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The increasing conversion of natural areas for anthropic land use has been amajor
cause of habitat loss, destabilizing ecosystems and leading to a biodiversity crisis.
Passive acoustic sensors open the possibility of remotely sensing fauna on large
spatial and temporal scales, improving our understanding of the current state of
biodiversity and the effects of human influences. Acoustic indices have been
widely used and tested in recent years, with an aim towards understanding the
relationship between indices and the acoustic activity of several taxa in different
types of environments. However, studies have shown divergent relationships
between acoustic indices and the vocal activity of most soniferous taxa. A
combination of indices has, in turn, been reported as a promising tool for
representing biodiversity in different contexts. We used uni- and bivariate
models to test different combinations of 8 common indices in relation to bird
assemblagemetrics. We recorded twenty-two study sites in Brazil’s Atlantic Forest
and three different types of environments in each site (forest, pasture, and swamp).
Our results showed that 1) the best acoustic indices for explaining bird richness,
abundance, and diversity were Bioacoustic and Acoustic Complexity; 2) the type
of environment (forest, pasture, and swamp) influenced the performance of
acoustic indices in explaining bird biodiversity, with the highest score model
(biggest R2 value) being a combination between Acoustic Diversity and
Bioacoustic indices. Our results do support the use of acoustic indices in
monitoring the acoustic activity of birds, but combining indices is encouraged
since it provided the best results. However, given the divergence we found across
environments, we recommend that sets of indices are tested to determine which
of them best describe the biodiversity pattern models for a specific habitat. Based
on our results, we propose that biodiversity patterns can be predicted through
acoustic patterns. However, the level of confidence will depend on the acoustic
index used and on focal taxa of interest (i.e., birds, amphibians, insects, and
mammals).
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Introduction

The accelerated conversion of natural areas for anthropic land
use is causing local and regional wildlife declines and species
extinction (Fahrig, 1997). These changes affect biodiversity and
related ecosystem services (Butchart et al., 2010; Johnson et al.,
2017) and have severe impacts on important ecological functions
that maintain the integrity of ecosystems, such as seed dispersal and
pollination (Duarte et al., 2018). To understand how humans affect
biodiversity, ecosystem functions, and services, we must expand
biological monitoring both in time and space, using wider
taxonomic coverage and more cost-efficient methods (Schmeller
et al., 2017). Remote sensing techniques, including environmental
recordings, have been widely used to increase temporal and spatial
sampling coverage while decreasing sampling costs (Sueur et al.,
2008; Wrege et al., 2017).

Acoustic data is usually collected through Passive Acoustic
Monitoring (PAM) and autonomous recording units (ARU)
(Shonfield and Bayne, 2017). ARUs can be used in both
terrestrial and marine environments and might record data from
a wide spatial range. The units may be set to record continuously and
unattended for long periods of time and can capture signals from all
directions with a radius of more than 100 m (Stowell and Sueur,
2020). These devices not only capture biophony (sounds produced
by animals), but they also capture all soniferous components of a
soundscape, like geophony (abiotic components of a landscape) and
anthrophony (sounds produced by human activities and machines)
(Pijanowski et al., 2011). On the downside, acoustic recordings
generate a large amount of data, and therefore computational
tools and algorithms are necessary to analyze this data (Ulloa
et al., 2018).

Acoustic Indices (AI) allow us to analyze soundscapes and
build a summary of biological patterns for each monitored region.
Different indices have different mathematical properties that are
linked to varied soundscape components (Sueur et al., 2014a).
They consist of mathematical functions that are calculated using
several spectral and temporal parameters of the recordings
(Towsey et al., 2014; Eldridge et al., 2018), and aim to evaluate
certain aspects of acoustic biodiversity (Gaspac, 2021). Since the
development of AI, their effectiveness for predicting biodiversity
activity patterns from environmental recordings has been tested
(Sugai et al., 2019; Alcocer et al., 2022) in areas with different
vegetation structures (Buxton et al., 2018), climate (Eldridge et al.,
2018), and species composition (Depraetere et al., 2012). More
recently, they have also been used to evaluate ecological conditions
(Izaguirre Retamosa et al., 2021; Alcocer et al., 2022), but its
explanatory power varies across studies.

The variability of AI across studies can be explained by acoustic
signatures that are habitat specific. Soundscape signatures are
composed of biological components specific to the region, the
seasonality influence on geophony and the presence of anthropic
activities in the vicinity (Farina et al., 2011). Different types of
environments can also influence the performance of acoustic indices
in measuring biodiversity. The bird community differs according to
the types of environments, with species exclusive to certain types of
habitats, while others, more generalist, occur in different types of
environments (Carrara et al., 2015). Because of the variability in AI
and the difficulty in relating patterns to biodiversity, there are still

limitations and concerns regarding the broad use of acoustic indices
as a biodiversity proxy (Mammides et al., 2017). In this way, an
appropriate and more consistent AI for measuring biodiversity
needs to be better explored so that the biodiversity focus does
not suffer from the influence of non-biological acoustic
characteristics on their environments.

In terrestrial environments, AI are being used in several
contexts, such as: rapid assessment of biodiversity (e.g., Sueur
et al., 2008), describing habitat type and spatial heterogeneity
(e.g., Bormpoudakis et al., 2013), characterizing soundscapes (e.g.,
Towsey et al., 2014), quantifying anthrophony (e.g., Buxton et al.,
2017), assessing environmental impact (Ribeiro et al., 2017),
monitoring protected areas (e.g., Campos et al., 2021),
characterizing landscapes (e.g., Oliveira et al., 2021), assessing the
composition of vocally active species and behavior (Farina et al.,
2011), and assessing the quality and integrity of habitats (Gómez
et al., 2018). It is generally expected that better preserved
environments will maintain higher levels of biophony and that
those signals will be spread across different frequency bands
(Krause, 1987; Farina et al., 2011; Araújo et al., 2020). Knowing
that the AI summarizes characteristics of audio data, the divergent
results of previous studies could also be related to differences in
recording methods and data treatment (Bradfer-Lawrence et al.,
2020). However, in some studies the relative contribution of the
explanatory power of the models between AI and biodiversity are
increased when a combination of indices are used (Towsey et al.,
2014; Eldridge et al., 2018; Buxton et al., 2018; Lawrence et al., 2019).
This led to the conclusion that the combination of different AIs can
capture different aspects of sounds and therefore are better to
summarize soundscape information more accurately (Sueur et al.,
2014a; Mammides et al., 2017; Eldridge et al., 2018; Retamosa et al.,
2018).

Acoustic indices have been more extensively tested in birds
(Alcocer et al., 2022), the second most studied group in acoustic
ecology (second only to bats) (Sugai et al., 2019). Birds are a great
model group for studying acoustics, as they are omnipresent and
adaptive with representatives adapted to the most diverse types of
environments, have intense acoustic activity (Gasc et al., 2017), and
are highly sensitive to environmental changes, thus being a
promising proxy for broader patterns of biodiversity
(Lewandowski et al., 2010). If places that have a greater number
of bird species reflect this richness in the acoustic environments,
indices that aim to measure acoustic diversity could be used as
biodiversity proxies (Sueur et al., 2014a) in addition to possibly
enabling the association of other biological diversity metrics with the
recordings.

A recent meta-analysis, which discusses the evolution of
research that employs acoustic indices to measure biodiversity,
highlights significant issues related to the discrepancies and
limitations of studies examining the direct correlation of acoustic
indices with biodiversity (Alcocer et al., 2022). The study also
discusses important issues regarding divergences and limitations
of studies that test the direct correlation of acoustic indices with
biodiversity. One of the conclusions is that the indices would be
more correlated with the total amount of acoustic activity rather
than with the richness or diversity of vocalizations. Acoustic
Diversity Index (ADI) and BIO were frequently correlated with
bird vocalizations in the studies reviewed by Alcocer et al., 2022.
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ADI and BIO both use amplitude variability (a striking feature of
bird vocalizations) and the different frequency bands occupied, and
have been showing better performance in recent studies (reflecting
different species) (e.g., Buxton et al., 2018; Myers et al., 2019;
Eldridge et al., 2018; Shamon et al., 2021). However, research still
shows some divergences in the relationship between acoustic indices
and the vocal activity of birds (Mammides et al., 2017). As an
example, studies that tested the correlation between bird richness
and the ADI have been presenting moderate correlations (Machado
et al., 2017; Mammides et al., 2017; Eldridge et al., 2018). In
environments with medium or high levels of bird acoustic
activity, such as breeding seasons in tropical forests, ADI may
have a better performance in predicting bird diversity (Zhao
et al., 2019). On the other hand, studies that tested the
correlation between ADI and bird acoustic activity showed low
correlations (Ferreira et al., 2011; Fuller et al., 2015; Jorge et al., 2018;
Bicudo et al., 2023).

Given the great disparity found in the soundscape literature
concerning acoustic indices and bird biodiversity, we sought to
understand the relative contribution of AI commonly used to
measure bird diversity in different types of environments. We
used eight common acoustic indices (Table 1) in order to
measure biodiversity and to answer three questions: 1) What is
the relative contribution of acoustic indices in explaining acoustic
proxies for richness, quantity, and diversity of vocalizations? 2) How
much does the explanatory power increase by combining two
acoustic indices (i.e., bivariate models) when compared to single
indices (univariate models)? 3) Are these correlations influenced by
the type of environment? We hypothesized that 1) bivariate models
perform significantly better than univariate models, independent of
response variables (Figures 1A,B); 2) Of all the indices, ACI will have
the higher explanatory power in univariate models followed by BIO

(Figure 1C); 3) The correlations will vary according to the type of
environment, considering that in swamps there could be greater
masking effects caused by water noise, while in pastures the presence
of anthropogenic noise is greater than swamp environments
(Figure 1D), and due to the presence of dense vegetation causing
sound attenuation, the forested areas are expected to have less
influence from external noise sources.

Materials and methods

Study area

The study was conducted in the northeastern portion of the state
of São Paulo and the southern portion of the state of Minas Gerais,
Brazil (Figure 2). This region is the focus of the Long-Term
Ecological Research within the ecological corridor of Cantareira-
Mantiqueira (LTER CCM). The main land cover types of the study
area consist of forest, pasture, agriculture, forestry (mainly
Eucalyptus plantation), and swamps, as well as urban and rural
buildings (Boscolo et al., 2017; Barros et al., 2019). The Atlantic
Forest is a biodiversity hotspot despite being highly degraded (Myers
et al., 2000). The biome presents high levels of bird richness
(620 species, Myers et al., 2000) and endemism (223 species,
Vale et al., 2018), and it has been highly deforested and
fragmented (Ribeiro et al., 2009), reduced to about 28% of its
original size (Rezende et al., 2018). In 2009, the remaining
patches were isolated (average distance is 1,440 m), small in size
(84% has less than 50 ha), and under severe edge effects (half of the
remnants are less than 100 m from the forest edges (Ribeiro et al.,
2009) and its status has only worsened since then. The Cantareira-
Mantiqueira Corridor is of great ecological importance as it

TABLE 1 Description of the acoustic indices used for the correlation test with acoustic diversity of diurnal birds in the context of Long-Term Ecological Research
within the ecological Corridor of Cantareira-Mantiqueira (LTER CCM), Atlantic Forest, São Paulo, Brazil.

Acoustic indices Description Reference

Bioacoustic (BIO) A function between spectral amplitude of signals and the number of frequency bands occupied. It is an
evaluation of the sound level and the amount of frequency bands used

Boelman et al. (2007)

Acoustic Complexity (ACI) Divides the spectrogram into multiple frequency bins and temporal subsets, and calculates the differences
in the intensities of adjacent sounds, thus being a measure of variability on amplitude intensity. Assumes
biological sounds have greater variability whereas anthropogenic and geophonic sounds have less spectral

variability

Pieretti et al. (2011b)

Acoustic Diversity (ADI) Divides the spectrogram into frequency bands and calculates the signal diversity in each of those bands
similarly to a Shannon-Wiener index Shannon et al. (2021). The rationale behind it is that the higher
number of species emitting sound, the more frequency bands occupied, and the higher the value of the

index

Villanueva-Rivera et al.
(2011)

Acoustic Evenness (AEI) Divides the spectrogram into frequency bands and measures evenness using the Gini coefficient (Gini,
1921). A negative correlation with increased vocalization is expected

Villanueva-Rivera et al.
(2011)

Total Entropy (H) Estimates acoustic energy dispersion over the spectrum and uses spectral and temporal amplitude
patterns. The more species in a community, the more distinct signals will be produced

Sueur et al. (2008)

Temporal Entropy (Ht) Computed following the Shannon evenness index applied to the amplitude envelope of the temporal
series and where the envelope points correspond to the categories

Sueur et al. (2008)

Acoustic Richness (AR) Based on Temporal Entropy (H) and the median of the overall amplitude (M). Uses the general median
and Ht, developed for environments with a high signal-to-noise ratio

Depraetere et al. (2012)

Normalized Difference Soundscape
(NDSI)

Estimates the level of anthropogenic disturbance in the soundscape by computing the ratio of human-
generated (anthrophony) to biological (biophony) sounds. An estimate of the level of acoustic

disturbance in a landscape

Kasten et al. (2012)
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connects two large Atlantic Forest remnants: the Cantareira State
Park and the Serra da Mantiqueira Mountain range (Boscolo et al.,
2017).

Experimental design

We collected audio data in 22 landscapes (Figure 2). For each
landscape we sampled three different habitat types: forest, pasture,
and swamp. Habitats were sampled for 30 days each between
October 2016 to January 2017 with the following sampling
scheme: forests (October to November), swamps (November to
December), and pastures (December to January). The sampling
period refers to the rainy season (October-January) and
precipitation in this region, and it matches with the reproductive
period of most birds within the Atlantic Forest (Develey and Peres,
2000). During the sampling period, the average temperature and
precipitation were similar between landscapes. Regarding sunrise
time, due to the relatively low variation in sunrise between the
collection months, we assume that this factor did not affect the data.
Using a reference from a meteorological site for sunrise in São

Paulo, the average for the month of Oct/16 was 6:04 h, Nov/16 was
6:15 h, Dec/16 was 6:16 and Jan/17 was 6:35 h. With an overall
mean of 6:17 h and standard deviation of −18 min (sunrise-and-
sunset.com, oct/2016-jan/2017). Despite this, we extracted presence
and absence data from the vocalizations in the audio files and
verified their correlations with the acoustic indices. Therefore,
seasonality differences do not affect our results. The forest sites
were at least 50 m away from the border to the interior of the forest
to avoid edge effects; the pastures were mainly designated for cattle
raising and the swamps consisted of wetlands in the lower portions
of the relief.

Soundscape recordings

We used Song Meter Digital Field Recorders (SM3; Wildlife
Acoustics. Inc. Massachusetts) fixed on tree trunks 1.5 m above the
ground. The recorders were equipped with two omnidirectional
microphones (frequencies 20 Hz to 20 kHz), and the sampling rate
was 44.1 kHz, 16 bits and mono mode. We subsampled the dataset
to include only the period between 05:00a.m. to 08:25a.m., when

FIGURE 1
Expected patterns for acoustic predictions to understand bird diversity. (A) explanatory power for single and combined acoustic indices; (B)
expected patterns between bird diversity and bivariate acousticmodels, where an AI would be amore explanatory contribution than others. ; (C) expected
slopes between bird diversity and acoustic indices (the steeper the slope, the higher the relationship between bird diversity and the indices). To simplify,
only some examples are presented here; (D) Models with greater predictive power in a forest environment, followed by swamps and pastures.
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birds are in peak activity (Metcalf et al., 2020a), because this study
focused only on diurnal birds. During this period, 25-min files were
recorded with 25-min breaks (to save storage space and battery).
Complete information regarding the sampling effort at each site
(i.e., habitat type) can be found in Supplementary Appendix 1.

Audio subset and species labeling

We sent the recordings to specialists in order to identify which
bird species were present. To randomize the data analyzed by each
specialist and split the recordings evenly among them, we created a
subset of recordings following 4 steps: 1) we selected five 25-min files
at given periods (05:00a.m., 05:45a.m., 06:30a.m., 07:15a.m., and 08:
00a.m.) per day; 2) we extracted two random minutes from each file
3) we grouped those minutes into nine “packages” (compacted files)
of 300-random-minutes each (i.e. 2,700 min), of which each
“package” contained 100 min of forests, 100 min of swamps, and
100 min of pastures; 4) the “packages” of minutes were sent to bird
experts, who labeled the occurrence of bird species for each minute
(see scheme in Supplementary Appendix 2). It is known that the
number of vocalizations in the same minute can influence the value
of acoustic indices (Zhao et al., 2019). However, even before several

vocalizations of the same species in the audio, we annotated one
label per specie per 1-min file for each bird species that vocalized so
as not to inflate the index with an erroneous quantitative
measurement of the individuals actually present in the
environment (Figure 3). We annotated the species events (a.k.a.
species labeling) in the software Raven Pro v.1.5 (Center for
Conservation Bioacoustics, 2014), and recordings of unidentified
calls were disregarded from the analysis.

Acoustic indices

For each minute, we calculated eight Acoustic Indices (AI) that
have been commonly used to measure bird diversity: 1) Acoustic
Diversity Index (ADI); 2) Acoustic Evenness Index (AEI); 3) Acoustic
Complexity Index (ACI); 4) Entropy Index (H); 5) Bioacoustic Index
(BIO); 6) Acoustic Richness index (AR); 7) Temporal Entropy index
(Ht); and 8) Normalized Difference Soundscape Index (NDSI). Sueur
et al. (2008) and Villanueva-Rivera et al. (2016) have summarized the
descriptions and have provided appropriate references for the indices.
We did not apply any pre-processing techniques prior to the
calculation of indices as it is important to test how the AIs
perform in different environmental conditions.

FIGURE 2
Sampling landscapes in the Cantareira-Mantiqueira ecological corridor, located in an Atlantic Forest biodiversity hotspot in southeastern Brazil. The
inset map shows the three different environments (forest, swamp, and pasture) sampled in each of the 22 landscapes varying in forest cover gradient (1%–
97%) in a 1-km radius buffer.
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Signal masking can have a negative impact on the calculation
of acoustic indices (Metcalf et al., 2020a). Signals from other
sources such as anthrophonies or geophonies can overlap the
vocalization signals and cause changes in the values of the
indices. We wanted to test the acoustic indices in real field
recording situations, and in our database a portion of the
recordings contained the sound of rainfall. Sound files with
light rain were used, while files with heavy rain were
disregarded when they hindered the visualization of
vocalizations. To minimize the impact of rain sound on
correlations, we applied different frequency and amplitude
thresholds to our recordings. More details are shown in
Supplementary Appendix 3. The thresholds were chosen based
on the following information: 1) direct observation of the vast
majority of bird species vocalizing between 1,000 Hz and
12,000 Hz; 2) the minimum of 300 Hz chosen was based on of
its use by other authors, and the likelihood that no bird would be
vocalizing below this, being mostly noise and; 3) the maximum
limit was chosen using all the recording frequencies, which
consisted of the range of human acoustic perception. Knowing
that human noise is in the lower frequency range and that 93% of
bird calls in our data are below 12 kHz, we calculated the acoustic
indices using different combinations of parameters.

We used Rstudio v.1.414 (R Development Core Team 2016) and
Seewave (Sueur et al., 2008) to calculate ACI, AR, and Ht. Likewise,
we used Soundecology packages (Villanueva-Rivera et al., 2016) to
calculate ADI, AEI, BIO, H and NDSI.

Models and statistical analyses

We used Linear Mixed-Effects Models (LMM) to test the
relationship between bird diversity and AI, considering Poisson
distribution and the landscape as a random factor. In addition, we
also used Generalized Linear Models (GLM) in order to verify the
behavior of the models in each environment separately (forest,
pasture and swamp). For this purpose, we used 20 randomly drawn
1-min samples from each collection site (same landscape and type
of environment). Three response variables were considered for
each of the 20 1-min samples: 1) amount of bird species (named by

us as “richness of labels”); 2) frequency of occurrence within
(“number of labels”) and; 3) inverse of Simpson’s diversity,
considering the two previous measures (“diversity of labels”)
(Chao et al., 2010). Mean AI were the explanatory variables.
Therefore, we used a bootstrap procedure to standardize the
sampling effort and randomize the sampling points (n = 65).
To do that, we pooled 100 * 20 random minutes (within
reposition) out of the annotated files from each sampling point.
This created a total of 130,000 random minutes, totaling
6,500 groups of 20 min each to evaluate. These were used to
calculate the predictor and response variables. The same groups
of minutes (20 1-min) were used for calculating the average of each
acoustic index.

All the final models were tested for multicollinear variance
inflation factors (VIF), considering a VIF <3 (Zuur et al., 2010).
We performed VIF analyses for each group of models, considering
models with the response variables 1) “richness of labels”; 2)
“number of labels” and 3) “diversity of labels”. Thus, in the first
round of VIF, all models for that response variable were considered.
Since we were removing the model with the highest VIF value in
each round, one model remained for each of the acoustic indices and
for each combination of two tested indices.

After that, we evaluated the models according to values of
deltaAIC, weightAIC (Akaike, 1973; Aho et al., 2014), R2, and
correlation plots. Supplementary Appendix 7 contains the
analyses of the residues of each evaluated model.

Results

We analyzed a total of 2,563 min comprising 294.8 h of
recordings. In total, we had 9,629 labels: 9,278 at the bird
species level (199 species of 52 families), 351 at the genus level
(complete list of bird species in Supplementary Appendix 4), and
808 not identified (distant signals or dubious calls). The species
with the highest frequency of detection were Vireo chivi (781 min),
Zonotrichia capensis (631 min), Basileuterus culicivorus (533 min),
Cyclarhis gujanensis (427 min), and Pitangus sulphuratus
(371 min). We detected 137 corrupted, blank minutes that were
excluded from the analysis, which resulted in 2,563 min analyzed.

FIGURE 3
Example of a 1-min spectrogram containing one label for each bird vocalization used for the analyses also used to calculate acoustic indices.
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Selection of variables

The analyses of VIFs selected the same set of acoustic indices
(Table 2) for three response variables (richness, number, and
diversity labels).

Generalizations of environments

When performing the analysis using data without distinction
among environments, for models using a single acoustic index in
correlations with richness, number of tags, and diversity of birds, the
BIO and ACI indices had the best performance (Figure 4). The
correlations are lower than the results of the bivariate models, in
which we use two acoustic indices.

In all available data, the bivariate models that considered the
environment type were an important part of explaining the patterns.
For each variable response, a differentmodel returned better performance
(Figure 5).

For the variable “number of labels,” the bivariate model
BIO1+ADI presented R2 = 0.71, while for “richness of labels” the
model used was BIO1+NDSI2 (R2 = 0.66), and lastly “diversity of
labels” was presented as R2 = 0.58. The correlations using only one
acoustic index were the lowest. The four main models and NULL
model are presented in Table 3, and the rest of the results are
presented in Supplementary Appendix 5.

Environment types

Considering each type of environment (forest, pasture, and
swamp) separately, among the environments, the correlations were
stronger in the swamp. For the pasture environment, the highest
correlation found was R2 = 0.43 (BIO1+AR). While in the forest
environment, BIO1+NDSI2 (R2 = 0.5) showed the highest correlation.
For the purpose of comparison, Table 4 presents the two models with
the highest correlations in each type of environment. Also, we found
that the acoustic indices are better correlated with the number label
than the richness or diversity labels.

In contrast to the best model when considering data from all
environments without distinction, for each environment a different
bivariate model had greater explanatory power. For forest data,
there is moderate correlation between the BIO1+NDSI2 model
(Figure 6).

Discussion and conclusion

We investigated how eight of the most used acoustic indices
relate to the bird acoustic community in different environments of
the Atlantic Forest. Our results showed that bivariate models of
acoustic indices were better correlated with all tested aspects of
recorded bird biodiversity than single-index models. Different
models presented better performance for each variable of
acoustic diversity tested, and also showed differences for each
type of environment. For data without distinction between
environments, the highest correlations found were between the
acoustic indices and the number of labels (R2 = 0.71). While in the
data tested for each type of separate environment, the highest
correlation was with the richness of labels (R2 = 0.75) in swamp
areas. Of the models analyzed in the general dataset, the bivariate
model combining BIO and ADI correlated the best with number of
labels. In addition, we demonstrate that the type of environment
influences the explanatory power and thus has a direct influence on
the best index set to be used as a measure of biodiversity in each
context.

Some studies found that correlations between acoustic indices
and bird biodiversity indices vary from low to moderate (Alcocer
et al., 2022). We demonstrated that the predictive power of the
models is increased with the use of more than one acoustic index.
The predictive power is still low in most cases (as shown by the R2

values) and it is known that a combination of indices performs better
to represent biodiversity than a single index approach (Towsey et al.,
2014; Mammides et al., 2017; Scarpelli et al., 2021). The idea of a
single index being unable to capture all facets of the diversity of
vocalizations has already been discussed by Sueur et al. (2014b).
Other studies have explored this relationship in tropical and
temperate environments with low bird richness (Towsey et al.,

TABLE 2 Sets of acoustic indices selected over VIFs. These were used in final indices and parameters to test the correlationwith bird richness, number, and diversity
of labels in the context of Long-Term Ecological Research within the ecological Corridor of Cantareira-Mantiqueira (LTER CCM), Atlantic Forest, São Paulo, Brazil. A
“0” indicates the absence of an amplitude threshold. The amplitude threshold is the minimum dB value used in the acoustic index reading.

Acoustic indices Frequency range Amplitude threshold (dB)

ADI 300–12,000 Hz 75

AEI 1,000–12,000 Hz 50

ACI 1,000–12,000 Hz 50

BIO-1 1,000–12,000 Hz 50

BIO-2 1,000–22,050 Hz 50

NDSI-1 Antro: 300–1,000 Hz Bio: 1,000–12,000 Hz 50

NDSI-2 Antro: 1,000–2,000 Hz Bio: 2,000–22,050 Hz 50

Ht 0–22,050 Hz 0

AR 0–22,050 Hz 0
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2014; Buxton et al., 2018; Eldridge et al., 2018), but we did so by
testing this relationship with a large volume of data, high bird
richness, and different types of environments.

The soundscape is a complex environment formed by several
variable elements that often overlap with each other (Pijanowski

et al., 2011). Biophony have variations in patterns, frequency, and
modulation according to the emitting animal and period; geophony
can vary among hours or seasons, often cover all spectrograms,
causing masking of vocalizations; and lastly anthrophony are usually
in the lower frequencies (Pijanowski et al., 2011). These and other

FIGURE 4
The bestmodels from LM analysis using data generalized among all environments together, in the context of Long-Term Ecological Researchwithin
the ecological Corridor of Cantareira-Mantiqueira (LTER CCM), Atlantic Forest, São Paulo, Brazil.
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elements make soundscapes a complex environment to study,
therefore it is logical to postulate that a combination of indices
would be more efficient to represent such a diverse
multidimensional space. Therefore, our results corroborate with
previous research in that multiple acoustic indices are more
suitable to be used as a proxy for the representation of bird
biodiversity in soundscapes (e.g., Buxton et al., 2018; Bradfer-
Lawrence et al., 2020; Alcocer et al., 2022).

The best performing models considered the categorical variable
“environment.” Demonstrating, in this way, that acoustic activity
varies in each environment. This is why the following analyses were
carried out considering each type of environment (forest, swamp,
and pasture) separately perceiving that the models performed
differently depending on the type of environment. Here, due to
the limitation of the amount of equipment, we first collected data in
forests (October-November), then swamps (November-December),

FIGURE 5
The best models from LMM analysis using data generalized among all environments together, within the context of Long-Term Ecological Research
within the ecological Corridor of Cantareira-Mantiqueira (LTER CCM), Atlantic Forest, São Paulo, Brazil. Each point in the cloud of points represents a set
of 20 min randomly grouped within each type of environment. The color gradient expresses the results of the different metrics (richness, number, and
diversity of labels) within each sample. The y and x-axes express the results of each of the acoustic indices tested for each sample.

TABLE 3 The best models for each response variable and null model. Model variables, deltaAICc, df (degrees of freedom), 304 weightAIC, and Explanatory power
(R2) of acoustic indices for explaining bird responses in the context of Long-Term Ecological Research within the ecological Corridor of Cantareira-Mantiqueira
(LTER CCM), Atlantic Forest, São Paulo, Brazil. Detailed results are available in Supplementary Appendix 6. Column LMM (Linear MixedModels) are presented with
the response variable as a function (~) of the predictor variables (xx + xx) of the model.

Acoustic ecological variable LMM deltaAIC df weightAIC R2

Richness of label BIO1 + NDSI2 + environment 0 7 0.951 0.659

BIO1 + ADI + environment 5.973 7 << 0.01 0.657

BIO1 + ACI + environment 103,044 7 << 0.0001 0.656

ADI + NDSI2 186.205 7 << 0.0001 0.645

NULL 2447.553 3 0.000 0.498

Number of labels BIO1 + ADI + environment 0 7 1.000 0.710

BIO1 + ACI + environment 174,286 7 << 0.0001 0.705

BIO1 + NDSI2 + environment 209.820 7 << 0.0001 0.702

BIO1 + AEI + environment 349.115 7 << 0.0001 0.697

NULL 3405.137 3 0.000 0.507

Diversity of labels NDSI2 + ADI + environment 0 7 1.000 0.577

NDSI2 + ADI + environment 215.658 5 << 0.0001 0.563

NDSI2 + ADI + environment 247.133 7 << 0.0001 0.565

BIO1 + NDSI2 278.681 5 << 0.001 0.562

NULL 1846.958 3 0.000 0.44
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and pastures (December-January). All in the birds’ breeding season
(Develey and Peres, 2000). However, it is possible that there are
differences in the acoustic activity of the birds between the beginning
and the end of the breeding season, thus affecting the data, data
collection in some months showed greater or lesser vocal activity of
birds. For this reason, our conclusions regarding the differences
between the effectiveness of biodiversity prediction by acoustic
indices across environments is that there is variation in the use
of single index or combination between two indices, as well as in the
parameters used according to the type of environment. It is difficult
to say whether the indices that had higher correlations are more
suitable for these types of environments.

Previous research suggests that studies that present data sets
from different types of environments should find stronger
correlations overall (e.g., Mammides et al.,2017). When we
consider the analyses carried out for each environment
separately, the highest correlations were in the swamp, while the
correlations in the forest and pasture were relatively low. The highest
correlation in the swamp was from BIO-ADI, the same model that
performed best for general data without distinction between
environments, with similar correlation power. This pattern was
already expected, mainly due to changes in the signal-to-noise
ratio, especially between open and closed environments (Ey and
Fischer, 2009). This suggests that the BIO + ADI model is more
consistent for use in data obtained between heterogeneous

environments. Besides, there will be differences in acoustic
transmission between areas with different land uses and
vegetation structure (Darras et al., 2016) and acoustic
communities will also vary among environments. Despite this,
the AI proved to be insensitive in capturing the variation
between landscapes with different levels of fragmentation in the
Atlantic Forest hotspot (Scarpelli et al., 2021).

Some researchers have found strong and weak correlations
depending on the use of acoustic indices in monitoring different
aspects of soundscapes, including the acoustic activity of birds. They
have presented results that were often divergent in relation to which
AI had the highest correlations with each evaluated acoustic
component. Bird sounds have many modulations and variations
among hundreds of species, and the distance of the animal to the
microphone can affect the acoustic indices (Lellouch et al., 2014). All
these different patterns can be due to several reasons, such as
differences in the land uses (e.g., Buxton et al., 2018), climate
(e.g., Eldridge et al., 2018), vocalization patterns (Zhao et al.,
2019), lower number of recorded hours per site than
recommended for acoustic studies (Bradfer-Lawrence et al.,
2020), and acoustic signal diversity, like anthropogenic noise
types (e.g., Ross et al., 2020). Given these variations inherent to
the acoustic landscapes, the divergence in the results of the indices
depend on the distance from the emitting source to the microphone,
added to the high modulation and diversity of types of bird

TABLE 4 Mainly models from GLM results to response variables from each environment’s data. Model variables, dAICc, df (degrees of freedom), wAIC, and
Explanatory power (R2) of acoustic indices on explaining bird responses in the context of Long-Term Ecological Research within the ecological Corridor of
Cantareira-Mantiqueira (LTER CCM), Atlantic Forest, São Paulo, Brazil. Bird responses are bird richness, number of bird labels, and bird label diversity. The acoustic
indices after the “~” symbol were used in the models, which were ranked from the higher dAICc and R2 values (top) to the lowest (bottom) within bird responses.
Detailed results are available in Supplementary Appendix 16.

Environment Acoustic ecological variable GLM models DeltaAICc df weightAIC R2

Forest Richness of labels BIO1 + ACI 0 4 1.000 0.25

BIO1 + NDSI2 102.89 4 << 0.0001 0.21

Number of labels BIO1 + NDSI2 0 4 1.000 0.50

ACI + BIO1 365.63 4 << 0.0001 0.41

Diversity of labels NDSI1 + Ht 0 4 1.000 0.14

ACI + Ht 19.39 4 << 0.0001 0.13

Pasture Richness of labels BIO1 + AR 0 4 1.000 0.41

ACI + AR 179.76 4 << 0.0001 0.35

Number of labels BIO1 + AR 0 4 1.000 0.43

ACI + AR 109.97 4 << 0.0001 0.40

Diversity of labels BIO1 + AR 0 4 1.000 0.29

AEI + BIO1 110.42 4 << 0.0001 0.25

Swamp Richness of labels ADI + BIO1 0 4 1.000 0.75

ACI + BIO1 162.05 4 << 0.0001 0.73

Number of labels ACI + BIO1 0 4 1.000 0.64

AEI + BIO1 114.64 4 << 0.0001 0.62

Diversity of labels ADI + BIO1 0 4 1.000 0.67

BIO1 + BIO2 79.91 4 << 0.0001 0.66
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vocalization (Lellouch et al., 2014). Also, the divergences among the
studies that tested them demonstrate the variation of results in each
dataset. This indicates that in each study site there are previous tests
like those demonstrated in our research to verify the strength of the
correlation and the best set of indices that describe the acoustic
biodiversity of birds in the subset of study sites.

In the present study, we considered ecological measures of
species richness, abundance, and Simpson diversity of labels from
each subset of 20 random 1-min samples from each sampling point.
We tested the models’ correlation with the average of the results of
each acoustic index. We found that in almost all situations the

highest correlation of acoustic indices was with the number of labels
and correlation was lower with richness or diversity, except for the
swamp data, where the strongest correlations were with richness.
This is an indication that the indices are more representative of the
birds’ vocal activity level than their own diversity. As we considered
1 min as the minimum sample unit, we did not mark all
vocalizations present in the recordings.

The application of acoustic indices in the measurement of
biodiversity in large databases becomes more accurate in the
selection of data from the time of greatest vocal activity of the
interest group and, as we demonstrate, from the selection of specific

FIGURE 6
The best models to each response variable (bird richness, number of labels, and label diversity) for each separate environment in the context of the
Long-Term Ecological Research within the ecological Corridor of Cantareira-Mantiqueira (LTER CCM), Atlantic Forest, São Paulo, Brazil. Bird responses
are bird richness, number of bird labels, and bird label diversity. All BIOs correspond to the BIO1 parameters.
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frequency bands, amplitude filters, and the use of bivariate models.
The BIO-ADI bivariate model is the most suitable for measuring
bird biodiversity, and we recommend its application in monitoring
natural and heterogeneous soundscapes that have high species
richness. We advocate for the use of acoustic indices in
monitoring areas, especially using the vocal activity of birds as an
important factor to consider. However, for its direct and large-scale
application, future studies are needed to define methodological
routines for the treatment and analysis of acoustic data from the
field, as well as models with greater accuracy for measuring
biophonies, geophonies, and anthropophonies.
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