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Introduction: Monitoring surface water through the extraction of water bodies
from high-resolution remote sensing images is of significant importance. With the
advancements in deep learning, deep neural networks have been increasingly
applied to high-resolution remote sensing image segmentation. However,
conventional convolutional models face challenges in water body extraction,
including issues like unclear water boundaries and a high number of training
parameters.

Methods: In this study, we employed the DeeplabV3+ network for water body
extraction in high-resolution remote sensing images. However, the traditional
DeeplabV3+ network exhibited limitations in segmentation accuracy for high-
resolution remote sensing images and incurred high training costs due to a large
number of parameters. To address these issues, we made several improvements
to the traditional DeeplabV3+ network: Replaced the backbone network with
MobileNetV2. Added a Channel Attention (CA) module to theMobileNetV2 feature
extraction network. Introduced an Atrous Spatial Pyramid Pooling (ASPP) module.
Implemented Focal loss for balanced loss computation.

Results: Our proposed method yielded significant enhancements. It not only
improved the segmentation accuracy of water bodies in high-resolution remote
sensing images but also effectively reduced the number of network parameters
and training time. Experimental results on the Water dataset demonstrated
superior performance compared to other networks: Outperformed the U-Net
network by 3.06% in terms of mean Intersection over Union (mIoU).
Outperformed the MACU-Net network by 1.03%. Outperformed the traditional
DeeplabV3+ network by 2.05%. The proposed method surpassed not only the
traditional DeeplabV3+ but also U-Net, PSP-Net, and MACU-Net networks.

Discussion: These results highlight the effectiveness of our modified DeeplabV3+
network with MobileNetV2 backbone, CA module, ASPP module, and Focal loss
for water body extraction in high-resolution remote sensing images. The
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reduction in training time and parametersmakes our approach a promising solution
for accurate and efficient water body segmentation in remote sensing applications.

KEYWORDS

remote sensing image, semantic segmentation, deep learning, water extraction,
DeepLabV3+

1 Introduction

The task of extracting water bodies from remote sensing images
involves the segmentation of surface water from these images.
Surface water is a general term for static and dynamic water on
the land surface, including river channels, lakes, reservoirs and other
water bodies. It is a crucial component of Earth’s ecosystem,
constituting only 1.75% of the global total water storage. Surface
water plays a significant role in biodiversity, climate change, and the
global water cycle. However, due to the continuous development of
human society and industry, surface water pollution and depletion
have become increasingly severe. Consequently, it is vital to study
the extraction and accurate delineation of surface water bodies to
foster sustainable human development, environmental protection,
and urban planning. Despite the paramount importance of surface
water to Earth’s ecosystem and human survival, our research on its
trends and area changes has been limited.

This limitation arises from our heavy reliance on manual
investigation and annotation to understand surface water.
Although this approach yields highly accurate results, it is time-
consuming, lacks real-time data availability, and incurs high labor
costs. It fails to meet the growing demand for water body extraction
from various regions. In recent years, the advent of remote sensing
satellite technology has transformed the field of remote sensing
research. Satellite systems such as Landsat and Sentinel-I have been
widely deployed, providing low-cost and reliable remote sensing
images. Equipped with high-resolution microwave sensors
unaffected by day-night variations and capable of penetrating
thick clouds, these satellites offer imaging capabilities across
diverse terrains.

During the initial stages of remote sensing image water body
extraction research, various algorithms were developed to leverage
the disparities in spectral reflectance between land and water. These
included techniques like spectral unmixing, single-band
thresholding, and the spectral moisture index method. The
variance in spectral reflectance arises because water
predominantly absorbs energy at near-infrared and mid-infrared
wavelengths, while vegetation, soil, and impermeable surfaces
exhibit higher reflectance at these wavelengths. The spectral
moisture index, which accounts for the correlation between
different bands, emerged as a widely utilized method due to its
high accuracy and cost-effectiveness (Xie et al., 2014).

Numerous other water indices were proposed in the early stages
as well. In 2011, researchers suggested combining the NDVI-NDWI
difference with SLOPE and near-infrared bands (Lu et al., 2011).
This combination proved more effective than using the NDVI or
NDWI indices alone, enhancing the contrast between water bodies
and other surface features. Additionally, scholars introduced the
Automatic Water Extraction Index (AWEI) to enhance the
classification accuracy of shadows and dark surfaces that other

methods often struggle to identify correctly (Feyisa et al., 2014).
However, these methods generally encountered challenges in
complex scenes like shadows and mountainous areas,
necessitating manual adjustment of suitable thresholds.
Determining the optimal threshold for achieving the highest
possible accuracy proved to be a daunting task, as it varied with
the image acquisition time and location.

Several commonly employed water body extraction methods
have also been established. Some researchers employed radial basis
functions (RBF) to construct machine learning support vector
machine (SVM) classification models, yielding promising
outcomes in water body segmentation (Li et al., 2013). Moreover,
the concept of object-based classification was proposed. Huang et al.
(Huang et al., 2015) developed a two-level machine learning
framework that employed geometric and texture features to
identify water bodies at the object level in high-resolution remote
sensing images of urban areas. Traditional water body extraction
methods, on the whole, provide effective water body information but
are susceptible to the influence of complex environments and
involve significant workload.

In recent years, the field of image segmentation has witnessed
significant advancements due to the rapid progress of deep learning
techniques. Deep learning networks, capable of achieving pixel-level
classification, have found widespread application in semantic
segmentation. Zhao et al. (Zhao et al., 2017) enhanced the FCN
(Long et al., 2017) model by incorporating a Pyramid Pooling
Module, resulting in the proposed PSP-Net network model. This
novel approach effectively aggregates contextual information from
various regions, thereby improving the model’s ability to capture
global information. Zhou et al. (2023) put forward EG-UNet model
to solve the problems of feature loss and limited interpretation
accuracy in mining land cover classification. EG-UNet improves the
feature representation ability by extracting boundary information
using Sobel operator and capturing remote features using graph
convolutional network. Wenkuana and Shicai (2023) proposed an
improved segmentation model based on deeplabv3. By combining
image level adjustment and attention mechanism, they solved the
problems of lower segmentation accuracy and difficult segmentation
of dense fog in fog-day image, and achieved better results. Li et al.
(2022), in 2021, addressed the issue of insufficient feature utilization
in the U-Net (Ronneberger et al., 2015) model by introducing
asymmetric convolution to enhance the feature representation
and extraction capabilities of the convolutional layer. The
resultant MACU-Net network outperformed the U-Net network
when tested on WHDLD and GID datasets.

Dai et al. (2020) proposed an enhanced water body
segmentation network based on the bilateral segmentation
network (BiSeNet) and utilized the loss function of the edge
region to improve the network’s segmentation capability. Wang
et al. (2022) introduced an intelligent water body extraction method
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known as SADA Net, designed specifically for high-resolution
remote sensing images. This network framework integrates three
key components: Shape Feature Optimization (SFO), Hollow Space
Pyramid Pooling, and Dual Attention Module. Yang et al. (2020)
presented a model based on MASK R-CNN for automatic detection
and segmentation of water bodies in remote sensing images,
eliminating the need for manual feature extraction. Zhang et al.
(2022) proposedMRSENet, a multi-scale residual network structure
for water segmentation. Similar to U-Net in structure, MRSE Net
comprises an encoder-decoder and hop connections, enabling it to
capture context information of different scales.

Dirscherl et al. (2021) proposed the use of an improved U-Net
architecture for semantic segmentation of lakes in Sentinel-1 images,
which yielded favorable segmentation results. The enhanced U-Net
network consisted of four downsampling blocks in the encoder and
four upsampling blocks with convolution in the decoder, with both
blocks implemented as ResNet blocks. Chen et al. (2015) introduced
the DeepLab network, utilizing hole convolution based on FCN to
mitigate pooled information loss. They further incorporated a
conditional random field (CRF) module into the feature
extraction network output. Building upon DeepLab, Chen L. C.
et al. (2017) developed the DeeplabV2 network, enhancing the
receptive field without increasing the number of parameters
through the introduction of the Atrous Spatial Pyramid Pooling
(ASPP) module, thus improving network performance.

Continuing the evolution, Chen LC. et al. (2017) proposed the
DeeplabV3 network, which eliminated the conditional random field
while optimizing ASPP modules and leveraging multiple empty
convolution cores, resulting in superior segmentation outcomes
compared to DeeplabV2. Recognizing the limited inclusion of
shallow features in the DeeplabV3 network, Chen et al. (2018)
introduced the DeeplabV3+ network. Considered a breakthrough
in semantic segmentation, the DeeplabV3+ network integrated
shallow features with deep features using a classic encoding and
decoding structure based on DeeplabV3, significantly improving
segmentation accuracy. While DeeplabV3+ has demonstrated a
leading edge on multiple publicly available data sets in the field
of semantic segmentation, there are still some problems in high-
resolution remote sensing image segmentation. One of the problems
is the lack of accuracy of semantic information. Since remote sensing
images usually have higher resolution and more complex scenes, it
makes it difficult for networks to capture details and boundaries.
This can lead to a lack of accuracy and detail in segmentation results
due to ambiguous semantic information. Another problem is the
computational complexity of the network. Due to the large volume
of high-resolution remote sensing images, this can cause the training
and inference process to become more time-consuming and may
require more powerful hardware support.

This article acknowledges the challenges faced by the DeeplabV3+
network when dealing with the complex features in high-resolution
remote sensing image segmentation of water bodies. To address these
challenges, the proposed approach utilizes the MobilenetV2 network as
the feature extraction network, incorporating an attention mechanism
module into the network structure. Focal loss balancing is introduced,
and the algorithm is tested and validated using high-resolution remote
sensing image datasets. Comparative analysis is conducted with
traditional DeeplabV3+ networks to evaluate the performance of the
proposed method.

2 Related research

2.1 Deeplabv3+network model

The DeepLabV3+ algorithm has gained significant popularity as a
network model structure in the realm of image semantic segmentation.
Since its inception, it has been extensively employed for achieving high-
precision image segmentation. In recent years, DeepLabV3+ networks
have found wide application in remote sensing image segmentation
tasks (Li et al., 2019; da Cruz et al., 2022; Du et al., 2021). These
networks excel in leveraging multi-scale contextual information and
employ spatial information reconstruction techniques to delineate
object boundaries. The ASPP (Atrous Spatial Pyramid Pooling)
module within the network structure takes an input feature map x
and produces an output feature map y, as expressed by Equation:

y � ∑
K

k�1
x i + r × k[ ]w k[ ] (1)

Here, i denotes the input signal, w[k] represents the filter value,
r corresponds to the expansion rate, and K signifies the convolution
length of the cavity.

TheDeeplabV3+network introduces numerous dilated convolutions
within the encoder module, enabling the network to expand its receptive
field without sacrificing valuable information. The calculation of the
receptive field for dilated convolutions aligns with that of standard
convolution kernels, where the value of K, denoting the receptive field
of the dilated convolution, is determined by Equation below:

K � k + k − 1( ) r − 1( ) (2)
In the formula, k is the size of the original convolutional kernel; r

is the size of the actual convolution kernel for empty convolutions.
DeepLabV3+ is based on the structure of DeepLabV3, adding a

simple and efficient decoding module to refine feature information and
improve segmentation performance. The encoder is used for feature
processing. Firstly, an improved Xception model is used, using Modified
Aligned Xception as the backbone network. Through the Modified
Aligned Xception feature extraction network, the depth of different
channels in the network can be separated by convolution operations.
Finally, two effective feature layers are generated, namely, shallow features
and deep features. Afterwards, utilizing the spatial pyramid pooling
module 1 × 1 Parallel convolution with 3 void rates of 6,12,18,
respectively 3 × 3 after processing deep features through hollow
convolution and global average pooling operations 1 × 1
convolutional channel compression results in multi-scale features with
256 channel bits. In the decoder section, the shallow features extracted
from the input layer of the backbone network are first utilized 1 × 1
Convolutional dimensionality reduction, followed by fusion with deep
features obtained through encoder upsampling, and then utilizing several
3 × 3 The spatial information in the feature map is restored through
convolution, and the final prediction result is obtained through the
Softmax function. Figure 1 shows the network structure of DeeplabV3+.

2.2 Modified Aligned Xception network
model

The Modified Aligned Xception network represents an enhanced
iteration of the original Xception network, which was introduced by the
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Google team in 2016 as a network model. The Xception network
structure comprises three distinct flows: the entry flow,middle flow, and
exit flow, collectively incorporating a total of 36 convolutional layers.
Notably, the Xception network introduces deep separable convolution,
which involves performing three separate convolutions on each channel
using 3 × 3 filters, followed by a 1 × 1 convolution operation, and
ultimately merging the results. This method introduces more nonlinear
transformation into the network and improves the capability of feature
representation.

In addition, the Xception network structure incorporates the
concept of residual learning, which significantly contributes to the
model’s effectiveness. Assuming the input is denoted as X, and the
desired output is represented by Y, traditional linear network structures
aim to learn themapping F(X) = Y. In contrast, the residual structure in

the Xception network directly transmits the input X to the output as the
initial result, thereby shifting the learning objective from F(X) = Y to
F(X) = Y - X, which represents the difference between the output and
the input.

Figure 2 provides a visual representation of the network
structure diagram for the Modified Aligned Xception. Upon
observation, it becomes apparent that the Entry flow remains
fixed, with the addition of multiple Middle flows. Furthermore,
the Max pooling operation is substituted with depthwise separable
convolutions. Additionally, in each 3 × 3 Normalization and ReLU
activation functions were added after the convolution operation.

3 Materials and methods

3.1 Experimental dataset

The first step to build a water dataset is to collect high-resolution
remote sensing images of different areas of Hangzhou through Google
remote sensing images. Subsequently, these remote sensing images are
cropped to suitable dimensions, followed by a filtering process to refine
the selection. Finally, manual annotation is performed to identify and
label the water bodies present in the images. The resultingWater dataset
comprises 10,000 remote sensing images, each measuring 512 sheets ×
512 pixels, with a spatial resolution of 0.3 m. This comprehensive
dataset encompasses remote sensing images depicting rivers, reservoirs,
and lakes. For visual reference, Figure 3 displays an example image from
the Water dataset, along with its corresponding label image indicating
the water bodies.

3.2 Improved DeepLabV3+ network model

The traditional DeeplabV3+network model has a large number
of parameters and complex calculations. Therefore, in the

FIGURE 1
DeeplabV3+Structure diagram. Maps Data:Google, ©2023 CNES / Airbus, Maxar Technologies. Reproduced with permission.

FIGURE 2
Structure diagram of Modified Aligned Xception.
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implementation process of DeepLabV3+algorithm, this article
proposes to replace the Modified Aligned Xception network
model with a lighter weight MobileNetV2 network to reduce the
number of model parameters. At the same time, the CA
(Coordinated Attention) module is added after the ASPP module
in the MobileNetV2 feature extraction network to improve the
segmentation accuracy of the model. Finally, optimize the loss
function and introduce Focal loss to equalize the loss. This article
aims to achieve a faster and stronger encoding decoding network by
making three improvements to the DeeplabV3+network. Figure 4
shows the improved DeeplabV3+network structure diagram.

3.2.1 Optimize feature extraction module
At the coding layer, the original network used for feature

extraction has been replaced with the more lightweight
MobileNetV2 network, which was introduced by the Google team
in 2018. The MobileNetV1 network, a classic lightweight CNN neural
network, was initially proposed by Google in 2017 with a focus on
embedded devices. The MobileNetV2 network is an improvement
over MobileNetV1, maintaining its lightweight nature. The
MobileNetV2 network incorporates a linear bottleneck structure
and a reverse residual structure.

During feature extraction operations, neural networks
extract valuable target-related information, which can be
embedded in low-dimensional subspaces. However, when
mapping from low-dimensional to high-dimensional spaces and
then back to low-dimensional spaces after applying the ReLU
activation function, some features inevitably get lost. If the final
mapped dimension is relatively high, the loss of information during
the transformation back to low-dimensional space is relatively small.
Conversely, if the mapped dimension is relatively low, a significant
amount of information is lost. To address this, the linear bottleneck
layer replaces the ReLU activation function of the penultimate layer
with a linear function, thereby reducing the loss of useful
information within the network.

The reverse residual structure of MobileNetV2 network
application consists of three parts. Firstly, 1 × 1 convolution is
used to increase the dimensionality of input features, followed by
feature extraction using 3 × 3 depth separable convolution, and then
1 × 1 convolution is used to reduce the dimensionality. The specific
network structure is shown in Table 1.

3.2.2 Add CA module
The attention mechanism is a computational approach that

calculates the weighted sum of different weights assigned to
feature vectors. During the model training process, varying
weights are assigned to different regions of the input image,
reflecting the varying importance of feature information. By
assigning different weights, attention mechanisms enable the
model to focus on significant information and reduce interference.
Thus, incorporating attention mechanisms with convolutional
networks can effectively enhance the performance of image
segmentation tasks. Two commonly used attention mechanisms
are the channel attention mechanism (Zhang et al., 2018) and the
spatial attention mechanism (Chu et al., 2017). By introducing the
attention mechanism in the encoder end, features can be extracted
from the input more efficiently and the attention representation of the
input can be obtained. Adding the attention mechanism to the input
side of the decoder can solve the limitation that the output of the
encoder is only a certain length tensor and can not store a lot of
information, so as to realize the full use of information. In this article,
coordinated attention (CA)module is added after the ASPPmodule in
the MobileNetV2 feature extraction network.

The CA module employs two one-dimensional global pooling
operations to aggregate vertical and horizontal input features into two
separate directional perceptual feature maps. These feature maps,
embedded with directional-specific information, are then encoded
into attentionmaps capturing long-distance dependency relationships
within the input featuremap’s spatial direction. This encoding process
ensures that location information is preserved within the generated

FIGURE 3
Water data set image and label map. Maps Data:Google, ©2023 CNES / Airbus, Maxar Technologies. Reproduced with permission.
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attention maps. Finally, the two attention maps are applied to the
input feature map through element-wise multiplication, emphasizing
the representation of relevant features of interest.

While global pooling allows for the global encoding of channel
attention with spatial information, it struggles to preserve positional
information, which is crucial for capturing spatial structure in visual
tasks. To facilitate the attention module in capturing long-range
spatial interactions with precise positional information, global
pooling is decomposed, and paired one-dimensional feature
encoding is performed as defined by Equation below:

zc � 1
H × W

∑
H

i�1
∑
W

j�1
xc i, j( ) (3)

Encode each channel along the horizontal and vertical
coordinates using pooling kernels of size (H, 1) or (1, W) for the
given input x. Therefore, the output of channel c with a height of h
can be expressed as:

zhc h( ) � 1
W

∑
0≤ i<W

xc j,w( ) (4)

TABLE 1 MobileNetV2 network structure.

Input Network Expansion factor of input channel Number of output channels Module repetitions Step

256 × 256 × 3 Conv2d - 32 1 2

128 × 128 × 32 Bottleneck 1 16 1 1

128 × 128 × 16 Bottleneck 6 24 2 2

64 × 64 × 24 Bottleneck 6 32 3 2

32 × 32 × 32 Bottleneck 6 64 4 2

32 × 32 × 64 Bottleneck 6 96 3 1

16 × 16 × 96 Bottleneck 6 160 3 2

8 × 8 × 160 Bottleneck 6 320 1 1

FIGURE 4
Structure diagram of improved DeeplabV3+. Maps Data:Google, ©2023 CNES / Airbus, Maxar Technologies. Reproduced with permission.
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Similarly, the output with a width of w for channel c can be
represented as:

zwc w( ) � 1
H

∑
0≤ i<H

xc j,w( ) (5)

Through the above transformation, two aggregated feature maps
are obtained by aggregating features in two directions. This section
will stack the generated two aggregated feature maps and then use
1 × 1 convolutional transformation function F1. Transform it:

f � δ F1 zh, zw[ ]( ) (6)

Among them, [·,·] represents the concatenation operation along the
spatial dimension, δ is a nonlinear activation function, and f is an
intermediate feature map encoding spatial information in the horizontal
and vertical directions, γ is the reduction ratio of the controlmodule size.
Decompose f into two independent tensors fh ∈ RC/γ×H, fw ∈ RC/γ×w

along the spatial dimension. Using the other two 1 × 1 convolutional
transformations Fh andFw, respectively, fh andfw are transformed
into tensors of the same number of channels into input X, and obtain:

gh � σ Fh f h( )( ) (7)
gw � σ Fw f w( )( ) (8)

σ is the sigmoid activation function. To reduce the computational
cost and complexity of the model, appropriate reduction ratios are
used γ to reduce the number of channels for f. Then expand the
output gh andgw to use as attention weights, respectively. Finally,
the output y of the CA module can be represented as:

yc i, j( ) � xc i, j( ) × ghc i( ) × gwc j( ) (9)

3.2.3 Optimize loss function
The loss function plays a crucial role in defining the training

effectiveness of a neural network model by optimizing its parameters
and objectives. In the case of high-resolution remote sensing images, the
dataset encompasses a vast ground range, withwater bodies occupying a
relatively small proportion. Consequently, during network training,
larger targets tend to dominate, causing the classifier tomisclassify other
target categories as larger targets. This imbalance negatively impacts the
performance of the segmentation network. To address this issue and
balance the losses, the approach employed in this article involves
utilizing Focal loss.

Focal loss is a technique used to tackle the problem of
imbalanced classification target proportions. Its calculation
formula is presented in Equation:

FL� −ac 1 − pc( )γlog pc( ) (10)

Within this equation, weight ac is employed to balance the
uneven sample proportions across different categories. The
parameter γ serves as a hyperparameter, and pc represents the
prediction probability for various categories. For samples that are
simple and easily distinguishable, their corresponding weight
diminishes as their prediction probability increases. Conversely,
for samples that are complex and difficult to distinguish, their
weight increases as their predicted probability decreases. By
employing Focal loss, the aim is to effectively address the

imbalanced nature of the classification targets and enhance the
segmentation network’s performance.

4 Experiments and result analysis

4.1 Experimental environment and
evaluation standards

The experiment conducted in this study employed an Intel i7-
10700 CPU, running on the Windows 10 operating system. The
GPU utilized was the NVIDIA GeForce RTX 2060S with 8 GB of
graphics memory. The development environment employed for the
experiment consisted of Python 1.9.0 and Python 3.8.

The primary objective of this study was to evaluate the
segmentation performance of high-resolution remote sensing
image datasets. To assess the performance of the network
segmentation, several indicators were selected, including the
average intersection to union ratio (mIoU), average pixel
accuracy (mPA), and average recall (mRecall). The formulas
for calculating these indicators are as follows:

mIoU � 1
n
∑
n

i�0

pii
∑n

j�0pij + ∑n
j�0pji − pii

(11)

mPA � 1
n
∑
n

i�0

pii
∑n

i�0∑
n
j�0pij

(12)

mRecall � 1
n
∑
n

i�0

pii
pii + ∑n

i�0pji
(13)

In these formulas, n represents the total number of categories,
pij denotes the number of pixels that predict class i as class j, pji

represents the number of pixels that predict class j as class i, and pii

signifies the number of pixels predicted to be of class i as class i.

4.2 Experimental process

In the improved DeepLabV3+ network, the initial step involves
loading the MobileNetV2 pre-training weights before commencing
model training. To optimize the network’s performance, the Focal
loss function is employed, and the Focal loss parameter is adjusted
accordingly. After conducting multiple experiments with consistent
control variables, it has been observed that the model achieves the
highest segmentation accuracy when γ is set to 3 and ac is set to 0.2.

When working with theWater dataset, the training set randomly
selects 60% of the images in the dataset, the validation set is 20% of
the images in the dataset, and the test set is the remaining 20% of the
images.

4.3 Ablation experiment

To evaluate the segmentation accuracy of models with different
structures on the Water dataset, an ablation experiment was conducted
on high-resolution remote sensing image water extraction. The
experiment aimed to test the effectiveness of modifying the network
used for feature extraction to the MobileNetV2 network, along with the
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addition of CA module after the feature extraction module and Atrous
Spatial Pyramid Pooling (ASPP) module. Four distinct schemes were
employed during the experiment:

Scheme 1: This scheme involved replacing the feature extraction
network of the traditional DeeplabV3+ network structure with
the MobileNetV2 network.
Scheme 2: Building upon Scheme 1, CA module was added to the
MobileNetV2 network.
Scheme 3: In this scheme, the CA module was incorporated after
the ASPP module, while maintaining the modifications
introduced in Scheme 1.
Scheme 4: Based on Scheme 1, the ASPP module was integrated
into the CA module within the MobileNetV2 network.
Scheme 5: Add CA module to backbone network based on
traditional DeeplabV3+ network structure.
Scheme 6: Based on the traditional DeeplabV3+ network
structure, the ASPP module is added to the CA module.
Scheme 7: Based on the traditional DeeplabV3+ network
structure, the CA module is added to the ASPP module in the
backbone network.

These seven schemes were investigated to assess their impact on
the segmentation accuracy of high-resolution remote sensing image
water extraction, providing valuable insights into the performance of
different model configurations.

The initial learning rate of this experiment is 0.0005, and the
training iteration is 200 steps. Table 2 shows the experimental results of
different schemes on theWater dataset, amongwhich Scheme 4 has the
best performance on multiple indexes. The experimental result of
scheme 4 network is 2.05% higher than that of traditional DeeplabV3+
network, and the experimental result of Scheme 7 network is 0.61%
higher than that of traditional DeeplabV3+ network. By comparing the
experimental results, it is found that in the traditional DeeplabV3+
network structure, adding CA module to the network structure can
effectively improve the segmentation accuracy of the network. At the
same time, the experiment proves that adding CA module to the
backbone network and ASPP module can more effectively indicate the
segmentation effect. The results of this ablation experiment are shown
in Figure 5. It can also be seen from the figure that the model
segmentation effect of improved Scheme 4 is the best. This shows
that DeeplabV3+ network can complete the water segmentation task
on the water dataset. At the same time, in Scheme 4, CA module is

added after feature extraction module and ASPP module to improve
the accuracy of model segmentation.

4.4 Comparison of segmentation
performance between different methods

To extensively evaluate the segmentation performance of the
enhanced DeeplabV3+ model in high-resolution remote sensing
image water extraction tasks, this section of the experiment
employed a comparative analysis. The experiment included the
utilization of PSP-Net, MACU Net, U-Net, DeeplabV3+, and the
improved DeeplabV3+ model proposed within this article for
conducting water extraction experiments. The aim was to
comprehensively assess and analyze the experimental outcomes,
thereby providing valuable insights into the effectiveness of the
different models in the context of water extraction from high-
resolution remote sensing images.

In this experiment, five different semantic segmentation networks
were utilized, employing an initial learning rate of 0.0005 and
conducting training iterations for a total of 200 steps. The
experimental results on the Water dataset are presented in Table 3,
indicating that the proposed method surpasses the performance of
other networks. Specifically, compared to the U-Net network, the
proposed method demonstrates a 3.06% increase in mIou (mean
Intersection over Union); compared to the MACU Net network,
there is a 1.03% increase in mIou, and compared to the traditional
DeeplabV3+ network, there is a 2.05% increase in mIou.

Table 4 shows the comparison results of training time and number
of parameters of different methods on the Water dataset. It can be
observed that compared with the traditional DeeplabV3+ network, our
method significantly reduces the training time and the number of
parameters of the model. Compared with the traditional semantic
segmentation networks PSP-Net and U-Net, our method has more
training parameters, but it achieves higher segmentation accuracy.
Therefore, theMobileNetV2 network proposed in this paper is adopted
as the feature extraction network, and the CA module is added to the
feature extractionmodule and ASPPmodule, which greatly reduces the
number of parameters and training time of the model.

Figure 6 displays the experimental results, showcasing a
comparison of the segmentation performance among different
methods. The results indicate that semantic segmentation networks
are effective in accurately segmenting water bodies, achieving high
segmentation accuracy in the task of high-resolution remote sensing
image water extraction. It is worth noting that the traditional
DeeplabV3+ network outperforms U-Net and PSP-Net in the
water body segmentation task in high-resolution remote sensing
images, further affirming that the proposed improved method in
this paper effectively accomplishes the water body extraction task in
such images, yielding superior segmentation outcomes.

4.5 Comparison with existing high-
resolution remote sensing image water
extraction methods

At present, there are few research results on water extraction
from high-resolution remote sensing images based on deep neural

TABLE 2 Water Results of ablation experiment.

Method mPA(%) mRecall (%) mIou(%)

Traditional DeeplabV3+ 92.64 92.03 87.84

Scheme 1 92.75 92.25 88.22

Scheme 2 92.88 92.36 88.84

Scheme 3 93.04 92.89 89.24

Scheme 4 93.23 93.02 89.89

Scheme 5 92.70 92.16 88.09

Scheme 6 92.73 92.23 88.14

Scheme 7 92.81 92.31 88.45
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networks. References (Ji et al., 2009; Sun et al., 2015; Ying et al., 2016
24, 25, 26) have proposed research on water extraction from high-
resolution remote sensing images based on support vector machines,
object-based classification, and NDWI index. The comparison

between the water extraction method from high-resolution
remote sensing images based on deep neural networks proposed
in this paper and existing water extraction methods is shown in
Table 5.

FIGURE 5
Water dataset ablation experiment results. Maps Data:Google, ©2023 CNES / Airbus, Maxar Technologies. Reproduced with permission.
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From Table 5, it can be seen that compared with the surface
coverage classification method in references (Ji et al., 2009; Sun et al.,
2015; Ying et al., 2016), the improvement of this method lies in:

The water extraction methods used in references (Ji et al., 2009;
Sun et al., 2015; Ying et al., 2016) all require manual selection of
spectral, texture, geometric, shadow, and background features of water
in high-resolution remote sensing images, and the segmentation
results depend heavily on the quality of image feature selection;
This article utilizes deep neural networks to automatically extract
features from high-resolution remote sensing images, fully leveraging
the advantages of deep neural networks in image segmentation.

Reference (Ji et al., 2009) used the Normalized Difference
Water Index (NDWI) to delineate the characteristics of surface

water bodies. However, two main problems are often encountered:
calculating NDWI from different band combinations yields
different results; The NDWI threshold depends on the

TABLE 3 Water comparison of segmentation methods.

Method mPA(%) mRecall(%) mIou(%)

Traditional DeeplabV3+ 92.64 92.03 87.84

U-Net 90.83 90.52 86.83

PSP-Net 89.64 89.32 86.27

MACU-Net 92.93 92.82 88.86

proposed method 93.23 93.02 89.89

TABLE 4 Comparison of training time and number of parameters in water.

Method Training time/epoch(S) Parameter Quantity(M)

Traditional DeeplabV3+ 311 208.51

U-Net 235 12.56

PSP-Net 189 10.31

MACU-Net 300 6.23

proposed method 220 23.05

FIGURE 6
Water segmentation effect. Maps Data:Google, ©2023 CNES / Airbus, Maxar Technologies. Reproduced with permission.
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proportion of non-aqueous components. Therefore, literature (Ji
et al., 2009) evaluates all NDWIs to determine the optimal
performance index and establishes appropriate thresholds to
clearly identify water characteristics. Reference (Sun et al.,
2015) proposed a strategy for extracting urban water bodies
based on mixed training data and SVM. This strategy was
applied to the classification of Landsat 8 multispectral data
in the Beijing area and validated through a large amount of
manual surveying data. Reference (Ying et al., 2016) proposed
a high-precision object-oriented water extraction scheme based
on polarized SAR data. Through experiments, it has been
proven that it can maintain accurate water edges, and the
combination of texture features and decomposition components
can distinguish between grasslands, wasteland, and shadows.
Overall, traditional water body extraction methods can
effectively obtain water body information, but the extraction
results are easily affected by complex environments and have a
large workload.

This article applies the attention mechanism to a high-
resolution remote sensing image water extraction model based
on deep neural networks and uses the lightweight
MobilenetV2 network as the backbone feature extraction
network to improve the accuracy of water extraction in the
model, reduce the number of model parameters, and reduce the
cost of training the model.

5 Conclusion

On the basis of traditional DeeplabV3+network, this article
adopts MobilenetV2 network as the backbone feature extraction
network, and adds a CA module after the feature extraction
module and ASPP module, introducing Focal loss equalization
loss for high-resolution remote sensing image water semantic
segmentation. Experiments on the Water dataset have
comprehensively confirmed the performance of our method over
the benchmark method.

The main work of this article in the later stage is twofold:
firstly, to improve the segmentation accuracy of the network. In
the water extraction experiment, it was found that there is still
interference in high-resolution remote sensing images, which
affects the accuracy of network segmentation. Uncertain factors
such as noise and shadows in images can interfere with the
accuracy of network segmentation, so it is necessary to improve
the segmentation performance of the network in complex scenes
in the future. The second is to select more high-resolution
remote sensing images and more complex water remote
sensing images for further research and experiments.
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TABLE 5 Comparison between this paper and the existing water object classification methods.

Reference Dataset Data type Experimental methods Feature extraction

Reference [24] ASTER Spectral library Text NDWI Manual extraction

Reference [25] Custom dataset Text Support vector machine Manual extraction

Reference [26] WorldView-2 and Quick Bird Text Object based classification Manual extraction

This paper Water dataset Image Deep Neural Network Automatic extraction
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