ increases with rϵ for both RChl

RS and RIOP
RS ,

typically from ~2 to ~3 10−4 sr−1 (for wavelengths between 412 and
560 nm) when rϵ increases from 0 to 0.5. σϵ increases again significantly
if rϵ is increased from 0.5 to 0.7 (reaching ~4 10−4 sr−1).

Values of σϵ can eventually be compared with other statistics
presented in the previous sections, the median uncertainty estimate
u(RRS) (for both PRS0 and PRS1, computedwith the common records of
the match-up data set) and the RMS difference between RRS from PRS0
and PRS1 in its centered form Δc since σϵ does not include systematic

FIGURE 9
Comparison between uncertainty estimates u(RChl

RS ) and comparison statistics through an uncertainty cone diagram at (A) 443 nm, (B) 560 and (C)
665 nm. The vertical bars represented ±Δc computed between RChl

RS,0 and RChl
RS,1 for each bin of increasing uncertainty u(RChl

RS ). Circles are the associated
average difference between RChl

RS,0 and RChl
RS,1. Dotted lines are ±1:1 lines.
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contributions (the average difference δ is also illustrated for
completeness and comparison with non-systematic terms). In
agreement with Section 2.1 and Figure 4, the median u(RIOP

RS ) is
lower than u(RChl

RS ) (compare Figures 11A, B), while the related Δc

are comparable, except at 560 nm, where values are higher for RIOP
RS . As

a result, for RChl
RS , u(RRS) is similar or higher than Δc except at 665 nm

where u(RRS) becomes lower (Figure 11A), while for RIOP
RS , u(RRS) is

clearly lower than Δc at 560 and 665 nm (Figure 11B). For low values of
rϵ (0 and 0.2), σϵ associated with RChl

RS is lower than u(RRS) except at
665 nm, while forRIOP

RS , σϵ is lower than u(RRS) for 412–490 nm, similar

FIGURE 10
Comparison between uncertainty estimates u(RIOP

RS ) and comparison statistics through an uncertainty cone diagram at (A) 443 nm, (B) 560 and (C)
665 nm. The vertical bars represented ±Δc computed between RIOP

RS,0 and RIOP
RS,1 for each bin of increasing uncertainty u(RIOP

RS ). Circles are the associated
average difference between RIOP

RS,0 and RIOP
RS,1. Dotted lines are ±1:1 lines.

TABLE 4 Collocations statistics: regression slope β for r = 0, and σ for τa for four cases of error correlation r.

Wavelength λ [nm] 412 443 490 560 665 865

β; rϵ = 0 1.007 0.996 0.998 1.00 1.04 1.011

σϵ; rϵ = 0 0.0072 0.0065 0.0079 0.0064 0.0056 0.0053

σϵ; rϵ = 0.2 0.0080 0.0073 0.0089 0.0071 0.0062 0.0059

σϵ; rϵ = 0.5 0.010 0.0092 0.0112 0.0090 0.0079 0.0075

σϵ; rϵ = 0.7 0.0131 0.0119 0.0145 0.0117 0.0102 0.0096
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for 560 nm and higher for 665 nm. Interestingly, σϵ is very close to Δc if
rϵ = 0.5. For the case of highest correlation (0.7), σϵ is to a varying extent
higher than both Δc and u(RRS).

The relation between Δc and σϵ can be further discussed by
relating Δc with terms of variance and covariance of (x0,i)i�1,N and
(x1,i)i�1,N in Eqs 12–14, starting from:

Δ2
c � σ20 + σ21 − 2σ01 (22)

Eq. 22 then leads to:

Δ2
c � β − 1( )2σ20 + β 2 − β( ) + η2 − 2rϵη( )σ2ϵ0 (23)

In the case where η ~1, if β → 1, then Δ2
c → 2(1 − rϵ)σ2ϵ , that is

equal to σ2ϵ if rϵ = 0.5 (if η is different from 1, the same phenomenon
happens at a different value of rϵ), a behavior noted in Figure 11.
This is actually an important result, predicting that the centered

RMS difference between data collected by two systems is a
conservative estimate of the uncertainty associated with these
data (excluding systematic contributions) if these uncertainties
can be assumed similar (η around 1) with errors moderately
correlated (typically lower than 0.5) and if the slope of the
major-axis regression between the two data sets is close to 1. If
the errors can be assumed uncorrelated, then Δc is actually twice
the uncertainty σϵ. Values of η different from 1 would just vary the
relative values of Δc and σϵ, while a departure of β from 1 would
make these results more dependent on the considered data set
(through the first right-hand side term in Eq. 23 proportional
to σ0).

3.6 Error correlation associated with
matched RRS observations

The issue of the correlation of the errors associated with the
matched RRS data from PRS0 and PRS1 has appeared in the previous
analyses, when comparing reported uncertainty estimates and
comparison statistics (Section 3.3; Eq. 21) and when computing
collocation statistics (Section 3.5). Admittedly, additional analyses
would be required to quantify the level of correlation between errors
affecting simultaneous measurements of RRS. It could change with
observation conditions and would certainly vary with wavelength as
the weights of different contributing factors in the uncertainty
budget varies spectrally (Cazzaniga and Zibordi, 2023). The
following discussion attempts to provide an approximate range of
values for the error correlation between LWN (or RRS) data from
PRS0 and PRS1 by defining informed guesses on the error correlation
associated with these contributing factors. Cazzaniga and Zibordi
(2023) detail five major contributions to the overall uncertainty
budget for LWN, the uncertainties due to: i) the calibration of the
sensor, ucal, ii) the sea surface reflectance factor ρ, uρ, iii) the
normalization term for downwelling irradiance CA = 1/(d2μ0td)

TABLE 5 Collocations statistics β for r = 0, and σ (in 10–4 sr−1) for RChl
RS (upper

part) and RIOP
RS (lower part) and for four cases of error correlation r.

Wavelength λ [nm] 412 443 490 560 665

β; rϵ = 0 1.013 1.012 1.008 0.984 0.996

σϵ; rϵ = 0 2.2 2.0 2.3 2.1 1.1

σϵ; rϵ = 0.2 2.5 2.2 2.6 2.3 1.2

σϵ; rϵ = 0.5 3.1 2.8 3.3 2.9 1.6

σϵ; rϵ = 0.7 4.0 3.6 4.2 3.7 2.0

β; rϵ = 0 1.007 1.007 1.003 0.976 0.992

σϵ; rϵ = 0 2.0 1.9 2.1 2.5 1.1

σϵ; rϵ = 0.2 2.3 2.1 2.3 2.8 1.2

σϵ; rϵ = 0.5 2.9 2.6 3.0 3.5 1.5

σϵ; rϵ = 0.7 3.7 3.4 3.8 4.5 2.0

FIGURE 11
Spectra of the median reported uncertainty u (RRS) (black line for PRS0 and black dashed line for PRS1) computed for coincident measurements,
spectra of centered RMS differences Δc (orange line) and average differences δ (orange dotted line), and spectra of σϵ for rϵ= 0 (blue line), 0.2 (blue dashed
line), 0.5 (blue dotted line) and 0.7 (blue dashed-dotted line). Results are given for (A) RChl

RS and (B) RIOP
RS .
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(Eq. 2), uCA, iv) the correction for bi-directional effects CQ (Eq. 2),
uCQ, and v) the environmental variability, uenv (note that these terms
represent uncertainty contributions to the overall uncertainty and
not uncertainties of the single quantities; e.g., uρ is not the
uncertainty u(ρ) associated with ρ but the part of the total
uncertainty on RRS that ultimately depends on ρ). For each
contribution, a triplet of correlation values will be proposed [low,
medium, high].

Starting with the measurement function of LW (Figure 1),
evaluating the correlation of errors due to the calibration of the
instruments would require assumptions on the behavior of
specific calibration lamps or plaques and on the aging of the
sensors, while instrument noise that could additionally affect LT
and Li would not introduce correlated errors. As a guess for the
associated error correlation rcal, the triplet [0, 0.1, 0.3] is
proposed. Environmental perturbations may affect the terms
of the measurement function LT, Li and ρ in a similar way for
the two systems but quantifying this relationship is not
straightforward and only an arbitrary choice for the associated
error correlation renv is selected here, [0, 0.1, 0.3]. The case of ρ
can be further discussed, particularly with respect to wind (input
to the expression of ρ, Figure 1). In the processing of AERONET-
OC data, wind speed is provided by re-analysis products of coarse
temporal and spatial resolutions and would have virtually the
same value for two measurements collected at short time
intervals. If the local wind can be assumed constant for the
matched measurements (i.e., in a time interval shorter than
10 min), then the error associated with the use of the re-
analysis product will be identical for the two measurements,
suggesting a high error correlation affecting ρ for PRS0 and PRS1.
However, parameterizing the state of the air-sea interface at a
precise moment as a function of wind speed is a simplification
(represented by the term of model error q0 in Figure 1). The two
instruments are looking at virtually the same small spot on the
sea surface (with a full-angle field of view of ~ 1.2°, Holben et al.,
1998, the footprint is similar to the distance between the
instruments on the supporting platform), but their
acquisitions can be minutes apart with variations in surface
orientation impacting the actual ρ value (D’Alimonte et al.,
2021) in an uncorrelated way. Ultimately, progress on that
issue could be achieved by a realistic description of the sea
surface at an appropriate time frequency coupled with
radiative transfer modelling. Considering these elements, for
the purpose of that discussion, a moderately high level of
correlation rρ can be selected for the errors associated with ρ,
[0.1, 0.3, 0.5].

Error correlations may be more easily identified in relation to
the conversion from LW to LWN (or RRS) (Figure 2), introduced by
quantities depending on common environmental variables such
as the transmittance td or CQ (as well as by E0). The modeling of
the term CQ contributes significantly to the overall uncertainty
budget to an extent that varies with wavelength and water type
(Talone et al., 2018; Cazzaniga and Zibordi, 2023). Considering
that RRS provided by the two systems are very close (Figure 7), the
derived IOPs and Chl used to calculate CQ will also be very similar
with correlated errors with respect to the actual IOPs and Chl
(errors that would depend on the bio-optical model and on RRS).
In addition, CQ models representing the correction for

bidirectional effects as a function of IOPs or Chl are imperfect
[e.g., Gleason et al. (2012); Talone et al. (2018)], which is again
represented by the term q0 associated with CQ in Figure 2;
considering that the same CQ model was adopted when
comparing data from PRS0 and PRS1, error correlations rCQ

associated with CQ can be assumed fairly high, [0.5, 0.7, 0.9].
A similar discussion could be undertaken with td that depends on
atmospheric variables (e.g., τa, ozone, surface pressure) that are
very close for matched RRS observations, while the model for
computing td is identical for both systems. Thus, the triplet of rCA

values associated with CA is also taken as [0.5, 0.7, 0.9].
For each system PRSj (j = 0 or 1), the error ϵj of a given

measurement can be written as the sum of errors associated with
the contributions discussed above:

ϵj � ϵcal,j + ϵρ,j + ϵCQ,j + ϵCA,j + ϵenv,j (24)

As said for the uncertainty contributions, it is stressed that the
terms of Eq. 24 are representing error contributions to the final value
of RRS errors and not errors of the single quantities (e.g., ϵρ is not the
error on ρ but the error on RRS that ultimately depends on an error
on ρ). Assuming that the errors from different contributions are
uncorrelated between PRS0 and PRS1 (e.g., that the errors due to
environmental variability for PRS0 are uncorrelated with errors due
to CQ for PRS1), a calculation of the covariance σϵ0ϵ1 between ϵ0 and
ϵ1 gives:

σ2ϵ0ϵ1 � σ2ϵ0ϵ1 ,cal + σ2ϵ0ϵ1 ,ρ + σ2ϵ0ϵ1 ,CQ
+ σ2ϵ0ϵ1 ,CA

+ σ2ϵ0ϵ1 ,env (25)

where, e.g., σϵ0ϵ1 ,cal is the covariance of ϵcal,j and ϵcal,j. Considering
that a covariance between two terms is the product of their variance
and their correlation, Eq. 25 can be rewritten as:

FIGURE 12
Spectra of the error correlation coefficient obtained with Eq. 26
associated with RChl

RS (grey line and circles) and RIOP
RS (black lines) from

PRS0 and PRS1 for the cases of low (dotted lines), medium and high
(dashed lines) correlations. For the low case, [rcal, rρ, rCQ , rCA , renv],
is equal to [0, 0.1, 0.5, 0.5, 0], for themedium case [0.1, 0.3, 0.7, 0.7, 0.1]
and for the high case [0.3, 0.5, 0.9, 0.9, 0.3].
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r � 1
u0u1

[rcalu0,calu1,cal + rρu0,ρu1,ρ + rCQu0,CQu1,CQ + rCAu0,CAu1,CA

+ renvu0,envu1,env] (26)

where u0 and u1 are the combined standard uncertainties for PRS0
and PRS1 data while the u0 and u1 terms on the right-hand side are
associated with the contributions indicated in subscript (Cazzaniga
and Zibordi, 2023).

Eq. 26 is applied for the three scenarios (low, medium and high
values of the triplets) to calculate an informed guess of the error
correlation associated with RRS from PRS0 and PRS1 (Figure 12).
With the various cases considered, the resulting error correlation
could take values in the broad interval 0.2–0.8 with the medium case
in the interval of approximately 0.4–0.6. By assuming error
correlation coefficients spectrally constant for each type of
contribution, the overall correlation is seen to increase from the
blue to 560 nm, which can be related to the larger weight of uCQ in
the uncertainty budget at that wavelength (Cazzaniga and Zibordi,
2023); it then decreases in the red, where environmental variability
and ρ have a larger relative contribution with respect to the other
bands. It is stressed that this spectral shape would be affected if the
error correlation associated with specific contributions had a
spectral dependence.

Looking back at Figure 11A, u(RChl
RS ) and σϵ (obtained from

collocation statistics) agree well for a correlation coefficient rϵ of
0.5 at 412 and 443 nm, ~0.6 at 490–560 nm, and 0–0.2 at 665 nm. In
the case of RIOP

RS (Figure 11B), u(RIOP
RS ) and σϵ agree for rϵ between

0.2 and 0.5 at 412–443 nm, 0.5 at 490–510 nm, and 0–0.2 at 560 nm.
At 665 nm, the fact that u(RIOP

RS ) is lower than σϵ obtained with rϵ =
0 would again suggest that it might be too low. The correlation
analysis performed in this section (Figure 12) aimed at giving some
sensitivity on the level of error correlation that could characterize the
two systems PRS0 and PRS1, and the collocation statistics allowed
some degree of cross-checking; this being said, a more detailed
investigation would be required for more definite conclusions on
this issue.

4 Conclusion

This study has taken advantage of a large body of radiometric data
collected simultaneously by two instruments to assess uncertainty
estimates reported for RRS (and secondarily τa). The first objective
was to verify these uncertainty estimates for the specific case of the
AERONET-OCdata collected at AAOT. τa andRRS collected by the two
systems appear very close (Figures 6, 7; Tables 1 and 2) and
measurements generally agree within their stated uncertainties
(Section 3.3), i.e., they are metrologically compatible (Kacker et al.,
2010). Actually the analysis comparing uncertainty estimates u(RRS)
with comparison statistics suggested that u(RRS) could be slightly too
high in some cases (but too low for u(RIOP

RS ) at 665 nm and even at
560 nm if the error correlation between measurements of the two
systems exceeds 0.5, see Table 3). However in the absence of solid
estimates of error correlations linking the two systems, no definite
conclusions can be stated in that respect. Uncertainty estimates also
appeared compatible with uncertainty values σϵ obtained using a
collocation approach (again making space for undefined error
correlations). Based on these considerations, even though the RRS

uncertainty budget could be further refined, the uncertainty values
reported for AAOT by Cazzaniga and Zibordi (2023) generally appear
trustworthy (with some exceptions where they could be too low, and for
error correlation coefficients deemed realistic, i.e., not exceeding 0.7, see
Section 3.6). This lends confidence to the general approach developed to
calculate the AERONET-OC uncertainties, and indirectly to the
resulting uncertainties associated with other sites (Cazzaniga and
Zibordi, 2023, propose uncertainty estimates that are site-specific).
This warrants the status of these data as reference measurements
and fully supports their use for the validation of satellite data (e.g.,
Zibordi et al., 2022b; Mélin, 2022) and the determination of their
uncertainties (Mélin, 2021).

The second objective was more methodological, aiming at
applying a metrology-sound protocol to verify uncertainty
estimates using simultaneous measurements, while identifying
related challenges and limitations. The construction of
uncertainty tree diagrams (Mittaz et al., 2019) appears very
valuable for a comprehensive view of all error sources affecting a
measurement system. Strictly speaking, the measuring system under
study here is one quantifying the difference between RRS observed by
two instruments (i.e., RRS,1 − RRS,0) but for ease of illustration,
uncertainty tree diagrams were given for an individual PRS system
(Figures 1, 2). Uncertainty cone diagrams (Figures 9, 10) provided a
mean to compare uncertainty estimates u(RRS) with comparison
statistics across their range of values. Collocation statistics also
proved valuable by providing an independent method of
verification. These methods could be applied to other cases where
a sufficient number of coincident measurements from different
systems are available, starting with the AAOT site that is
regularly hosting other instruments (Vansteenwegen et al., 2019;
Tilstone et al., 2020; Brando and Vilas, 2023).

The collocation framework used in previous comparison
analyses (e.g., Mélin, 2021; Mélin, 2022) was here extended to
cases allowing correlation between errors associated with non-
systematic effects (leading to a revised expression for the slope of
the model II regression, Eq. 17). This approach is powerful to verify
uncertainty estimates but has also limitations. To be solved, the
system of Eqs 15, 16 requires assumptions on the ratio η of
uncertainties σϵ and the error correlation rϵ. The first assumption
(on the value of η) is not a major limitation as long as the σϵ can be
assumed comparable since the results are not strongly dependent on
η (for instance η = 1.21 would multiply σϵ,1 by 1.1 and σϵ,0 by 0.91).
As shown by Figure 11, the choice of rϵ has a stronger impact on σϵ,
and its actual value should be better characterized as acknowledged
in Section 3.6. Another limitation of the collocation approach is that
it provides only one general value for the whole data set (even
though the current data set is actually large enough to permit
computing collocation statistics on subsets of increasing RRS) and
therefore allows only the verification of average statistics of the
reported uncertainties u(RRS).

The collocation analysis has also led to a practical result, i.e., that
the centered root-mean-square difference Δc between data collected
by two systems can directly serve to quantify the uncertainty
associated with these data (excluding systematic contributions);
this is valid if these data show a good agreement (expressed by a
slope of method II regression close to 1) and if their uncertainties are
comparable (η not largely different from 1) with moderate error
correlation. If the error correlation is negligible, Δc is actually twice
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the uncertainty, while it happens to be a good estimate of the
uncertainty for an error correlation of 0.5. For highly correlated
errors, Δc would be an underestimate of the uncertainty.

As more data sets come with documented uncertainties, and
new observing networks emerge (e.g., for field radiometric
measurements, Brown et al., 2007; Białek et al., 2020; Goyens
et al., 2021; Lin et al., 2022; Cazzaniga and Zibordi, 2023),
appropriate metrologically-based methods will be required to
verify uncertainty estimates and ensure that they are trustworthy
for validation activities. This work illustrates how the simultaneous
operation of multiple systems can help in that regard, but also that a
comprehensive understanding of the contributing factors to the
uncertainty budget is required for a solid interpretation of
differences between matching observations.
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